小学数学奥数应用题及答案
小学六年级奥数应用题及答案五篇

小学六年级奥数应用题及答案五篇一、应用题一某小学六年级有200名学生,其中男生占总人数的2/5,女生占总人数的3/10,男生中参加奥数的人数是女生中参加奥数的人数的3倍。
请问参加奥数的男生和女生各有多少人?解答:设男生总数为2x,女生总数为3x。
根据题意得到以下两个等式:2/5 * 200 = 2x3/10 * 200 = 3x计算可得:2/5 * 200 = 2x80 = 2xx = 40所以男生总数为2x = 2 * 40 = 80人,女生总数为3x = 3 * 40 = 120人。
参加奥数的男生人数为3 * 40 = 120人,女生人数为40人。
答案:参加奥数的男生有120人,女生有40人。
二、应用题二Peter和Tom一起参加了一场有100道选择题的奥数竞赛,Peter做对了70道题,Tom做对了60道题。
两人中有10道题他们的答案完全相同,求这场竞赛中两人的总分。
解答:两人中有10道题答案完全相同,则这10道题两人均得分。
Peter实际得分为70 - 10 = 60分,Tom实际得分为60 - 10 = 50分。
除去答案相同的10道题,两人各自得分60 + 50 = 110分。
答案:Peter和Tom的总分为110分。
三、应用题三一台机器每小时能生产1000个产品,现在需要生产8000个产品,请问需要多少小时?解答:机器每小时生产1000个产品,需要生产8000个产品。
所以生产8000个产品所需的小时数为8000 / 1000 = 8小时。
答案:需要8小时才能生产8000个产品。
四、应用题四某商品原价为500元,商家为了促销将商品价格降低了30%。
现在这个商品的售价是多少?解答:商品原价为500元,降价30%。
所以商品的售价是500 * (100% - 30%) = 500 * 70% = 350元。
答案:这个商品的售价是350元。
五、应用题五某工厂计划生产A型产品和B型产品,A型产品生产一件需要2小时,B型产品生产一件需要3小时。
小学六年级数学奥数应用题150道及答案(完整版)

小学六年级数学奥数应用题150道及答案(完整版)1. 一个数的30%是15,这个数是多少?答案:15÷30% = 502. 比80 米多25%是多少米?答案:80×(1 + 25%) = 100(米)3. 某工厂五月份生产零件400 个,六月份比五月份增产10%,六月份生产零件多少个?答案:400×(1 + 10%) = 440(个)4. 商店运来一批水果,其中苹果有180 千克,梨比苹果多20%,梨有多少千克?答案:180×(1 + 20%) = 216(千克)5. 一个数的60%比它的40%多20,这个数是多少?答案:20÷(60% - 40%) = 1006. 小明家八月份用电120 度,九月份比八月份节约20%,九月份用电多少度?答案:120×(1 - 20%) = 96(度)7. 一套西服原价800 元,现在打八折出售,现在的价格是多少元?答案:800×80% = 640(元)8. 一条路,已经修了40%,还剩120 米没修,这条路全长多少米?答案:120÷(1 - 40%) = 200(米)9. 某班有男生25 人,女生比男生少20%,女生有多少人?答案:25×(1 - 20%) = 20(人)10. 一本书200 页,第一天看了全书的25%,第二天看了全书的40%,两天共看了多少页?答案:200×(25% + 40%) = 130(页)11. 一个数的80%是16,这个数的20%是多少?答案:16÷80%×20% = 412. 学校图书馆有科技书300 本,故事书比科技书多20%,故事书有多少本?答案:300×(1 + 20%) = 360(本)13. 果园里有苹果树120 棵,梨树比苹果树少25%,梨树有多少棵?答案:120×(1 - 25%) = 90(棵)14. 一辆汽车从甲地开往乙地,已经行驶了全程的30%,再行驶20 千米就正好行驶了全程的一半,甲地到乙地的路程是多少千米?答案:20÷(50% - 30%) = 100(千米)15. 某工厂计划生产零件500 个,实际生产了600 个,超产了百分之几?答案:(600 - 500)÷500×100% = 20%16. 一件衣服原价200 元,现降价40 元出售,降价了百分之几?答案:40÷200×100% = 20%17. 六年级有学生160 人,已达到《国家体育锻炼标准》的有120 人,达标率是多少?答案:120÷160×100% = 75%18. 一种商品原价80 元,现在打七五折出售,现在的价格是多少元?答案:80×75% = 60(元)19. 一个数的75%是30,这个数的40%是多少?答案:30÷75%×40% = 1620. 银行一年期存款的年利率是3.25%,李叔叔存入5 万元,一年后可得利息多少元?答案:50000×3.25% = 1625(元)21. 有含盐率为10%的盐水80 克,加入多少克水就能得到含盐率为8%的盐水?答案:80×10%÷8% - 80 = 20(克)22. 小明读一本200 页的书,第一天读了全书的20%,第二天读了余下的30%,第二天读了多少页?答案:200×(1 - 20%)×30% = 48(页)23. 一个数增加20%后是60,这个数是多少?答案:60÷(1 + 20%) = 5024. 某班今天出勤48 人,有2 人请假,今天的出勤率是多少?答案:48÷(48 + 2)×100% = 96%25. 修一条路,已经修了60%,还剩240 米没修,这条路全长多少米?答案:240÷(1 - 60%) = 600(米)26. 一批货物,第一次运走40%,第二次运走15 吨,两次一共运走这批货物的70%,这批货物原来有多少吨?答案:15÷(70% - 40%) = 50(吨)27. 一种商品,先降价10%,再涨价10%,现在的价格是原价的百分之几?答案:(1 - 10%)×(1 + 10%) = 99%28. 王师傅生产一批零件,经检验合格的有485 个,不合格的有15 个,这批零件的合格率是多少?答案:485÷(485 + 15)×100% = 97%29. 六年级同学植树200 棵,成活率是98%,成活了多少棵?答案:200×98% = 196(棵)30. 某商场五月份的营业额是48 万元,比四月份增加了20%,四月份的营业额是多少万元?答案:48÷(1 + 20%) = 40(万元)31. 一个圆形花坛的周长是18.84 米,它的面积是多少平方米?答案:半径:18.84÷3.14÷2 = 3(米),面积:3.14×3²= 28.26(平方米)32. 一个挂钟的分针长10 厘米,经过1 小时,分针针尖走过的路程是多少厘米?答案:3.14×10×2 = 62.8(厘米)33. 一个圆的直径是8 分米,它的周长和面积各是多少?答案:周长:3.14×8 = 25.12(分米),面积:3.14×(8÷2)²= 50.24(平方分米)34. 在一个边长为6 厘米的正方形里画一个最大的圆,这个圆的面积是多少平方厘米?答案:3.14×(6÷2)²= 28.26(平方厘米)35. 一辆自行车车轮的半径是30 厘米,车轮滚动一周,前进多少米?答案:2×3.14×0.3 = 1.884(米)36. 要在一块直径为2 分米的半圆形钢板上取一个最大的三角形,这个三角形的面积是多少平方分米?答案:2×(2÷2)÷2 = 1(平方分米)37. 一个环形,外圆半径是5 米,内圆半径是3 米,环形的面积是多少平方米?答案:3.14×(5²- 3²) = 50.24(平方米)38. 一个圆的周长是12.56 厘米,它的半径是多少厘米?面积是多少平方厘米?答案:半径:12.56÷3.14÷2 = 2(厘米),面积:3.14×2²= 12.56(平方厘米)39. 一根铁丝可以围成一个半径是3 厘米的圆,如果用它围成一个等边三角形,这个三角形的边长是多少厘米?答案:2×3.14×3÷3 = 6.28(厘米)40. 把一个圆平均分成若干等份,拼成一个近似的长方形,长方形的长是9.42 厘米,这个圆的面积是多少平方厘米?答案:半径:9.42÷3.14 = 3(厘米),面积:3.14×3²= 28.26(平方厘米)41. 一个圆柱的底面半径是2 厘米,高是5 厘米,它的侧面积是多少平方厘米?答案:2×3.14×2×5 = 62.8(平方厘米)42. 一个圆柱的底面直径是4 厘米,高是3 厘米,它的表面积是多少平方厘米?答案:侧面积:3.14×4×3 = 37.68(平方厘米),底面积:3.14×(4÷2)²×2 = 25.12(平方厘米),表面积:37.68 + 25.12 = 62.8(平方厘米)43. 一个圆柱的体积是125.6 立方厘米,底面半径是2 厘米,它的高是多少厘米?答案:125.6÷(3.14×2²) = 10(厘米)44. 一个圆锥形沙堆,底面半径是3 米,高是1.5 米,这个沙堆的体积是多少立方米?答案:3.14×3²×1.5×1/3 = 14.13(立方米)45. 一个圆锥的体积是314 立方厘米,底面直径是10 厘米,它的高是多少厘米?答案:314×3÷[3.14×(10÷2)²] = 12(厘米)46. 把一个棱长是6 分米的正方体木块削成一个最大的圆锥,这个圆锥的体积是多少立方分米?答案:1/3×3.14×(6÷2)²×6 = 56.52(立方分米)47. 一个圆柱和一个圆锥等底等高,圆柱的体积是90 立方厘米,圆锥的体积是多少立方厘米?答案:90÷3 = 30(立方厘米)48. 一个圆柱的底面周长是18.84 分米,高是5 分米,这个圆柱的体积是多少立方分米?答案:底面半径:18.84÷3.14÷2 = 3(分米),体积:3.14×3²×5 = 141.3(立方分米)49. 一个圆锥形零件,底面半径是4 厘米,高是6 厘米,这个零件的体积是多少立方厘米?答案:3.14×4²×6×1/3 = 100.48(立方厘米)50. 把一个底面半径是2 厘米,高是9 厘米的圆柱削成一个最大的圆锥,削去部分的体积是多少立方厘米?答案:圆柱体积:3.14×2²×9 = 113.04(立方厘米),圆锥体积:113.04÷3 = 37.68(立方厘米),削去部分体积:113.04 - 37.68 = 75.36(立方厘米)51. 一个圆柱的侧面积是188.4 平方厘米,高是10 厘米,它的底面周长是多少厘米?答案:188.4÷10 = 18.84(厘米)52. 一个圆柱的底面半径扩大2 倍,高不变,它的侧面积扩大多少倍?答案:2 倍53. 一个圆锥的底面周长是12.56 分米,高是3 分米,它的体积是多少立方分米?答案:底面半径:12.56÷3.14÷2 = 2(分米),体积:3.14×2²×3×1/3 = 12.56(立方分米)54. 把一个体积是282.6 立方厘米的铁块熔铸成一个底面半径是6 厘米的圆锥形机器零件,这个圆锥的高是多少厘米?答案:282.6×3÷(3.14×6²)= 7.5(厘米)55. 一个圆柱和一个圆锥的体积相等,底面积也相等。
小学五年级应用题奥数应用题100道(含答案)

小学五年级应用题奥数应用题100道(含答案)1. 商店有苹果300 千克,梨200 千克,梨的重量是苹果的几分之几?答案:200÷300 = 2/32. 一条公路长500 米,已经修了200 米,剩下的占全长的几分之几?答案:(500 - 200)÷500 = 3/53. 五年级一班有学生40 人,其中男生25 人,女生占全班人数的几分之几?答案:(40 - 25)÷40 = 3/84. 一本故事书240 页,小明第一天看了全书的1/6,第二天看了全书的3/8,两天一共看了多少页?答案:240×(1/6 + 3/8)= 130(页)5. 学校运来一堆沙子,砌墙用去2/5 吨,修运动场用去3/8 吨,还剩1/10 吨。
这堆沙子原有多少吨?答案:2/5 + 3/8 + 1/10 = 7/8(吨)6. 服装厂计划一个月生产衣服3600 件,上半月完成了4/9,下半月完成的与上半月同样多,这个月实际生产多少件?答案:3600×4/9×2 = 3200(件)7. 一辆汽车从甲地开往乙地,已经行了全程的3/8,离中点还有25 千米,甲乙两地相距多少千米?答案:25÷(1/2 - 3/8)= 200(千米)8. 水果店运来一批水果,其中苹果120 千克,梨比苹果多1/4,梨有多少千克?答案:120×(1 + 1/4)= 150(千克)9. 五年级同学收集树种56 千克,六年级收集的比五年级多4/7,六年级收集树种多少千克?答案:56×(1 + 4/7)= 88(千克)10. 某工厂十月份用水480 吨,比原计划节约了1/9,十月份原计划用水多少吨?答案:480÷(1 - 1/9)= 540(吨)11. 一根绳子长40 米,第一次用去15 米,第二次用去一些后,还剩下这根绳子的1/5,第二次用去多少米?答案:40 - 15 - 40×1/5 = 17(米)12. 一本书有300 页,第一天看了全书的1/5,第二天看了全书的1/6,第三天应从第几页看起?答案:300×(1/5 + 1/6)+ 1 = 111(页)13. 修一条路,第一天修了全长的1/4,第二天修了全长的1/5,第一天比第二天多修20 米,这条路全长多少米?答案:20÷(1/4 - 1/5)= 400(米)14. 食堂运来一批大米,已经吃了600 千克,正好吃了3/4,这批大米一共有多少千克?答案:600÷3/4 = 800(千克)15. 一辆汽车4 小时行了全程的2/5,照这样的速度,行完全程需要几小时?答案:4÷2/5 = 10(小时)16. 有一块长方形的地,长80 米,宽60 米,在这块地的四周每隔5 米种一棵树,一共可以种多少棵树?答案:(80 + 60)×2÷5 = 56(棵)17. 一个圆形花坛的周长是37.68 米,在它的周围铺一条2 米宽的小路,小路的面积是多少平方米?答案:花坛半径:37.68÷3.14÷2 = 6(米),外圆半径:6 + 2 = 8(米),小路面积:3.14×(8²- 6²)= 87.92(平方米)18. 一个正方体的棱长总和是96 厘米,它的表面积是多少平方厘米?答案:棱长:96÷12 = 8(厘米),表面积:8×8×6 = 384(平方厘米)19. 做一个无盖的长方体铁皮水箱,长5 分米,宽4 分米,高3 分米,至少要用多少平方分米的铁皮?答案:5×4 + 5×3×2 + 4×3×2 = 74(平方分米)20. 把一个棱长8 厘米的正方体铁块,锻造成一个长16 厘米,宽4 厘米的长方体铁块,这个长方体铁块的高是多少厘米?答案:8×8×8÷(16×4)= 8(厘米)21. 一个房间的长6 米,宽3.5 米,高3 米,门窗面积是8 平方米。
小学数学奥数应用题100道及答案(完整版)

小学数学奥数应用题100道及答案(完整版)1. 小明和小红共有图书76 本,小明的图书本数是小红的3 倍。
小明和小红各有图书多少本?答案:设小红有图书x 本,则小明有3x 本。
x + 3x = 76,解得x = 19,小明有57 本。
解题思路:根据图书总数的关系列方程求解。
2. 一个长方形的周长是48 厘米,长是宽的3 倍。
这个长方形的长和宽各是多少厘米?答案:设宽为x 厘米,则长为3x 厘米。
2×(x + 3x) = 48,解得x = 6,长为18 厘米。
解题思路:根据周长公式和长与宽的关系列方程求解。
3. 甲、乙两数的和是120,甲数是乙数的3 倍。
甲、乙两数各是多少?答案:设乙数为x,则甲数为3x。
x + 3x = 120,解得x = 30,甲数为90。
解题思路:同1。
4. 果园里有苹果树和梨树共180 棵,苹果树的棵数是梨树的2 倍。
苹果树和梨树各有多少棵?答案:设梨树有x 棵,则苹果树有2x 棵。
x + 2x = 180,解得x = 60,苹果树有120 棵。
解题思路:根据数量关系列方程求解。
5. 学校买了一批图书,故事书的本数是科技书的3 倍,故事书比科技书多120 本。
故事书和科技书各有多少本?答案:设科技书有x 本,则故事书有3x 本。
3x - x = 120,解得x = 60,故事书有180 本。
解题思路:根据数量差列方程求解。
6. 有两袋大米,甲袋大米的重量是乙袋的3 倍,如果从甲袋中取出20 千克放入乙袋,两袋大米就一样重。
原来两袋大米各有多少千克?答案:设乙袋大米有x 千克,则甲袋有3x 千克。
3x - 20 = x + 20,解得x = 20,甲袋有60 千克。
解题思路:根据重量变化后的关系列方程求解。
7. 一个三角形的内角和是180 度,其中一个角是另一个角的2 倍,第三个角是这两个角和的3 倍。
这个三角形的三个角分别是多少度?答案:设其中一个角为x 度,则另一个角为2x 度,第三个角为3×(x + 2x)=9x 度。
小学数学经典奥数应用题100道及答案(完整版)

小学数学经典奥数应用题100道及答案(完整版)1. 甲、乙两车同时从A、B 两地相向而行,在距A 地60 千米处第一次相遇。
各自到达对方出发地后立即返回,途中又在距A 地40 千米处相遇。
A、B 两地相距多少千米?答案:(60×3 + 40)÷2 = 110(千米)2. 一个圆形花坛的周长是60 米,沿圆周每隔4 米放一盆红花,每两盆红花之间放3 盆黄花。
花坛周围一共放了多少盆花?答案:60÷4 = 15(盆)红花,15×3 = 45(盆)黄花,共15 + 45 = 60(盆)3. 一列火车通过530 米的桥需40 秒钟,以同样的速度穿过380 米的山洞需30 秒钟。
求这列火车的速度是每秒多少米?车长多少米?答案:速度:(530 - 380)÷(40 - 30) = 15(米/秒),车长:40×15 - 530 = 70(米)4. 用绳子测井深,把绳子三折来量,井外余16 分米,把绳子四折来量,井外余4 分米。
求井深和绳长。
答案:井深:(16×3 - 4×4)÷(4 - 3) = 32(分米),绳长:(32 + 16)×3 = 144(分米)5. 有一堆棋子,把它四等分后剩下一枚,取走三份又一枚;剩下的再四等分又剩一枚,再取走三份又一枚;剩下的再四等分又剩一枚。
问:原来至少有多少枚棋子?答案:从最后的情况倒推,最后至少有5 枚棋子。
则之前有(5×4 + 1)×4 + 1 = 85(枚)6. 甲、乙、丙三人共有人民币168 元,第一次甲拿出与乙相同的钱数给乙;第二次乙拿出与丙相同的钱数给丙;第三次丙拿出与这时甲相同的钱数给甲。
这样,甲、乙、丙三人的钱数相等,原来甲比乙多多少元钱?答案:168÷3 = 56(元),倒推得出原来甲有77 元,乙有49 元,甲比乙多28 元。
小学三年级奥数应用题100道及答案完整版

小学三年级奥数应用题100道及答案完整版1. 商店有4 筐苹果,每筐55 千克,已经卖出135 千克,还剩多少千克苹果?答案:4×55 - 135 = 85(千克)2. 美术组有24 人,体育组的人数是美术组的4 倍,两个组共有多少人?答案:24×(4 + 1) = 120(人)3. 每盒粉笔1 元3 角4 分,每瓶墨水6 角2 分,学校买了6 盒粉笔5 瓶墨水,共花多少钱?答案:1.34×6 + 0.62×5 = 11.14(元)4. 有篮球9 个,足球的个数是篮球的8 倍,足球有多少个?答案:9×8 = 72(个)5. 有足球72 个,篮球9 个,足球的数量是篮球的多少倍?答案:72÷9 = 8 倍6. 学校买来6 箱图书,每箱50 本,平均分给4 个年级,每个年级分多少本?答案:6×50÷4 = 75(本)7. 在3 千米长的公路一边,每隔5 米种一棵树,一共要分多少段?答案:3000÷5 = 600(段)8. 小明从家到学校要走200 米长的路,如果他来回走2 趟共行多少米?答案:200×2×2 = 800(米)9. 商店有黄气球19 个,红气球比黄气球少7 个,花气球的个数是红气球的2 倍,花气球有多少个?答案:(19 - 7)×2 = 24(个)10. 同学们做习题,小华做了75 道,小明做了85 道,小青比小华和小明的总数少30 道,小青做了多少道?答案:75 + 85 - 30 = 130(道)11. 学校有14 棵杨树,杨树的棵数是松树的2 倍,柳树比松树多4 棵,有多少棵柳树?答案:14÷2 + 4 = 11(棵)12. 三年级(1)班有46 人,其中21 人是女生,男生比女生多多少人?答案:46 - 21 - 21 = 4(人)13. 公园有7 只大猴,小猴的只数比大猴多9 只,公园一共养了多少只猴?答案:7 + 7 + 9 = 23(只)14. 甲有140 元,甲的钱数是乙的2 倍,甲乙共有多少元?答案:140÷2 + 140 = 210(元)15. 一列火车早上5 时从甲地开往乙地,按原计划每小时行驶120 千米,下午3 时到达乙地,但实际到达时间是下午5 时,晚点2 小时。
小学奥数应用题练习题及答案

小学奥数应用题练习题及答案1.小学奥数应用题练习题及答案篇一1、父亲今年50岁,儿子今年26岁。
问几年前父亲年龄是儿子的2倍?【解析】父亲和儿子的年龄差为50-26=24岁,当父亲年龄是儿子年龄的2倍时,年龄差为儿子的年龄即24岁,也就是说26-24=2年前,父亲年龄是儿子的2倍。
2、兄弟两今年的年龄和是60岁,当哥哥像弟弟现在这样大时,弟弟的年龄恰好是哥哥的一半,哥哥今年几岁?【解析】当哥哥像弟弟现在这样大时,弟弟的年龄恰好是哥哥的一半,也就是年龄差也是哥哥的一半,即现在弟弟年龄的一半,所以根据和差关系得:弟弟的年龄=(60-弟弟年龄的一半)÷2,解得弟弟年龄为24岁,哥哥为60-24=36岁。
3、10年前父亲比儿子大24岁,10年后父子的年龄和是50岁,今年父子各多少岁?【解析】10年后父子的年龄和是50岁,而年龄差是不变的,父亲比儿子大24岁;根据和差关系可得:10年后父亲的年龄为(50+24)÷2=37岁,儿子年龄为(50-24)÷2=13岁所以今年父亲的年龄为37-10=27岁,儿子的年龄为13-10=3岁。
2.小学奥数应用题练习题及答案篇二1、甲乙两车同时从AB两地相对开出。
甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。
求AB两地相距多少千米?解:AB距离=(4.5×5)/(5/11)=49.5千米2、一辆客车和一辆货车分别从甲乙两地同时相向开出。
货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。
甲乙两地相距多少千米?解:客车和货车的速度之比为5:4那么相遇时的路程比=5:4相遇时货车行全程的4/9此时货车行了全程的1/4距离相遇点还有4/9-1/4=7/36那么全程=28/(7/36)=144千米3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。
现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。
三年级数学奥数应用题100道及答案解析

三年级数学奥数应用题100道及答案解析1. 商店里有15 盒铅笔,每盒8 支,卖出了30 支,还剩多少支?答案:15×8 - 30 = 90(支)解析:先算出商店里原有的铅笔总数为15×8 = 120 支,卖出30 支后,用总数减去卖出的数量得到剩余数量。
2. 果园里有苹果树80 棵,梨树的棵数是苹果树的3 倍,梨树有多少棵?答案:80×3 = 240(棵)解析:梨树的棵数是苹果树的 3 倍,用苹果树的数量乘以3 即可得到梨树的数量。
3. 小明有45 张邮票,小红的邮票数比小明的2 倍多10 张,小红有多少张邮票?答案:45×2 + 10 = 100(张)解析:先算出小明邮票数的 2 倍为45×2 = 90 张,再多10 张,就是小红的邮票数。
4. 学校买来20 个篮球,买来的足球比篮球多5 个,买来足球多少个?答案:20 + 5 = 25(个)解析:足球数量比篮球多5 个,用篮球的数量加上5 得到足球的数量。
5. 一辆汽车每小时行驶80 千米,3 小时行驶多少千米?答案:80×3 = 240(千米)解析:根据路程= 速度×时间,可得3 小时行驶的路程为80×3 = 240 千米。
6. 三年级有3 个班,每班45 人,一共有多少人?答案:3×45 = 135(人)解析:用班级数乘以每班的人数,得到总人数。
7. 一本书有120 页,小明每天看15 页,看了4 天,还剩多少页?答案:120 - 15×4 = 60(页)解析:先算出小明4 天看的页数为15×4 = 60 页,再用总页数减去已看的页数得到剩余页数。
8. 养殖场有鸡180 只,鸭的只数是鸡的2 倍少30 只,鸭有多少只?答案:180×2 - 30 = 330(只)解析:先算出鸡只数的 2 倍为180×2 = 360 只,再减去30 只得到鸭的数量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学奥数应用题及答案小学数学奥数应用题及答案:鸡兔同笼【含义】这是古典的算术问题。
已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。
已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。
【数量关系】第一鸡兔同笼问题:假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)第二鸡兔同笼问题:假设全都是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)假设全都是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)【解题思路和方法】解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。
如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。
这类问题也叫置换问题。
通过先假设,再置换,使问题得到解决。
例1 长毛兔子芦花鸡,鸡兔圈在一笼里。
数数头有三十五,脚数共有九十四。
请你仔细算一算,多少兔子多少鸡?解假设35只全为兔,则鸡数=(4×35-94)÷(4-2)=23(只)兔数=35-23=12(只)也可以先假设35只全为鸡,则兔数=(94-2×35)÷(4-2)=12(只)鸡数=35-12=23(只)答:有鸡23只,有兔12只。
例2 2亩菠菜要施肥1千克,5亩白菜要施肥3千克,两种菜共16亩,施肥9千克,求白菜有多少亩?解此题实际上是改头换面的“鸡兔同笼”问题。
“每亩菠菜施肥(1÷2)千克”与“每只鸡有两个脚”相对应,“每亩白菜施肥(3÷5)千克”与“每只兔有4只脚”相对应,“16亩”与“鸡兔总数”相对应,“9千克”与“鸡兔总脚数”相对应。
假设16亩全都是菠菜,则有白菜亩数=(9-1÷2×16)÷(3÷5-1&divid e;2)=10(亩)答:白菜地有10亩。
例3 李老师用69元给学校买作业本和日记本共45本,作业本每本 3 .20元,日记本每本0.70元。
问作业本和日记本各买了多少本?解此题可以变通为“鸡兔同笼”问题。
假设45本全都是日记本,则有作业本数=(69-0.70×45)÷(3.20-0.70)=15(本) 日记本数=45-15=30(本)答:作业本有15本,日记本有30本。
例4 (第二鸡兔同笼问题)鸡兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?解假设100只全都是鸡,则有兔数=(2×100-80)÷(4+2)=20(只)鸡数=100-20=80(只)答:有鸡80只,有兔20只。
例5 有100个馍100个和尚吃,大和尚一人吃3个馍,小和尚3人吃1个馍,问大小和尚各多少人?解假设全为大和尚,则共吃馍(3×100)个,比实际多吃(3×100-100)个,这是因为把小和尚也算成了大和尚,因此我们在保证和尚总数100不变的情况下,以“小”换“大”,一个小和尚换掉一个大和尚可减少馍(3-1/3)个。
因此,共有小和尚(3×100-100)÷(3-1/3)=75(人)共有大和尚 100-75=25(人)答:共有大和尚25人,有小和尚75人。
小学数学奥数应用题及答案:方阵问题【含义】将若干人或物依一定条件排成正方形(简称方阵),根据已知条件求总人数或总物数,这类问题就叫做方阵问题。
【数量关系】 (1)方阵每边人数与四周人数的关系:四周人数=(每边人数-1)×4每边人数=四周人数÷4+1(2)方阵总人数的求法:实心方阵:总人数=每边人数×每边人数空心方阵:总人数=(外边人数)-(内边人数)内边人数=外边人数-层数×2(3)若将空心方阵分成四个相等的矩形计算,则:总人数=(每边人数-层数)×层数×4【解题思路和方法】方阵问题有实心与空心两种。
实心方阵的求法是以每边的数自乘;空心方阵的变化较多,其解答方法应根据具体情况确定。
例1 在育才小学的运动会上,进行体操表演的同学排成方阵,每行22人,参加体操表演的同学一共有多少人?解 22×22=484(人)答:参加体操表演的同学一共有484人。
例2 有一个3层中空方阵,最外边一层有10人,求全方阵的人数。
解 10-(10-3×2)=84(人)答:全方阵84人。
例3 有一队学生,排成一个中空方阵,最外层人数是52人,最内层人数是28人,这队学生共多少人?解 (1)中空方阵外层每边人数=52÷4+1=14(人)(2)中空方阵内层每边人数=28÷4-1=6(人)(3)中空方阵的总人数=14×14-6×6=160(人)答:这队学生共160人。
例4 一堆棋子,排列成正方形,多余4棋子,若正方形纵横两个方向各增加一层,则缺少9只棋子,问有棋子多少个?解 (1)纵横方向各增加一层所需棋子数=4+9=13(只)(2)纵横增加一层后正方形每边棋子数=(13+1)÷2=7(只)(3)原有棋子数=7×7-9=40(只)答:棋子有40只。
例5 有一个三角形树林,顶点上有1棵树,以下每排的树都比前一排多1棵,最下面一排有5棵树。
这个树林一共有多少棵树?解第一种方法: 1+2+3+4+5=15(棵)第二种方法: (5+1)×5÷2=15(棵)答:这个三角形树林一共有15棵树。
小学数学奥数应用题及答案:商品利润问题【含义】这是一种在生产经营中经常遇到的问题,包括成本、利润、利润率和亏损、亏损率等方面的问题。
【数量关系】利润=售价-进货价利润率=(售价-进货价)÷进货价×100%售价=进货价×(1+利润率)亏损=进货价-售价亏损率=(进货价-售价)÷进货价×100%【解题思路和方法】简单的题目可以直接利用公式,复杂的题目变通后利用公式。
例1 某商品的平均价格在一月份上调了10%,到二月份又下调了10%,这种商品从原价到二月份的价格变动情况如何?解设这种商品的原价为1,则一月份售价为(1+10%),二月份的售价为(1+10%)×(1-10%),所以二月份售价比原价下降了1-(1+10%)×(1-10%)=1%答:二月份比原价下降了1%。
例2 某服装店因搬迁,店内商品八折销售。
苗苗买了一件衣服用去52元,已知衣服原来按期望盈利30%定价,那么该店是亏本还是盈利?亏(盈)率是多少?解要知亏还是盈,得知实际售价52元比成本少多少或多多少元,进而需知成本。
因为52元是原价的80%,所以原价为(52÷80%)元;又因为原价是按期望盈利30%定的,所以成本为 52÷80%÷(1+30%)=50(元) 可以看出该店是盈利的,盈利率为(52-50)÷50=4%答:该店是盈利的,盈利率是4%。
例3 成本0.25元的作业本1200册,按期望获得40%的利润定价出售,当销售出80%后,剩下的作业本打折扣,结果获得的利润是预定的86%。
问剩下的作业本出售时按定价打了多少折扣?解问题是要计算剩下的作业本每册实际售价是原定价的百分之几。
从题意可知,每册的原定价是0.25×(1+40%),所以关键是求出剩下的每册的实际售价,为此要知道剩下的每册盈利多少元。
剩下的作业本售出后的盈利额等于实际总盈利与先售出的80%的盈利额之差,即0.25×1200×40%×86%-0.25×1200 ×40%×80%=7.20(元)剩下的作业本每册盈利7.20÷[1200×(1-80%)]=0.03(元)又可知(0.25+0.03)÷[0.25×(1+40%)]=80%答:剩下的作业本是按原定价的八折出售的。
例4 某种商品,甲店的进货价比乙店的进货价便宜10%,甲店按30%的利润定价,乙店按20%的利润定价,结果乙店的定价比甲店的定价贵6元,求乙店的定价。
解设乙店的进货价为1,则甲店的进货价为 1-10%=0.9 甲店定价为 0.9×(1+30%)=1.17乙店定价为 1×(1+20%)=1.20由此可得乙店进货价为6÷(1.20-1.17)=200(元)乙店定价为 200×1.2=240(元)答:乙店的定价是240元。