【真题】2015-2016学年山西农业大学附中九年级(上)期末数学试卷及参考答案PDF
(完整word版)2015-2016学年度上学期期末质量检测九年级数学试卷

2015-2016学年度上学期期末质量检测九年级数学试卷说 明:1.本卷共六大题,全卷共 24题,满分120分,考试时间为120分钟2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答, 否则不给分c +d b c B . cCD.—221.下列各数中,为有理数的是( ▲ )A . nB . \ 3C.3.14D .—、32.已知5个正数a , b , c , d , e ,且 a v b v c v dv e ,则新一组数据 的中位数是(▲)、选择题(本大题共 6小题,每小题3分,共18分)每题只有一个正确的选项0,a ,b , c , d ,e3.某几何体的主视图和左视图完全一样如图所示, 则该几何体的俯视图不可能是(▲)A .4.关于x 的一元 A . 1Z I C.次不等式 x — b v 0恰有两个正整数解,则 B . 2.5C. 2D. 5.如图,△ ABC 中, BD=5, DC=2,AE 交BC 于点D ,DE 的长等于(▲AD=3,10 3b 的值可能是(3.56. 如图是二次函数 ①二次三项式 ax ③ 一元二次方程④ 使y<3成立的x 的取值范围是x 淘. 2y 二ax bx c 的图象,下列结论:2■ bx ' c 的最大值为 4 :②4a + 2b + c v 0;2ax bx 1的两根之和为一2;其中正确的个数有( A . 1 个 B▲) .2个 C8个小题,每小题.3个 D . 4个 3分,共24分) 8•点A (m,m - 3)在第一象限,则实数m 的取值范围为 ____ ▲9.已知:二均为锐角,且sin 。
-1 2(tan -1)^0,则: 二 ▲:B.O D. ▲)10.如图,直线a // b,直线l与a相交于点P,与直线b相交于点Q,且PM垂直于I,若/仁58°则/ 2= ▲;11. 从—1, 0, 2,这三个数中,任取两个数分别作为系数a, b代入ax2•bx::;,2 = 0中.在所有可能的结果中,任取一个方程为有实数解的一元二次方程的概率是▲; 12. 如图在平面直角坐标系中,点A在抛物线y = x2 - 4x • 6上运动.过点A作AC丄x轴于点C,以AC为对角线作矩形ABCD,则对角线BD的最小值为▲;613. 如图,已知点A在双曲线y 上,过点A作AC丄x轴于点C, OC=3,线段0A的x垂直平分线交0C于点8,则厶ABC的周长为▲;14. 菱形ABCD的对角线AC=6 cm,BD=4 cm,以AC为边作正方形ACEF,贝U BF长为三、解答题(本大题共4小题,每小题各6分,共24分)15.计算:(—73 $ +(J2015 — J2016 X J2016 + J2015 )—2誓—tan”45.16. ( 1)如图,六边形ABCDEF满足:AB£EF,AF丄CD.仅用无刻度的直尺画出一条直线I,使得直线l能将六边形ABCDEF的面积给平分;(2)假设你所画的这条直线l与六边形ABCDEF的AF边与CD边(或所在的直线)分别交于点G与点H,则下列结论:①直线I还能平分六边形ABCDEF的周长;②点G与点H恰为AF边与CD边中点;③AG=CH ,FG=DH ;④AG=DH,FG=CH .其中,正确命题的序号为▲.217.已知关于x的一元二次方程x -(k-2)x,2k=0 .(1 )若x=1是这个方程的一个根,求k的值和它的另一根;2(2)当k=—1时,求X j -3X2的值.18.在不透明的袋子中有四张标着数字1, 2, 3,4的卡片,这些卡片除数字外都相同•甲同学按照一定的规则抽出两张卡片,并把卡片上的数字相加•如图是他所画的树状图的一部分.(1 )帮甲同学完成树状图;(2)求甲同学两次抽到的数字之和为偶数的概率.第18题图四、(本大题共4小题,每小题各 8分,共32分) 19.如图,四边形 ABCD 为菱形,M 为BC 上一点, 且/ABM=2/ BAM . (1) 求证:AG=BG ;(2) 若点M 为BC 的中点,且S B MG =1 , 试求△ ADG的面积.20.据报道,历经一百天的调查研究,景德镇 PM 2.5源解析已经通过专家论证.各种调查显示,机动车成为 PM 2.5的最大来源,一辆车每行驶 20千米平均向大气里排放 0.035 千克污染物.校环保志愿小分队从环保局了解到景德镇 100天的空气质量等级情况,并制成统计图和表:空气质量等级优 良轻度污染 中度污染 重度污染 严重污染 天数(天)10a 12 825 b(2)彤彤是环保志愿者,她和同学们调查了 机动车每天的行驶路程,了解到每辆车 每天平均出行25千米.已知景德镇市 2016年机动车保有量已突破 50万辆, 请你通过计算,估计 2016年景德镇市 一天中出行的机动车至少要向大气里 排放多少千克污染物?21.如图ABCD 为正方形,点 A 坐标为(0, 1),点B 坐标为(k y的图象经过点 C , 一次函数y=ax + b 的图象经过 A 、x开始第一次 1234 /N 第二次2 3 4第19题图2016年景德镇市100天空气质量等级天数统计表(1)表中a= ▲, b= ▲ ,图中严重污染部分对应的圆心角n= ▲2016年景德镇市100天空气质量等级天数统计图第20题图(1) 求反比例函数与一次函数的解析式;(2) 若点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.22.小敏将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°,感觉最舒适(如图1),侧面示意图为图2.使用时为了散热,她在底板下垫入散热架ACO 后,电脑转到AO B位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C丄OA 于点C, O' C=2cm.(1)求/ CAO的度数;(2)显示屏的顶部B'比原来升高了多少?第22题图五、(本大题共1小题,每小题10分,共10分)23.如图,抛物线y = -x2• bx • c交x轴于点A (- 3, 0)和点B,交y轴于点C (0, 3).(1) 求抛物线的函数表达式;(2) 若点P在抛物线上,且S AOP =4S.BOC,求点P的坐标;(3) 如图b,设点Q是线段AC上的一动点,作DQ丄x轴,交抛物线于点D, 求线段DQ长度的最大值.六、(本大题共1小题,每小题12分,共12分)M , N分别是AD , CD的中点,连接24.如图,在Rt△ ABC中,/ ACB=90°, AC=6, BC=8,点D以每秒1个单位长度的速度由点A向点B匀速运动,到达B点即停止运动, MN,设点D运动的时间为t.(1) 判断MN与AC的位置关系;(2) 求点D由点A向点B匀速运动的过程中,线段MN所扫过区域的面积;(3 )若厶DMN是等腰三角形,求t的值.2016学年第一次质量检测试卷九年级数学答案、选择题(本大题共 6小题,每小题3分,共18分)• x f - 3x 2 = -3x 4 2 - 3x 2 二-3(x 1 x 2) 2=11.(1 )补全树状图如图所示:.一…第一次 1 2/N z1\第二次 2 3 41 3 4(2)由树状图得:共有12种情况,两次抽到的数字之和为偶数的有四、(本大题共4小题,每小题各 8分,共32分) 19. (1)证明:•••四边形 ABCD 是菱形, •••/ABD = / CBD ,•••/ ABM =2 / BAM , ABD =Z BAM ,• AG=BG ;(2)解:T AD // BC ,ADG MBG ,•••点M 为BC 的中点, •竺=2,BM故P (两次抽到的数字之和为偶数)4 = 112 3ii.12. ____ 2 13.5 ____ 14.4小题,每小题各6分,共24分)15解原=2 .16解: (1) 如图;(2) ③. 17解: (1)k=-3,另一根为-6;(2) 当k= - 1时,方程变形为x 2 3x 2 =0 ,_3 X i18.解: 4种,• AG ADGM " BM32° 、解答2二 X i• BMG =1, 二 S A ADG =4.20.解:(1) a=25, b=20, c=72;答:2016年景德镇市一天中出行的机动车至少要向大气里排放21.解:(1 )•••点A 的坐标为(0, 1),点B 的坐标为(0,— 2),••• AB=1 + 2=3.即正方形 ABCD 边长为 3,二 C (3,— 2). 将C 点坐标代入反比例函数可得:k= — 6.丁八6•反比例函数解析式: y 二-丄.x(a ~ -1 将 C( 3, — 2), A ( 0, 1)代入 y=ax + b 解得:2 = 1• 一次函数解析式为 y=— x + 1.111•••—X 1 X | t |= 3 X 3,解得 t =± 18. • P 点坐标为(18, )或(-18,).23 322.解:(1 )• O' C 丄 OA 于 C , OA=OB=24cm ,OC OC 1 • sin / CAO = -------- = -------- = — ,•/ CAO=30OA OA2(2)过点B 作BD 丄AO 交AO 的延长线于 D .• O' C 丄 OA , / CAO=30°, •/ AO C=60° • / AO B' 120°, •/ AO B'+/ AO C = 180° .• O B + O' C — BD= 24 + 12— 12 3 =36 - 12上 3 . •显示屏的顶部 B'比原来升高(2)根据题意得:50 X 0.035 X 10000X=21875 (千克)20(2)设P(t, -• △ OAP 的面积恰好等于正方形 ABCD 的面积,21875千克污染物•/ sin / BOD =电OB '• BD=OB • sin / BOD ,• / AOB=120°, •/ BOD= 60• BD=OB • sin / BOD= 24 X了(36 —12、刁)cm.五、(本大题共1小题,每小题10分,共10分)2 223.解:(1 )将A (- 3, 0)、C (0, 3)代入y = —X +bx + c ,解得:y = —X — 2x + 3 .(2)由(1 )知,该抛物线的解析式为y = _x2_2x3,则易得B( 1, 0). 设P(x,-x2 -2x • 3 ),1 2 1•/ S^O^4S^OC,二{汇3汇一x _2x+3 = 4X[X1><3 . 解得:x - -1 或x - -1 二2'、2 .则符号条件的点P的坐标为(-1, 4)或(-1 2,2 , - 4)或(-1 -2、. 2 , - 4).(3)易知直线AC的解析式为y=x+ 3.设Q点坐标为(x, x+ 3) (- 3< x w 0),则D点坐标为(x, _ x^ 2x 3 ),2 23 2 9QD= ( -x - 2x 3 ) -( x + 3) =-x -3x=-(x )2 4•••当x =「3时,QD有最大值-.2 4六、(本大题共1小题,每小题12分,共12分)24. ( 1)v在厶ADC中,M是AD的中点,N是DC的中点,• MN // AC ;(2)如图1,分别取△ ABC三边AC, AB, BC的中点E, F , G,并连接EG, FG ,根据题意可得线段MN扫过区域的面积就是平行四边AFGE的面积,•/ AC=6, BC=8, • AE=3, GC=4,•••/ ACB=90 °二S 四边形AFGE=AE?GC=3 X 4=12.•线段MN所扫过区域的面积为12.1 1 1(3)据题意可知:MD=—AD , DN= —DC, MN = — AC=3 ,2 2 2①当MD=MN=3时,△ DMN为等腰三角形,此时AD=AC=6 , • t=6 ,1②当MD=DN时,AD=DC ,如图2,过点D作DH丄AC交AC于H ,则AH = — AC=32 ,-cosA= AD 爲• 3 6AD 一10 '解得AD=5 ,••• AD=t=5 .③如图3,当DN=MN=3时,AC=DC,连接MC,贝U CM丄AD , •/ coA=如一竺,即刎」,AC AB 6 1018 36AM= , • AD=t=2AM=^ ,5 5综上所述,当t=5或6或36时,△ DMN为等腰三角形.5DG。
山西省农业大学附属中学2016届九年级素质检测数学试题(解析版)

山西省农业大学附属中学2016届九年级素质检测数学试题一、单项选择题(共10个小题,每小题3分,共30分,每小题只有一个选项符合题意,请将你认为正确的选项字母填涂在答题卡上)1.下列交通标志中既是中心对称图形,又是轴对称图形的是( )A B C D 【答案】D 【解析】试题分析:轴对称图形,是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形;中心对称图形,是指在同一个平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原图形完全重合.根据定义可得:D 既是轴对称图形,也是中心对称图形. 考点:(1)、轴对称图形;(2)、中心对称图形2.已知一元二次方程02=++c bx ax ,若0=++c b a ,则该方程一定有一个根为( )A 、0B 、1C 、1-D 、2【答案】B 【解析】试题分析:当x=1时,方程的左边为a+b+c ,根据题意可得:a+b+c=0,则该方程一定有一个根为x=1. 考点:一元二次方程的解3.如图,点A(t ,3)在第一象限,OA 与x 轴所夹的锐角为α,tan α=23,则t 的值是( ) A 、1B 、1.5C 、2D 、3yx Oα【解析】试题分析:根据点的坐标以及三角函数可得:tan 233==t α,则t=2. 考点:三角函数4.足球比赛前,裁判通常要掷一枚硬币来决定比赛双方的场地与首先发球者,其主要原因是( ) A 、让比赛更富有情趣 B 、让比赛更具有神秘色彩 C 、体现比赛的公平性D 、让比赛更有挑战性【答案】C 【解析】试题分析:抛硬币正反两面的概率是相同的,则用抛硬币决定比赛双方的场地与首先发球者就是为了体现比赛的公平性. 考点:概率的应用5.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3,4及x ,那么x 的值( )A 、只有1个B 、可以有2个C 、可以有3个D 、有无数个【答案】B 【解析】试题分析:根据直角三角形的勾股定理可得:直角三角形的三边长为6、8、10或6、8、72;则根据相似可得x 的值为5或7两种情况.考点:(1)、三角形相似;(2)、直角三角形的勾股定理.6.太阳光线与地面成60°的角,照射在地面上的一只皮球上,皮球在地面上的投影长是310cm ,则皮球的直径是( ) A 、35B 、15C 、10D 、38【答案】 B︒60试题分析:如图所示:过点A 作AB ⊥BC ,则根据直角三角形的性质可得:AB=15,即球的直径为15. 考点:直角三角形的性质7.二次函数y=a 2)(k x ++k(a ≠0),无论k 取何值,其图象的顶点都在( ) A 、直线y=x 上 B 、直线x y -=上 C 、x 轴上D 、y 轴上【答案】B 【解析】试题分析:根据函数解析式可得:函数的顶点坐标为(-k ,k),则顶点在直线y=-x 上. 考点:二次函数的顶点8.若正三角形、正方形、正六边形的周长相等,它们的面积分别是S 1,S 2,S 3,则下列关系成立的是( ) A 、321S S S == B 、S 1<S 2<S 3C 、S 1>S 2>S 3D 、S 2>S 3>S 1【答案】B 【解析】试题分析:首先假设周长都是12,则正三角形的边长为4,面积为341643=⨯;正方形的边长为3,面积为9,;正六边形的边长为2,面积为:3624362=⨯⨯,则321S S S . 考点:面积的计算9.一次函数y =kx +b 和反比例函数axky =的图象如图所示,则有( ) A 、k >0,b >0,a >0 B 、k <0,b >0,a <0 C 、k <0,b >0,a >0D 、k <0,b <0,a >0【答案】B 【解析】试题分析:一次函数经过一、二、四象限,则k <0,b >0;反比例函数经过一、三象限,则ak>0,则a <0.考点:(1)、一次函数的图像;(2)、反比例函数的图像.10.如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O )20米的点A 处,沿OA 所在的直线行走14米到点B 时,人影的长度( ) A 、增大1.5米B 、减小1.5米C 、增大3.5米D 、减小3.5米【答案】D二、填空题(共6个小题,每小题3分,共18分,把正确答案写在答题卡中横线上)11.请写出一个开口向上,并且与y 轴交于点(0,1)的抛物线的解析式 。
山西省农业大学附中九年级数学试题

山西省农业大学附中九年级数学试题13.计算:a2b-2a2b= 。
14.如图,点D、E在△ABC的边BC上,AB=AC,AD=AE。
请写出图中的全等三角形(写出一对即可)。
15.若双曲线y= k x与直线y=2x+1的一个交点的横坐标为-1,则k的值是。
16.方程 4 x- 3 x-2 =0的解为。
17.如图,⊙O的半径为2,弦AB= ,点C在弦AB上,,则OC的长为。
18.如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P,则tanAPD 的值是。
三、解答题(共8小题,共78分)19.计算(12分)(1)(6分)先化简,再求值:,其中。
(2)(6分)解不等式组:20.(8分)如图,在 ABCD中,点E,F分别在BC,AD上,且AF=CE。
求证:四边形AECF是平行四边形。
21.(8分)解方程时,我们可以将看成一个整体,设,则原方程可化为,解得,。
当时,即,解得 ;当时,即,解得,所以原方程的解为:,。
则利用这种方法求得方程的解。
22.(8分)某商店在开业前,所进上衣、裤子与鞋子的数量共480件,各种货物进货比例如图(1)。
销售人员(上衣6人,裤子4 人,鞋子2人)用了5天的时间销售,销售货物的情况如图(2)与表格。
(1)所进上衣的件数是多少?(2)把图(2)补充完整;(3)把表格补充完整;(4)若销售人员不变,以同样的销售速度销售,请通过计算说明哪种货物最先售完?23.(8分)某商店准备购进甲、乙两种商品。
已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元。
(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?(2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?(利润=售价-进价)24.(8分)如图,AB是⊙O的直径,C是⊙O上一点,AD垂直于过点C的切线,垂足为D。
2016年九年级数学试卷答案(5版)

2015—2016学年度九年级第一学期数学期末试卷参考答案一、 选择题1、D2、B3、A4、B5、C6、A7、D8、C9、B 10、B 二、 填空题(第14题和第16题,填对一个答案不得分)11、-1 12、122-=x y 13、235cm 14、o o 12060或 15、-4 16、o o 12060或 三、解答题17、(1)x 1=-1,x 2=23 (2)x 1=3,x 2=118、(1)∵△=ac 4-b 2=1-2c <0...................................................................2分 ∴c>21............................................................................................4分(2)∵k=c >21 b=1>0........................................................................5分 ∴图像经过第一、二、三象限.....................................................7分19、(1)∵△=ac 4-b 2...............................................3分∵022≥-)(m ∴422+-)(m >0∴方程总有两个不相等的实数根...4分 (2)当x=1时,解得m=2∴ 此三角形的周长为4+10,4+22..............................7分20、(1)过点D 作DF ⊥BC 与F ,连接OE.......................1分 ∵AD,DC,BC 是⊙O 的切线,设FC=x∴AD=DE=4,EC=BC=4+x4)2(84)12(444222+-=+-=--++=m m m m m m 分另一个根为5............................33,1034212∴===+-x x x x∴DC=x+8在Rt △DFC 中,122+x 2=(x+8)2解得:x=5∴BC=x+4=9.................................................2分(2)由题意得,在Rt △DFC 中,DC=x+y 122+(y-x )2=(x+y )2xy=36,y=x36................................................4分 (3)∵梯形面积为78 ∴7812y36x 21=⨯+)(............................................6分 解得x=4或9................................................7分 21、(1)∵A(-1,2)在反比例函数上,∴-2=1-k.................................................2分 解得:k=3,..............................................3分 ∴x 3=y ..................................................4分(2)当k=11时,∴x10-=y ∵S OPM ∆=21OM ·MP=21y x =21k =5..............................7分 22、(1)设一次函数的解析式为y=kx+b..................................1分 ⎩⎨⎧=+=+30b k 6040b k 50 解得:k=-1,b=90.........................................3分 ∴y=-x+90...............................................4分(2)w=xy =x(-x+90)...................................5分=-x2+90x=-(x-45)2+2025.........................................6分∵x=45在40≦x≦50之间,.....................................7分∴当x=45元时,w取得最大值2025元..........................8分23、证明:∵AC是直径∴∠ANC=90°∵AB=AC∴∠ACN=∠ABN∴∠ABN+∠BAN=90°∴∠ACN+∠PCB=90°∴∠PCB=∠BAN..............................................3分(2)∵AB=AC ∠ANC=90°∴∠CAN=∠BAN∴CN=NM=BN∴∠NMB=∠NBM∴∠AMC=∠CBP∵∠PCB=∠BAN∴△AMN∽△CBP∴=..............................................................7分24、(1)25人............................................................1分(2)a=75 b=10 c=3 ..............................................4分(3)43.2°............................................................5分(4)(树形图略).....................................................7分P (一男一女)=32................................................8分 25、(1)∵ y=ax 2+bx+6经过A(-3,0),B(2,0)∴9a-3b+6=0 4a+2b+6=0解得:a=-1,b=-1∴ y=-x 2-x+6................................................2分(2)∵当x=0时,y=6∴C(0,6) B(2,0)∴设经过点B 和点C 的直线的解析式为y=mx+n∴2m+n=0n=6∴m=-3,n=6∴直线BC 的解析式为y=-3x+6................................3分 ∵点E 在直线y=h 上,∴E(0,h)∵点D 在直线y=h 上,∴D 点的纵坐标为h ,把D 点代入y=-3x+6,解得:X=3h -6 ∴D(3h -6,h)..............................................4分 ∴DE=3h -6 ∴S △BDE=233-h 61-3h -6h 21212+=⋅=⋅)(DE OE .......................5分 ∵61-<0∴当h=23时,△BDE 的面积最大,最大值为23...................6分(3)存在符合题意的直线∵A(-3,0),C(0,6)∴设直线AC 的解析式为y=px+q代入,解得:p=2,q=6∴y=2x+6......................................................7分 把y=h 代入y=2x+6,得x=26-h ∴F (26-h ,h ) 在△OFM 中,OM=2,OF=22h )26h (+- MF=2h )226-h (2++...............8分 若OM=MF,则22h )226h (++-=2.....................................9分 解得:h 1=2,h 2=-56(不合题意,舍去)把y=h 1=2代入 y=-x 2-x+6得x 1=217-1-,x 2=2171-+ ∵点G 在第二象限∴G (217-1-,2)..............................10分 综上所述,存在这样的直线y=2使得OM=MF ;当h=2时,点G (217-1-,2),...................................11分。
2015-2016年九年级数学期末考试题及答案

)10(题第xy OABC2015-2016年九年级数学期末考试题及答案一、选择题1.下列是二次函数的是( ) A .2y ax bx c =++ B.21y x x=+ C.()227y x x =-+ D.()()121y x x =+-2.剪纸是我国最古老民间艺术之一,被列入第四批《人类非物质文化遗产代表作名录》,下列剪纸作品中,是中心对称图形但不是轴对称图形的是( )A .B .C .D .3.将抛物线265y x x =-+向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是( )A .()246y x =--B .()242y x =--C .()222y x =--D .()213y x =--4.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点D (5,3)在边AB 上,以C 为中心,把△CDB 旋转90°,则旋转后点D 的对应点D '的坐标是( ) A .(2,10) B .(-2,0) C .(2,10)或(-2,0) D .(10,2)或(-2,0)5.某服装店进价为30元的内衣,以50元售出,平均每月能售出300件,经试销发现每件内衣每涨价10元,其月销售量就减少10件,为实现每月利润8700元,设定价为x 元,则可得方程( )A .300(30)8700x -=B .()508700x x -=C .()()30300508700x x ---=⎡⎤⎣⎦D .()()303008700x x --=6.如图,在Rt △ABC 中∠A CB=90°,AC=6,AB=10,CD 是斜边AB上的中线,以AC 为直径作⊙O ,设线段CD 的中点为P ,则点P 与⊙O 的位置关系是( ) A.点P 在⊙O 内 B.点P 在⊙O 上 C.点P 在⊙O 外 D.无法确定7.如果关于x 的方程()222110k x k x -++=有实数根,则k 的取值范围是( ) A.14k ≥-且0k ≠ B.14k ≤- C. 14k ≥- D. 14k ->且0k ≠8.点O 是△ABC 的外心,若∠BOC=80°,则∠BAC 的度数为( )A .40°B .100°C .40°或140°D .40°或100°9.若函数()21212y mx m x m =++++的图象与x 轴只有一个交点,那么m 的值为( )A . 0B .0或2C .2或﹣2D .0,2或﹣210.如图,二次函数()20y ax bx c a =++≠的图象与x 轴交于A ,B 两点,与y 轴交于点C ,且OA=OC .则下列结论:①0abc >②2404b ac a->;③10ac b -+=;④c OA OB a ⋅=-.其中正确结论的个数是( )A .4 B .3 C .2 D .1二、填空题11.方程2870x x ++=的根为12.关于x 的一元二次方程()221340a x x a a -+++-=有一个实数根是0x =,则a 的值为 13.若点()12,24P a a ---关于原点对称的点在第一象限内,则a 的整数解有 个 14.已知点())()1234,,,2,A y By C y -都在二次函数()22y x k =--+的图象上,则123,,y y y 的大小关系是15.16.三、解答题(1)213602x x --+= (2)()()7333x x x -=-18.请在同一坐标系中画出二次函数①221xy =;②2)2(21-=x y 的图象。
2015-2016学年山西省太原市九年级(上)期末数学试卷

2015-2016学年山西省太原市九年级(上)期末数学试卷2015-2016学年山西省太原市九年级(上)期末数学试卷一、选择题(每小题2分,共20分)1.(2分)(2015秋•太原期末)在平面直角坐标系中,反比例函数的图象位于()A.第二、四象限B.第一、三象限C.第一、四象限 D.第三、四象限2.(2分)(2010•漳州)若,则=()A.B.C.D.3.(2分)(2015秋•太原期末)一个圆柱体钢块,从正中间挖去一个长方体得到的零件毛坯的俯视图如图,其主视图是()A.B.C. D.4.(2分)(2015秋•太原期末)校运动会上甲、乙、丙、丁四名选手参加100米决赛,赛场有1、2、3、4条跑道.如果选手以随机抽签的方式决定各自的跑道,则甲抽到1号跑道,乙抽到2号跑道的概率是()A.B.C.D.5.(2分)(2015秋•太原期末)已知△ABC∽△A′B′C′,△A′B′C′的面积为6,周长为△ABC周长的一半,则△ABC的面积等于()A.1.5cm2B.3cm2C.12cm2D.24cm2 6.(2分)(2015秋•太原期末)如图是滨河公园中的两个物体,一天中四个不同时刻在太阳光的照射下落在地面上的影子,按照时间的先后顺序排列正确的是()A.(3)(4)(1)(2)B.(4)(3)(1)(2)C.(4)(3)(2)(1)D.(2)(4)(3)(1)7.(2分)(2015秋•太原期末)如图,晚上小明由甲处径直走到乙处的过程中,他在路灯M下的影长在地面上的变化情况是()A.逐渐变短B.先变短后变长C.先变长后变短D.逐渐变长8.(2分)(2015秋•太原期末)若A(3,y1),B(2,y 2)在函数的图象上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.无法确定9.(2分)(2015•济南)将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm3,则原铁皮的边长为()A.10cm B.13cm C.14cm D.16cm 10.(2分)(2015秋•太原期末)一次函数y=ax ﹣a与反比例函数y=(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.二、填空题(每小题3分,共18分)半轴上的一点,过点C作AB∥x轴分别交这两个图象于点A,B.若点P在x轴上运动,则△ABP 的面积等于.16.(3分)(2015秋•太原期末)如图,正方形纸片ABCD的边长为12,E,F分别是边AD,BC上的点,将正方形纸片沿EF折叠,使得点A落在CD边上的点A′处,此时点落在点B′处.已知折痕EF=13,则AE的长等于.三、解答题(本大题含8个小题,共62分)17.(5分)(2015秋•丹江口市期末)解方程:x2+2x﹣1=0.18.(7分)(2015秋•太原期末)如图,△ABC 与△A′B′C′是以点O为位似中心的位似图形,它们的顶点都在正方形网格的格点上.(1)画出位似中心O;(2)△ABC与△A′B′C′的相似比为,面积比为.19.(8分)(2015秋•太原期末)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,△ABO是等边三角形,AB=4,求BC的长.20.(8分)(2015秋•太原期末)晚上,小亮在广场上乘凉.中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照亮灯.知小亮的身高1.6m.(1)图中画出小亮在照明灯P照射下的影子BC;(2)如果灯杆高PO=12m,小亮不灯杆的距离BO=13m,求小亮影子BC的长度.21.(8分)(2015秋•太原期末)如图,在△ABC 中,AB=8cm,BC=16cm,动点P从点A开始沿AB边运动,速度为2cm/s;动点Q从点B开始沿BC边运动,速度为4cm/s;如果P、Q两动点同时运动,那么何时△QBP与△ABC相似?22.(10分)(2015秋•太原期末)数学活动﹣﹣探究特殊的平行四边形.问题情境如图,在四边形ABCD中,AC为对角线,AB=AD,BC=DC.请你添加条件,使它们成为特殊的平行四边形.提出问题(1)第一小组添加的条件是“AB∥CD”,则四边形ABCD是菱形.请你证明;(2)第二小组添加的条件是“∠B=90°,∠BCD=90°”,则四边形ABCD是正方形.请你证明.23.(6分)(2015秋•太原期末)春节前夕,便民超市把一批进价为每件12元的商品,以每件定价20元销售,每天能售出240件.销售一段时间后发现:如果每件涨价1元,那么每天就少售20件;如果每件降价1元,那么每天能多售出40件.(A)在降价的情况下,要使该商品每天的销售盈利为1800元,每件应降价多少元?(B)为了使该商品每天销售盈利为1980元,每件定价多少元?24.(10分)(2015秋•太原期末)启知学习小组在课外学习时,发现了这样一个问题:如图(1),在四边形ABCD中,连接AC,BD,如果△ABC 与△BCD的面积相等,那么AD∥BC在小组交流时,他们在图(1)中添加了如图所示的辅助线,AE⊥BC于点E,DF⊥BC于点F.请你完成他们的证明过程.结论应用在平面直角坐标系中,反比例函数y=(x≠0)的图象经过A(1,4),B(a,b)两点,过点A 作AC⊥x轴于点C,过点B作BD⊥y轴于点D.(A)(1)求反比例函数的表达式;(2)如图(2),已知b=1,AC,BD相交于点E,求证:CD∥AB.(B)(1)求反比例函数的表达式;(2)如图(3),若点B在第三象限,判断并证明CD与AB的位置关系.第11页(共12页)2015-2016学年山西省太原市九年级(上)期末数学试卷参考答案一、选择题(每小题2分,共20分)1.B;2.D;3.A;4.C;5.D;6.C;7.B;8.C;9.D;10.C;二、填空题(每小题3分,共18分)11.3;12.6;13.;14.;15.5;16.;三、解答题(本大题含8个小题,共62分)17.; 18.2:1; 4:1; 19.;20.; 21.; 22.;23.; 24.;第12页(共12页)。
2015-2016学年山西农大附中九年级(上)月考数学试卷(12月份)
2015-2016学年山西农大附中九年级(上)月考数学试卷(12月份)一、单项选择题(每小题3分,共30分)1.(3分)(2008•濮阳)如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>B.k>且k≠0 C.k<D.k≥且k≠02.(3分)(2013•衡阳)“a是实数,|a|≥0”这一事件是()A.必然事件 B.不确定事件C.不可能事件D.随机事件3.(3分)(2014•金湾区校级一模)随机掷两枚硬币,落地后全部正面朝上的概率是()A.1 B.C.D.4.(3分)(2014•哈尔滨)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C 可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6 B.4C.3D.35.(3分)(2005•宁夏)如图,将正方形图案绕中心O旋转180°后,得到的图案是()A.B.C.D.6.(3分)(2010•红河州)如图,已知BD是⊙O的直径,⊙O的弦AC⊥BD于点E,若∠AOD=60°,则∠DBC的度数为()A.30°B.40°C.50°D.60°7.(3分)(2014秋•斗门区校级期中)如图,半径为5cm的圆中,圆心到弦AB的距离OE 的长为4cm,则弦AB的长是()A.3cm B.4cm C.5cm D.6cm8.(3分)(2013•湖州)在学校组织的实践活动中,小新同学用纸板制作了一个圆锥模型,它的底面半径为1,高为2,则这个圆锥的侧面积是()A.4πB.3πC.2πD.2π9.(3分)(2015秋•山西校级月考)函数y=a(x+2)和y=a(x2+1),它们在同一坐标系内图象的示意图是()A. B.C.D.10.(3分)(2012•烟台)已知二次函数y=2(x﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x<3时,y随x的增大而减小.则其中说法正确的有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共18分)11.(3分)(2014•镇江)若关于x的一元二次方程x2+x+m=0有两个相等的实数根,则m=______.12.(3分)(2015秋•山西校级月考)一个图形无论经过平移还是旋转,有以下说法:①对应线段平行;②对应线段相等;③对应角相等;④图形的形状和大小都没有发生变化.其中说法正确的是有______.13.(3分)(2013•宣威市校级一模)已知两个圆相切,圆心距为8cm,其中一个圆的半径为12cm,则另一个圆的半径为______.14.(3分)(2015秋•山西校级月考)如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1、2、3、4、5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P(偶数),指针指向标有奇数所在区域的概率为P(奇数),指针落在线上时记右边区域,则P(偶数)______P(奇数)(填“>”“<”或“=”).15.(3分)(2007•佛山)如图,△ABC内接于⊙O,AD是⊙O的直径,∠ABC=30°,则∠CAD=______度.16.(3分)(2014•珠海)如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为______.三、解答题(共72分)17.(8分)(2015秋•山西校级月考)解方程:(1)2x2+x﹣6=0(2)x(x﹣2)+x﹣2=0.18.(6分)(2013•齐齐哈尔)如图所示,在△OAB中,点B的坐标是(0,4),点A的坐标是(3,1).(1)画出△OAB向下平移4个单位长度、再向左平移2个单位长度后的△O1A1B1(2)画出△OAB绕点O逆时针旋转90°后的△OA2B2,并求出点A旋转到A2所经过的路径长(结果保留π)19.(8分)(2014•巴中)某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?20.(8分)(2013•长沙)如图,△ABC中,以AB为直径的⊙O交AC于点D,∠DBC=∠BAC.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为2,∠BAC=30°,求图中阴影部分的面积.21.(8分)(2015秋•山西校级月考)一个盒子里有完全相同的三个小球,球上分别标上数字﹣1、1、2.随机摸出一个小球(不放回)其数字记为p,再随机摸出另一个小球其数字记为q,求满足关于x的方程x2+px+q=0有实数根的概率.22.(8分)(2015秋•山西校级月考)如图,将Rt△ABC绕直角顶点C顺时针方向旋转90°到△A′B′C的位置,D,D′分别是AB,A′B′的中点,且CD=,已知AC=8cm,BC=6cm,求线段DD′的长.23.(12分)(2015秋•山西校级月考)如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A、与大圆相交于点B.小圆的切线AC与大圆相交于点D,且CO 平分∠ACB.(1)试判断BC所在直线与小圆的位置关系,并说明理由;(2)试判断线段AC、AD、BC之间的数量关系,并说明理由.24.(14分)(2013秋•开封县期末)如图所示,在平面直角坐标中,抛物线的顶点P到x 轴的距离是4,抛物线与x轴相交于O、M两点,OM=4;矩形ABCD的边BC在线段的OM上,点A、D在抛物线上.(1)求这条抛物线的解析式;(2)设D(m,n),矩形ABCD的周长为l,写出l与m的关系式,并求出l的最大值;(3)点E在抛物线的对称轴上,在抛物线上是否还存在点F,使得以E、F、O、M为顶点的四边形是平行四边形?如果存在,写出F点的坐标.2015-2016学年山西农大附中九年级(上)月考数学试卷(12月份)参考答案一、单项选择题(每小题3分,共30分)1.B;2.A;3.D;4.A;5.C;6.A;7.D;8.B;9.C;10.A;二、填空题(每小题3分,共18分)11.;12.②③④;13.4cm或20cm;14.<;15.60;16.直线x=2;三、解答题(共72分)17.;18.;19.;20.;21.;22.;23.;24.;。
九年级数学上册期末试卷及答案【完整版】
九年级数学上册期末试卷及答案【完整版】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 的相反数是()A. B. 2 C. D.2.若点A(1+m, 1﹣n)与点B(﹣3, 2)关于y轴对称, 则m+n的值是()A. ﹣5B. ﹣3C. 3D. 13.若点, , 都在反比例函数的图象上, 则, , 的大小关系是()A. B. C. D.4.为考察甲、乙、丙、丁四种小麦的长势, 在同一时期分别从中随机抽取部分麦苗, 获得苗高(单位: cm)的平均数与方差为: = =13, = =15: s甲2=s丁2=3.6, s乙2=s丙2=6.3.则麦苗又高又整齐的是()A. 甲B. 乙C. 丙D. 丁5.一个整数815550…0用科学记数法表示为8.1555×1010, 则原数中“0”的个数为()A. 4B. 6C. 7D. 106. 对于二次函数,下列说法正确的是()A. 当x>0, y随x的增大而增大B. 当x=2时, y有最大值-3C.图像的顶点坐标为(-2, -7)D. 图像与x轴有两个交点7.如图, 在和中, , 连接交于点, 连接.下列结论:①;②;③平分;④平分.其中正确的个数为().A. 4B. 3C. 2D. 18.如图, AB是⊙O的直径, BC与⊙O相切于点B, AC交⊙O于点D, 若∠ACB=50°, 则∠BOD等于()A. 40°B. 50°C. 60°D. 80°9.如图, 四边形ABCD内接于⊙O, 点I是△ABC的内心, ∠AIC=124°, 点E 在AD的延长线上, 则∠CDE的度数为()A. 56°B. 62°C. 68°D. 78°10.两个一次函数与, 它们在同一直角坐标系中的图象可能是()A. B.C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 计算: =______________.2. 分解因式: a2b+4ab+4b=_______.3. 若二次根式有意义, 则x的取值范围是__________.4.如图, 在Rt△ACB中, ∠ACB=90°, ∠A=25°, D是AB上一点, 将Rt △ABC沿CD折叠, 使点B落在AC边上的B′处, 则∠ADB′等于______.5. 如图所示, 直线a经过正方形ABCD的顶点A, 分别过正方形的顶点B.D作BF⊥a于点F, DE⊥a于点E, 若DE=8, BF=5, 则EF的长为__________.6. 如图抛物线y=x2+2x﹣3与x轴交于A, B两点, 与y轴交于点C, 点P是抛物线对称轴上任意一点, 若点D.E、F分别是BC.BP、PC的中点, 连接DE, DF, 则DE+DF的最小值为__________.三、解答题(本大题共6小题, 共72分)1. 解方程:=12. 在平面直角坐标系中, 已知点, 直线经过点. 抛物线恰好经过三点中的两点.(1)判断点是否在直线上. 并说明理由;(2)求,a b的值;(3)平移抛物线, 使其顶点仍在直线上, 求平移后所得抛物线与轴交点纵坐标的最大值.3. 正方形ABCD的边长为3, E、F分别是AB.BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°, 得到△DCM.(1)求证: EF=FM(2)当AE=1时, 求EF的长.4. 已知是的直径, 弦与相交, .(Ⅰ)如图①, 若为的中点, 求和的大小;(Ⅱ)如图②, 过点作的切线, 与的延长线交于点, 若, 求的大小.5. 学校开展“书香校园”活动以来, 受到同学们的广泛关注, 学校为了解全校学生课外阅读的情况, 随机调查了部分0次1次2次3次4次及以上学生在一周内借阅图书的次数, 并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数人数7 13 a 10 3请你根据统计图表中的信息, 解答下列问题:______, ______.该调查统计数据的中位数是______, 众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;若该校共有2000名学生, 根据调查结果, 估计该校学生在一周内借阅图书“4次及以上”的人数.6. 俄罗斯世界杯足球赛期间, 某商店销售一批足球纪念册, 每本进价40元, 规定销售单价不低于44元, 且获利不高于30%. 试销售期间发现, 当销售单价定为44元时, 每天可售出300本, 销售单价每上涨1元, 每天销售量减少10本, 现商店决定提价销售. 设每天销售量为y本, 销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当每本足球纪念册销售单价是多少元时, 商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时, 商店每天销售纪念册获得的利润w 元最大?最大利润是多少元?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.D2.D3.B4.D5.B6.B7、B8、D9、C10、C二、填空题(本大题共6小题, 每小题3分, 共18分)1、.2.b(a+2)23.4、40°.5.136.三、解答题(本大题共6小题, 共72分)1.x=12、(1)点在直线上, 理由见详解;(2)a=-1, b=2;(3)3.(1)略;(2)5 2.4.(1)52°, 45°;(2)26°5、17、20;2次、2次;;人.6、(1)y=﹣10x+740(44≤x≤52);(2)当每本足球纪念册销售单价是50元时, 商店每天获利2400元;(3)将足球纪念册销售单价定为52元时, 商店每天销售纪念册获得的利润w元最大, 最大利润是2640元.。
2015~2016学年度第一学期期末教学质量检测九年级数学试卷附答案
2015~2016学年度第一学期期末教学质量检测九年级数学试卷说明:1、全卷共4页,五道大题。
2、考试时间100分钟,满分120分。
一、单项选择题(共10小题,每小题3分,共30分)1、在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A B C D2、下列事件是必然事件的是()A、明天太阳从西边升起B、掷出一枚硬币,正面朝上C、打开电视机,正在播放“新闻联播”D、任意画一个三角形,它的内角和等于180°3、一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋里随机摸出一个球,摸出的球是红色的概率是()A 、B 、 C、D 、4、在半径为6的⊙O中,60°圆心角所对的弧长是()A、 B、2 C、4 D、65、用配方法解方程x2+10x+9=0,配方后可得()A、(x+5)2=16B、(x+5)1=1C、(x+10)2=91D、(x+10)2=1096、若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为()A、-1B、-2C、-3D、-47、如图,∠O =30°,C为OB上的一点,且OC=6,以点C为圆心、半径为3的圆与OA的位置关系是()A、相离B、相交C、相切D、以上三种情况均有可能8、如图,在⊙O中直径垂直于弦AB,若∠C=25°则∠BOD的度数是()A、25°B、30°C、40°D、50°9、某校准备修建一个面积为180平方米的矩形活动场所,它的长比宽多11米,设场地的宽为x米,则可列出的方程为()A、x(x-11)=180B、2x+2(x-11)=180C、x(x+11)=180D、2x+2(x+11)=18010、二次函数y=ax2+bx+c(a≠0)的大致图像见如图,关于该函数的说法错误的是()A、函数有最小值第7题图第8B 、对称轴是直线x=1/2C 、当x ﹤1/2,y 随x 增大而减小D 、当-1﹤x ﹤2时,y ﹥0二、填空题(共6小题,每小题4分,共24分)11、如图,将△ABC 绕点A 按顺时针方向旋转60°,得△ADE ,则∠BAD= 度。
山西省农业大学附属中学2016届九年级上学期期末考试数学试题
山西省农业大学附属中学届九年级上学期期末考试数学试题本试卷分第Ⅰ卷和第Ⅱ卷两部分。
检测时间分钟,满分分Ⅰ(客观卷)分一、单项选择题(每小题分,共分)、,、,、,、,.下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转°后,能与原图形完全重合的是.如图所示,点,,在圆上,∠°,则∠的度数是、°、°、°、°(题) (题) (题) (题).如图,锐角三角形的高和高相交于,则与△相似的三角形个数是、、、、.随机闭合开关,,中的两个,则能让两盏灯泡同时发光的概率为、、、、.已知△三个顶点的坐标分别为(,),(,),(,),把它们的横坐标和纵坐标分别变成原来的倍,得到点′,′,′。
下列说法正确的是、△′′′与△是位似图形,位似中心是点(,) 、△′′′与△是位似图形,位似中心是点(,) 、△′′′与△是相似图形,但不是位似图形 、△′′′与△不是相似图形.在的图象中,阴影部分面积不为的是.如图所示,⊙中,弦,相交于点,则下列结论正确的是 、·=· 、·=· 、·=·、∶=∶.如图,正比例函数与反比例函数相交于点(﹣,),若>>,则的取值范围在数轴上表示正确的是 、、 、、.函数与﹣(≠)在同一直角坐标系中的图象可能是Ⅱ(主观卷)分二、填空题(每小题分,共分).如图,直线与轴、轴分别交于、两点,把△绕点顺时针旋转°后得到△′′,则点′的坐标是 。
(题) (题) (题).二次函数=-+的图象的顶点与原点的距离为,则=。
.在比例尺∶的地图上,量得南京到北京的距离是,这两地的实际距离是。
.从某玉米种子中抽取批,在同一条件下进行发芽试验,有关数据如下:根据以上数据可以估计,该玉米种子发芽的概率约为。
.已知直线∥∥,直线,与直线,,分别交于点,,,,,,=,=,=,则=。
.如图,反比例函数(>)的图象和矩形在第一象限,∥轴,且,,点的坐标为(,)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年山西农业大学附中九年级(上)期末数学试卷一、单项选择题(每小题3分,共30分)1.(3分)关于x的方程x(x+6)=16解为()A.x1=2,x2=2 B.x1=8,x2=﹣4 C.x1=﹣8,x2=2 D.x1=8,x2=﹣2 2.(3分)下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是()A.B.C.D.3.(3分)如图所示,点A,B,C在圆O上,∠A=64°,则∠BOC的度数是()A.26°B.116°C.128° D.154°4.(3分)如图,锐角三角形ABC的高CD和高BE相交于O,则与△DOB相似的三角形个数是()A.1 B.2 C.3 D.45.(3分)如图,随机闭合开关K1,K2,K3中的两个,则能让两盏灯泡同时发光的概率为()A.B.C.D.6.(3分)如图,已知△ABC三个顶点的坐标分别为(1,2),(﹣2,3),(﹣1,0),把它们的横坐标和纵坐标都扩大到原来的2倍,得到点A′,B′,C′.下列说法正确的是()A.△A′B′C′与△ABC是位似图形,位似中心是点(1,0)B.△A′B′C′与△ABC是位似图形,位似中心是点(0,0)C.△A′B′C′与△ABC是相似图形,但不是位似图形D.△A′B′C′与△ABC不是相似图形7.(3分)在y=的图象中,阴影部分面积不为1的是()A.B.C.D.8.(3分)如图所示,⊙O中,弦AB,CD相交于P点,则下列结论正确的是()A.PA•AB=PC•PB B.PA•PB=PC•PD C.PA•AB=PC•CD D.PA:PB=PC:PD 9.(3分)如图,正比例函数y1与反比例函数y2相交于点E(﹣1,2),若y1>y2>0,则x的取值范围在数轴上表示正确的是()A. B. C.D.10.(3分)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.二、填空题(每小题3分,共18分)11.(3分)如图,直线y=﹣x+4与x轴、y轴分别交于A、B两点,把△AOB 绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是.12.(3分)二次函数y=x2﹣6x+c的图象的顶点与原点的距离为5,则c=.13.(3分)在比例尺1:6000000的地图上,量得南京到北京的距离是15cm,这两地的实际距离是km.14.(3分)从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数100400800100020005000发芽种子粒数8529865279316044005发芽频率0.8500.7450.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率约为(精确到0.1).15.(3分)已知直线a∥b∥c,直线m,n与直线a,b,c分别交于点A,C,E,B,D,F,AC=4,CE=6,BD=3,则BF=.16.(3分)如图,反比例函数y=(x>0)的图象和矩形ABCD在第一象限,AD ∥x轴,且AB=2,AD=4,点A的坐标为(2,6).若将矩形向下平移,使矩形的两个顶点恰好同时落在反比例函数的图象上,则k的值是.三、解答题(72分)17.(9分)在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n10020030050080010003000摸到白球的次数m651241783024815991803摸到白球的频率0.650.620.5930.6040.6010.5990.601(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)假如你摸一次,你摸到白球的概率P(白球)=;(3)试估算盒子里黑、白两种颜色的球各有多少只?18.(6分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B (﹣4,5),C(﹣5,2).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2.19.(8分)如图所示,在△ABC中,已知DE∥BC.(1)△ADE与△ABC相似吗?为什么?(2)它们是位似图形吗?如果是,请指出位似中心.20.(9分)某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?21.(8分)如图,AB是⊙O的直径,BC是弦,点E是BC的中点,OE交BC于点D.连接AC,若BC=6,DE=1,求AC的长.22.(10分)为了预防“流感”,某学校对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧完后,y与x成反比例(如图所示).现测得药物8min燃毕,此时室内空气中每立方米的含药量为6mg.研究表明,当空气中每立方米的含药量不低于3mg才有效,那么此次消毒的有效时间是多少?23.(10分)如图,E是矩形ABCD的边BC上一点,EF⊥AE,EF分别交AC,CD 于点M,F,BG⊥AC,垂足为G,BG交AE于点H.(1)求证:△ABE∽△ECF;(2)找出与△ABH相似的三角形,并证明;(3)若E是BC中点,BC=2AB,AB=2,求EM的长.24.(12分)如图,一次函数y=ax+b的图象与反比例函数的图象交于A,B 两点,与x轴交于点C,与y轴交于点D,AE垂直x轴于E点,已知,OE=3AE,点B的坐标为(m,﹣2).(1)求反比例函数的解析式.(2)求一次函数的解析式.(3)在y轴上存在一点P,使得△PDC与△ODC相似,请你求出P点的坐标.2015-2016学年山西农业大学附中九年级(上)期末数学试卷参考答案与试题解析一、单项选择题(每小题3分,共30分)1.(3分)关于x的方程x(x+6)=16解为()A.x1=2,x2=2 B.x1=8,x2=﹣4 C.x1=﹣8,x2=2 D.x1=8,x2=﹣2【解答】解:原方程变形为:x2+6x﹣16=0,x==∴x1=﹣8,x2=2,故选C.2.(3分)下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是()A.B.C.D.【解答】解:A、最小旋转角度==120°;B、最小旋转角度==90°;C、最小旋转角度==180°;D、最小旋转角度==72°;综上可得:顺时针旋转120°后,能与原图形完全重合的是A.故选:A.3.(3分)如图所示,点A,B,C在圆O上,∠A=64°,则∠BOC的度数是()A.26°B.116°C.128° D.154°【解答】解:∵∠A=64°,∴∠BOC=2∠A=2×64°=128°.故选:C.4.(3分)如图,锐角三角形ABC的高CD和高BE相交于O,则与△DOB相似的三角形个数是()A.1 B.2 C.3 D.4【解答】解:如右图所示,∵CD、BE是高,∴∠1=∠2=90°,又∵∠3=∠4,∴△BOD∽△COE,又∵CD、BE是高,∴∠AEB=90°=∠2,∵∠6=∠6,∴△AEB∽△ODB,同理可证△COE∽△CAD,∴△BOD∽△CAD,∴和△BOD相似的三角形有3个.故选C.5.(3分)如图,随机闭合开关K1,K2,K3中的两个,则能让两盏灯泡同时发光的概率为()A.B.C.D.【解答】解:画树状图得:∵共有6种等可能的结果,能让两盏灯泡同时发光的是闭合开关K1、K3与K3、K1,∴能让两盏灯泡同时发光的概率为:=.故选B.6.(3分)如图,已知△ABC三个顶点的坐标分别为(1,2),(﹣2,3),(﹣1,0),把它们的横坐标和纵坐标都扩大到原来的2倍,得到点A′,B′,C′.下列说法正确的是()A.△A′B′C′与△ABC是位似图形,位似中心是点(1,0)B.△A′B′C′与△ABC是位似图形,位似中心是点(0,0)C.△A′B′C′与△ABC是相似图形,但不是位似图形D.△A′B′C′与△ABC不是相似图形【解答】解:∵△ABC三个顶点的坐标分别为(1,2),(﹣2,3),(﹣1,0),把它们的横坐标和纵坐标都扩大到原来的2倍∴点A′,B′,C′的坐标分别为(2,4),(﹣4,6),(﹣2,0)∴直线AA′,BB′,CC′得解析式分别为y=2x,y=﹣x,y=0∴对应点的连线交于原点∴△A′B′C′与△ABC是位似图形,位似中心是点(0,0)故选B.7.(3分)在y=的图象中,阴影部分面积不为1的是()A.B.C.D.【解答】解:A、阴影部分面积是1,不符合题意;B、阴影部分面积是2,符合题意;C、阴影部分面积是1,不符合题意;D、阴影部分面积是1,不符合题意.故选:B.8.(3分)如图所示,⊙O中,弦AB,CD相交于P点,则下列结论正确的是()A.PA•AB=PC•PB B.PA•PB=PC•PD C.PA•AB=PC•CD D.PA:PB=PC:PD 【解答】解:连接AC与BD,∵∠B与∠C是所对的圆周角,∴∠B=∠C,∵∠BPD=∠CPA,∴△BPD∽△CPA,∴,∴PA•PB=PC•PD.故选B.9.(3分)如图,正比例函数y1与反比例函数y2相交于点E(﹣1,2),若y1>y2>0,则x的取值范围在数轴上表示正确的是()A. B. C.D.【解答】解:∵正比例函数y1与反比例函数y2相交于点E(﹣1,2),∴根据图象可知当y1>y2>0时x的取值范围是x<﹣1,∴在数轴上表示为:,故选A.10.(3分)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.【解答】解:由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故A错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故B正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故D错误.故选:B.二、填空题(每小题3分,共18分)11.(3分)如图,直线y=﹣x+4与x轴、y轴分别交于A、B两点,把△AOB 绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是(7,3).【解答】解:直线y=﹣x+4与x轴、y轴分别交于A(3,0)、B(0,4)两点,由图易知点B′的纵坐标为O′A=OA=3,横坐标为OA+O′B′=OA+OB=7.则点B′的坐标是(7,3).故答案为:(7,3).12.(3分)二次函数y=x2﹣6x+c的图象的顶点与原点的距离为5,则c=13或5.【解答】解:∵二次函数y=x2﹣6x+c的图象的顶点坐标为(3,c﹣9),∴32+(c﹣9)2=52,解得c=13或c=5.故答案为:13或5.13.(3分)在比例尺1:6000000的地图上,量得南京到北京的距离是15cm,这两地的实际距离是900km.【解答】解:设两地的实际距离是xcm,则:=,解得x=90000000cm=900km,∴这两地的实际距离是900km.14.(3分)从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数100400800100020005000发芽种子粒数8529865279316044005发芽频率0.8500.7450.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率约为0.8(精确到0.1).【解答】解:∵种子粒数5000粒时,种子发芽的频率趋近于0.801,∴估计种子发芽的概率为0.801,精确到0.1,即为0.8.故本题答案为:0.8.15.(3分)已知直线a∥b∥c,直线m,n与直线a,b,c分别交于点A,C,E,B,D,F,AC=4,CE=6,BD=3,则BF=7.5.【解答】解:∵a∥b∥c,∴=,即=,解得DF=4.5,∴BF=BD+DF=3+4.5=7.5,故答案为:7.5.16.(3分)如图,反比例函数y=(x>0)的图象和矩形ABCD在第一象限,AD ∥x轴,且AB=2,AD=4,点A的坐标为(2,6).若将矩形向下平移,使矩形的两个顶点恰好同时落在反比例函数的图象上,则k的值是6.【解答】解:设矩形平移后A的坐标是(2,6﹣x),C的坐标是(6,4﹣x),∵A、C落在反比例函数的图象上,∴k=2(6﹣x)=6(4﹣x),解得x=3,即矩形平移后A的坐标是(2,3),代入反比例函数的解析式得:k=2×3=6.故答案为6.三、解答题(72分)17.(9分)在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n10020030050080010003000摸到白球的次数m651241783024815991803摸到白球的频率0.650.620.5930.6040.6010.5990.601(1)请估计:当n很大时,摸到白球的频率将会接近0.6;(精确到0.1)(2)假如你摸一次,你摸到白球的概率P(白球)=0.6;(3)试估算盒子里黑、白两种颜色的球各有多少只?【解答】解:(1)∵摸到白球的频率为0.6,∴当n很大时,摸到白球的频率将会接近0.6.(2)∵摸到白球的频率为0.6,∴假如你摸一次,你摸到白球的概率P(白球)=0.6.(3)盒子里黑、白两种颜色的球各有40﹣24=16,40×0.6=24.18.(6分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B (﹣4,5),C(﹣5,2).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2.【解答】解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示.19.(8分)如图所示,在△ABC中,已知DE∥BC.(1)△ADE与△ABC相似吗?为什么?(2)它们是位似图形吗?如果是,请指出位似中心.【解答】解:(1)△ADE与△ABC相似.∵DE∥BC,∴△ABC∽△ADE;(2)是位似图形.由(1)知:△ADE∽△ABC.∵△ADE和△ABC的对应顶点的连线BD,CE相交于点A,∴△ADE和△ABC是位似图形,位似中心是点A.20.(9分)某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?【解答】解:设每个商品的定价是x元,由题意,得(x﹣40)[180﹣10(x﹣52)]=2000,整理,得x2﹣110x+3000=0,解得x1=50,x2=60.当x=50时,进货180﹣10(50﹣52)=200个>180个,不符合题意,舍去;当x=60时,进货180﹣10(60﹣52)=100个<180个,符合题意.答:当该商品每个定价为60元时,进货100个.21.(8分)如图,AB是⊙O的直径,BC是弦,点E是BC的中点,OE交BC于点D.连接AC,若BC=6,DE=1,求AC的长.【解答】解:连接OC,如图所示.∵点E是的中点,∴∠BOE=∠COE,OD⊥BC,BD=DC.∵BC=6,∴BD=3.设⊙O的半径为r,则OB=OE=r.∵DE=1,∴OD=r﹣1.∵OD⊥BC即∠BDO=90°,∴OB2=BD2+OD2.∵OB=r,OD=r﹣1,BD=3,∴r2=32+(r﹣1)2.解得:r=5.∴OD=4.∵AO=BO,BD=CD,∴OD是△ABC的中位线,∴OD=AC.∴AC=8.22.(10分)为了预防“流感”,某学校对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧完后,y与x成反比例(如图所示).现测得药物8min燃毕,此时室内空气中每立方米的含药量为6mg.研究表明,当空气中每立方米的含药量不低于3mg才有效,那么此次消毒的有效时间是多少?【解答】解:设药物燃烧时y关于x的函数关系式为y=k1x(k1>0),将(8,6)代入,得6=8k1,解得k1=;设药物燃烧后y关于x的函数关系式为y=(k2>0),将(8,6)代入,得6=,解得k2=48,所以药物燃烧时y关于x的函数关系式为y=(0≤x≤8),药物燃烧后y关于x的函数关系式为y=(x>8);把y=3代入y=,得:x=4,把y=3代入y=,得:x=16.16﹣4=12.故此次消毒的有效时间是12分钟.23.(10分)如图,E是矩形ABCD的边BC上一点,EF⊥AE,EF分别交AC,CD 于点M,F,BG⊥AC,垂足为G,BG交AE于点H.(1)求证:△ABE∽△ECF;(2)找出与△ABH相似的三角形,并证明;(3)若E是BC中点,BC=2AB,AB=2,求EM的长.【解答】(1)证明:∵四边形ABCD是矩形,∴∠ABE=∠ECF=90°.∵AE⊥EF,∠AEB+∠FEC=90°.∴∠AEB+∠BAE=90°,∴∠BAE=∠CEF,∴△ABE∽△ECF;(2)△ABH∽△ECM.证明:∵BG⊥AC,∴∠ABG+∠BAG=90°,∴∠ABH=∠ECM,由(1)知,∠BAH=∠CEM,∴△ABH∽△ECM;(3)解:作MR⊥BC,垂足为R,∵AB=BE=EC=2,∴AB:BC=MR:RC=,∠AEB=45°,∴∠MER=45°,CR=2MR,∴MR=ER=EC=×2=,∴在Rt△EMR中,EM==.24.(12分)如图,一次函数y=ax+b的图象与反比例函数的图象交于A,B 两点,与x轴交于点C,与y轴交于点D,AE垂直x轴于E点,已知,OE=3AE,点B的坐标为(m,﹣2).(1)求反比例函数的解析式.(2)求一次函数的解析式.(3)在y轴上存在一点P,使得△PDC与△ODC相似,请你求出P点的坐标.【解答】解:(1)过A作AE垂直x轴,垂足为E,∵OE=3AE,OA=,∴在Rt△AOE中,根据勾股定理得:OE2+AE2=10,∴AE=1,OE=3,∴点A的坐标为(3,1).∵A点在双曲线上,∴1=,即k=3,则双曲线的解析式为y=;(2)∵点B(m,﹣2)在双曲线y=上,∴﹣2=,∴m=﹣,∴点B的坐标为(﹣,﹣2),设一次函数解析式为y=ax+b,把A与B坐标代入得:,解得:,则一次函数的解析式为y=x﹣1;(3)过点C作CP⊥AB,垂足为点C,∵C,D两点在直线y=x﹣1上,∴C,D的坐标分别是:C(,0),D(0,﹣1),即OC=,OD=1,∴DC=,∵△PDC∽△CDO,∴=,∴PD==,又OP=DP﹣OD=﹣1=,∴P点坐标为(0,).。