考点11 二次函数的图象性质及相关考点【无答案】

合集下载

二次函数图像与性质完整归纳

二次函数图像与性质完整归纳

二次函数图像与性质完整归纳二次函数的图像与性质二次函数是高中数学中的重要内容之一,掌握其图像与性质是必不可少的。

二次函数的基本形式是y=ax^2,其中a表示开口方向和抛物线开口大小,x^2表示自变量的平方。

根据a的正负,抛物线的开口方向和顶点的坐标可以得到不同的性质。

当a>0时,抛物线开口向上,顶点坐标为(0,0),对称轴为y轴;当a<0时,抛物线开口向下,顶点坐标为(0,0),对称轴为y轴。

在y=ax^2的基础上,加上常数项c可以得到y=ax^2+c的形式,其中c表示抛物线在y轴上的截距。

根据a和c的正负,抛物线的开口方向、顶点坐标和对称轴可以得到不同的性质。

当a>0,c>0时,抛物线开口向上,顶点坐标为(0,c),对称轴为y轴;当a>0,c0时,抛物线开口向下,顶点坐标为(0,c),对称轴为y轴;当a<0,c<0时,抛物线开口向下,顶点坐标为(0,c),对称轴为y轴。

除了基本形式和加上常数项的形式,二次函数还有一种顶点式的形式y=a(x-h)^2+k,其中(h,k)表示顶点坐标。

根据a的正负,抛物线的开口方向和顶点坐标可以得到不同的性质。

当a>0时,抛物线开口向上,顶点坐标为(h,k),对称轴为直线x=h;当a<0时,抛物线开口向下,顶点坐标为(h,k),对称轴为直线x=h。

在顶点式的基础上,加上常数项k可以得到y=a(x-h)^2+k的形式。

根据a和k的正负,抛物线的开口方向、顶点坐标和对称轴可以得到不同的性质。

当a>0,k>0时,抛物线开口向上,顶点坐标为(h,k),对称轴为直线x=h;当a>0,k0时,抛物线开口向下,顶点坐标为(h,k),对称轴为直线x=h;当a<0,k<0时,抛物线开口向下,顶点坐标为(h,k),对称轴为直线x=h。

二次函数图象的平移二次函数的图像可以通过平移来得到新的图像。

平移的步骤是先确定顶点坐标,然后根据顶点坐标的变化来确定平移方向和距离。

初三二次函数的图像与性质

初三二次函数的图像与性质

初三二次函数的图像与性质二次函数是初中数学中的一个重要概念。

在数学学习的过程中,我们常常会接触到二次函数,并且需要了解它的图像特点以及性质。

本文将详细介绍初三二次函数的图像和性质,并且给出相关的例题和解析。

一、二次函数的定义及一般式二次函数是指函数$y=ax^2+bx+c$,其中$a,b,c$为常数且$a\neq 0$。

它的图像是抛物线,并且开口的方向由$a$的正负决定。

当$a>0$时,抛物线开口向上;而当$a<0$时,抛物线开口向下。

二次函数的一般式为$y=ax^2+bx+c$,其中$a,b,c$为常数。

其中,$a$代表抛物线的开口方向与开口的大小,$b$影响抛物线的位置,$c$影响抛物线和$y$轴的交点。

【例题1】某二次函数的方程是$y=2x^2-3x+1$,求该二次函数的图像和性质。

解:根据给定的二次函数方程,我们可以得到$a=2$,$b=-3$,$c=1$。

由于$a>0$,所以抛物线开口向上。

考虑二次函数的图像特点,我们可以使用一些方法来绘制它的图像。

首先,我们可以找出抛物线的对称轴,对称轴的方程为$x=-\frac{b}{2a}$。

代入$a=2$,$b=-3$,我们得到$x=-\frac{-3}{2\times2}=\frac{3}{4}$。

因此,对称轴的方程为$x=\frac{3}{4}$。

接下来,我们需要计算抛物线的顶点坐标。

顶点坐标可以通过将对称轴的$x$坐标代入原函数方程计算得到。

将$x=\frac{3}{4}$代入$y=2x^2-3x+1$,我们得到$y=2(\frac{3}{4})^2-3(\frac{3}{4})+1=\frac{9}{8}-\frac{9}{4}+1=\frac{1}{8}$。

因此,顶点坐标为$(\frac{3}{4}, \frac{1}{8})$。

不难看出,根据顶点的坐标和对称轴的方程,我们可以绘制出该二次函数的图像。

它是一个开口向上的抛物线,对称轴为$x=\frac{3}{4}$,顶点坐标为$(\frac{3}{4}, \frac{1}{8})$。

二次函数的图像和性质

二次函数的图像和性质

二次函数的图像和性质二次函数是数学中的一个重要概念,它在中学数学中占据着重要的地位。

本文将从二次函数的图像和性质两个方面进行论述,旨在帮助中学生和他们的父母更好地理解和应用二次函数。

一、二次函数的图像二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b、c为常数,a不等于0。

我们先来讨论二次函数的图像。

1. 开口方向二次函数的图像可以是开口向上的,也可以是开口向下的。

当a大于0时,二次函数的图像开口向上;当a小于0时,二次函数的图像开口向下。

例如,考虑函数f(x) = x^2 - 2x + 1和g(x) = -x^2 + 2x + 1,它们的图像分别如下所示:(插入图片:开口向上和开口向下的二次函数图像)2. 对称轴和顶点二次函数的图像总是关于一个垂直于x轴的直线对称的。

这条直线称为二次函数的对称轴,它的方程可以通过求解二次函数的x坐标的平方项系数的相反数除以2倍的平方项系数得到。

对称轴上的点称为二次函数的顶点,它的横坐标和纵坐标可以通过代入对称轴的方程求解得到。

例如,考虑函数f(x) = -2x^2 + 4x - 1,它的对称轴方程为x = -b/2a = -4/(2*(-2))= 1。

代入对称轴方程可以求得顶点的坐标为(1, -3)。

3. 判别式和根的性质二次函数的判别式可以通过求解一元二次方程的判别式得到,它的表达式为Δ = b^2 - 4ac。

判别式的正负决定了二次函数的根的性质。

当判别式大于0时,二次函数有两个不相等的实根;当判别式等于0时,二次函数有两个相等的实根;当判别式小于0时,二次函数没有实根,但有两个共轭复根。

例如,考虑函数f(x) = x^2 - 2x + 1,它的判别式为Δ = (-2)^2 - 4*1*1 = 0。

由于判别式等于0,该二次函数有两个相等的实根x = 1。

二、二次函数的性质除了图像外,二次函数还有一些重要的性质,我们将在下面进行讨论。

1. 单调性和极值点二次函数的单调性是由二次函数的开口方向决定的。

初中数学重难点归纳:二次函数的图象与性质

初中数学重难点归纳:二次函数的图象与性质

初中数学重难点归纳:二次函数的图象与性质
考点一、二次函数解析式的确定
在确定二次函数的解析式时,设哪种解析式形式要根据题中的已知条件来确定,若题目给出的是图象上点的坐标,设一般式,若给出对称轴和图象上的一点坐标,设顶点式,若给出了图象与X轴的两交点,设交点式。

考点二、二次函数的图象与性质
一般地,抛物线的对称轴可根据公式直接计算,或利用配方法将二次函数化为顶点式的形式,再写出即可。

若抛物线的解析式未知,要判断对称轴在Y轴的左侧还是右侧,则须结合已知条件与抛物线所经过的点,分析和判断已知点关于对称轴的对称点的横坐标的范围,
进而确定对称轴的范围,才可得出结论。

如需资料,请私信留言“初中数学”。

二次函数图像和性质常见考点

二次函数图像和性质常见考点

二次函数的图像和性质常见考点考点1:二次函数的系数和图象主要考查由二次函数的图象判断二次函数解析式中的系数及关于系数的代数式的符号,或由二次函数解析式中的系数判断二次函数的图象,通常以选择题、填空题的形式出现。

一、基本概念: 对于二次函数y =ax 2+bx +c (a ≠0)1. 开口方向⇔a 的符号:开口向上,a >0;开口向下, a <0。

开口大小⇔a 的绝对值:绝对值越大开口越小;绝对值越小,开口越大。

a 相等(符号相同且绝对值相等)的两个抛物线开口大小(抛物线的形状)和方向都一样,只是位置不同。

2.a 、b ⇔对称轴(2bx a=-)的位置 若a 、b 同号⇔对称轴在y 轴的左侧; 若b =0⇔对称轴就是y 轴; 若a 、b 异号⇔对称轴在y 轴的右侧3.图象与y 轴的交点位置⇔c 的符号:当图象与y 轴的交点在正半轴时c >0;当图象与y 轴的交点在负半轴时c <0;过原点则c =0。

4.函数图象与x 轴交点的横坐标为x 1,x 2和系数的关系:12b x x a +=-,12cx x a=g 。

5.图象与x 轴的交点的个数⇔24ac b -当24ac b - 0时,抛物线与x 轴有两个交点. 当24ac b - 0时,抛物线与x 轴有一个交点. 当24ac b - 0时,抛物线与x 轴没有交点. 6. 函数图象上的特殊点与特殊代数式经常利用下列函数图象上的点判断相关代数式:(1,a b c ++)、(-1,a b c -+);(2,42a b c ++)、(-2,42a b c -+)二、基本类型(一)对称轴不明确型【例1】已知二次函数y=ax2+bx+c的图象与x轴交于(x1,0),(x2,0),且0<x1<1,1<x2<2,与y轴交于点(0,-2),下列结论:①2a+b>1 ②3a+b>0③a+b<2 ④a<-1,其中正确的个数有()(A)1个(B)2个(C)3个(D)4个方法1:数形结合法【解析】画出草图,如图,由图象可知:c=-2,当x=2时,y=4a+2b-2<0,∴4a+2b<2 ①∴2a+b<1 ②,结论①错误;当x=1时,y=a+b-2>0,∴a+b>2 ③,结论③错误;∵a+b>2 ∴- a-b<-2 ④,和①(4a+2b<2)相加得3a+b<0,结论②错误;④(- a-b<-2)和②(2a+b<1)相加得a<-1,结论④正确。

二次函数图像的性质与解析

二次函数图像的性质与解析

二次函数图像的性质与解析一、二次函数的定义与标准形式1.二次函数的定义:一般地,形如y=ax^2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数。

2.二次函数的标准形式:y=a(x-h)2+k,其中顶点式y=a(x-h)2+k的图像为抛物线,a为抛物线的开口方向和大小,h、k为顶点坐标。

二、二次函数图像的性质1.开口方向:由a的符号决定,a>0时,开口向上;a<0时,开口向下。

2.对称性:二次函数图像关于y轴对称,即若点(x,y)在图像上,则点(-x,y)也在图像上。

3.顶点:二次函数图像的顶点为抛物线的最高点或最低点,顶点式y=a(x-h)^2+k中,(h,k)为顶点坐标。

4.轴:二次函数图像与x轴的交点为方程ax^2+bx+c=0的根,与y轴的交点为c/a。

5.增减性:当a>0时,二次函数图像在顶点左侧单调递减,在顶点右侧单调递增;当a<0时,二次函数图像在顶点左侧单调递增,在顶点右侧单调递减。

三、二次函数图像的解析1.求顶点:根据顶点式y=a(x-h)^2+k,直接得出顶点坐标为(h,k)。

2.求对称轴:对称轴为x=h。

3.求开口大小:开口大小由a的绝对值决定,绝对值越大,开口越大。

4.求与坐标轴的交点:与x轴的交点为方程ax^2+bx+c=0的根,与y轴的交点为c/a。

5.判断增减性:根据a的符号,判断二次函数图像在顶点两侧的单调性。

四、二次函数图像的应用1.实际问题:利用二次函数图像解决实际问题,如抛物线与坐标轴的交点问题、最值问题等。

2.几何问题:利用二次函数图像研究几何图形的性质,如求解三角形面积、距离等问题。

3.物理问题:利用二次函数图像研究物理现象,如抛物线运动、振动等。

五、二次函数图像的变换1.横向变换:对二次函数y=ax2+bx+c进行横向变换,如向左平移h个单位,得到y=a(x+h)2+k;向右平移h个单位,得到y=a(x-h)^2+k。

2022年最新中考数学知识点梳理 考点11 二次函数(教师版)

2022年最新中考数学知识点梳理 考点11 二次函数(教师版)

2022年最新中考数学知识点梳理考点总结+真题演练涵盖近年来的中考真题和中考模拟考点11 二次函数考点总结一、二次函数的概念:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数.二、二次函数解析式的三种形式(1)一般式:y=ax2+bx+c(a,b,c为常数,a≠0).(2)顶点式:y=a(x–h)2+k(a,h,k为常数,a≠0),顶点坐标是(h,k).(3)交点式:y=a(x–x1)(x–x2),其中x1,x2是二次函数与x轴的交点的横坐标,a≠0.三、二次函数的图象及性质1.二次函数的图象与性质开口向上开口向下2.二次函数图象的特征与a,b,c的关系四、抛物线的平移1.将抛物线解析式化成顶点式y=a(x–h) 2+k,顶点坐标为(h,k).2.保持y=ax2的形状不变,将其顶点平移到(h,k)处,具体平移方法如下:3.注意二次函数平移遵循“上加下减,左加右减”的原则,据此,可以直接由解析式中常数的加或减求出变化后的解析式;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式.五、二次函数与一元二次方程的关系1.二次函数y=ax2+bx+c(a≠0),当y=0时,就变成了一元二次方程ax2+bx+c=0(a≠0)2.ax2+bx+c=0(a≠0)的解是抛物线y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标.3.(1)b2–4ac>0⇔方程有两个不相等的实数根,抛物线与x轴有两个交点;(2)b2–4ac=0⇔方程有两个相等的实数根,抛物线与x轴有且只有一个交点;(3)b2–4ac<0⇔方程没有实数根,抛物线与x轴没有交点.六、二次函数的综合1、函数存在性问题:解决二次函数存在点问题,一般先假设该点存在,根据该点所在的直线或抛物线的表达式,设出该点的坐标;然后用该点的坐标表示出与该点有关的线段长或其他点的坐标等;最后结合题干中其他条件列出等式,求出该点的坐标,然后判别该点坐标是否符合题意,若符合题意,则该点存在,否则该点不存在.2、函数动点问题(1)函数压轴题主要分为两大类:一是动点函数图象问题;二是与动点、存在点、相似等有关的二次函数综合题.(2)解答动点函数图象问题,要把问题拆分,分清动点在不同位置运动或不同时间段运动时对应的函数表达式,进而确定函数图象;解答二次函数综合题,要把大题拆分,做到大题小做,逐步分析求解,最后汇总成最终答案.(3)解决二次函数动点问题,首先要明确动点在哪条直线或抛物线上运动,运动速度是多少,结合直线或抛物线的表达式设出动点的坐标或表示出与动点有关的线段长度,最后结合题干中与动点有关的条件进行计算.真题演练一.选择题(共10小题)1.(2021•河北模拟)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+m﹣3(m≠0)与x轴交于点A,B.若线段AB上有且只有7个点的横坐标为整数,则m的取值范围是()A.m>0 B.316<m≤13C.m>316D.316<m<13【分析】先判断出x=4时,y≤0,当x=5时,y>0,解不等式,即可得出结论.【解答】解:∵抛物线y=mx2﹣2mx+m﹣3=m(x﹣1)2﹣3,∴顶点(1,﹣3),抛物线的对称轴为直线为x=﹣1,∵抛物线与x轴交于点A,B.∴抛物线开口向上,∵线段AB上有且只有7个点的横坐标为整数,∴这些整数为﹣2,﹣1,0,1,2,3,4,∵m>0,∴当x=4时,y=16m﹣8m+m﹣3≤0,∴m≤1 3,当x=5时,y=25m﹣10m+m﹣3>0,∴m>3 16,∴316<m≤13,故选:B.2.(2021•开平区一模)如图,已知抛物线y=ax(x+t)(a≠0)经过点A(﹣3,﹣3),t≠0,当抛物线的开口向上时,t的取值范围是()A.t>3 B.t>﹣3 C.t>3或t<﹣3 D.t<﹣3【分析】将A(﹣3,﹣3)代入y=ax(x+t),求得a=1t−3,根据抛物线开口向上,a>0,即可得出关于t的不等式,解不等式即可求解.【解答】解:将A(﹣3,﹣3)代入y=ax(x+t)得,﹣3=a(9﹣3t),∴a=1 t−3∵抛物线开口向上,∴a>0,∴1t−3>0,∴t﹣3>0,∴t>3.故选:A.3.(2021•河北模拟)对于题目,“线段y=−34x+94(−1≤x≤3)与抛物线y=ax2﹣2a2x(a≠0)有唯一公共点,确定a的取值范围”.甲的结果是a≤−32,乙的结果是a>32,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确【分析】分类讨论a>0,a<0两种情况,通过数形结合方法,列不等式求解.【解答】解:如图,点A坐标为(﹣1,3),点B坐标为(3,0),①a>0时,抛物线开口向上,经过定点(0,0),抛物线与直线x=﹣1交点坐标为C(﹣1,a+2a2),与直线x=3交点坐标为(3,9a﹣6a2),当点C在点A下方,点D在点B上方时满足题意,即{a+2a2<39a−6a2≥0 a>0,解得0<a<1,当点C 在点A 上方,点D 在点B 下方时也满足题意, {a +2a 2>39a −6a 2<0a >0, 解得a >32,②a <0时,抛物线开口向下,经过定点(0,0), 当点C 与点A 重合或在A 上方时满足题意, 即{a +2a 2≥3a <0, 解得a ≤−32.综上所述,0<a <1或a >32或a ≤−32. 故选:D .4.(2021•清苑区模拟)对于二次函数y =4(x +1)(x ﹣3)下列说法正确的是( )A.图象开口向下B.与x轴交点坐标是(1,0)和(﹣3,0)C.x<0时,y随x的增大而减小D.图象的对称轴是直线x=﹣1【分析】根据题目中的函数解析式,利用二次函数的性质可以判断各个选项是否正确.【解答】解:y=4(x+1)(x﹣3)=4(x﹣1)2﹣16,A、a=4>0,则该抛物线的开口向上,故选项A不符合题意,B、与x轴的交点坐标是(﹣1,0)、(3,0),故选项B不符合题意,C、当x<0时,y随x的增大而减小,故选项C符合题意,D、图象的对称轴是直线x=1,故选项D不符合题意,故选:C.5.(2021•衡水模拟)若二次函数y=ax2+2ax(a≠0)过P(1,4),则这个函数必过点()A.(﹣3,4)B.(﹣1,4)C.(0,3)D.(2,4)【分析】根据二次函数的对称性即可判断.【解答】解:∵二次函数的图象过点P(1,4),对称轴为直线x=﹣1,∴点P关于对称轴的对称点为(﹣3,4),∵点P关于对称轴的对称点必在这个函数的图象上,∴这个函数图象必过点(﹣3,4),故选:A.6.(2021•石家庄一模)在平面直角坐标系中,已知点A(4,2),B(4,4),抛物线L:y=﹣(x﹣t)2+t(t≥0),当L与线段AB有公共点时,t的取值范围是()A.3≤t≤4 B.5≤t≤6C.3≤t≤4,t=6 D.3≤t≤4或5≤t≤6【分析】把A、B的坐标分别代入抛物线解析式得到关于t的方程,解方程求得t的值,即可得到符合题意的t的取值范围.【解答】解:把A(4,2)代入y=﹣(x﹣t)2+t(t≥0)得2=﹣(4﹣t)2+t,解得t=3或t=6;把B(4,4)代入y=﹣(x﹣t)2+t(t≥0)得4=﹣(4﹣t)2+t,解得t=4或t=5;∴当L与线段AB有公共点时,t的取值范围是3≤t≤4或5≤t≤6,故选:D.7.(2021•邢台模拟)对于题目:“已知A(0,2),B(3,2),抛物线y=mx2﹣3(m﹣1)x+2m ﹣1(m≠0)与线段AB(包含端点A、B)只有一个公共点,求m的取值范围”.甲的结果是﹣3<m<0,乙的结果是0<m<32,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确【分析】根据题意和二次函数的性质,可以得到关于m的不等式组,从而可以求得m的取值范围,本题得以解决.【解答】解:当x=0时,y=2m﹣1,当x=3时,y=9m﹣9(m﹣1)+2m﹣1=2m+8,∵y=mx2﹣3(m﹣1)x+2m﹣1=m(x2﹣3x+2)+3x﹣1=m(x﹣2)(x﹣1)+3x﹣1,∴该函数和恒过点(2,5)、(1,2),当(1,2)为抛物线顶点时,该抛物线与线段AB一个交点,此时−−3(m−1)2m=1,得m=3;当抛物线过点A(0,2),则2m﹣1=2,此时m=32>0,抛物线开口向上,又∵抛物线恒过点(1,2),∴抛物线与线段AB一个交点时,2m﹣1<2,得m<3 2,∴0<m<3 2;当抛物线过点B(3,2)时,2m+8=2,得m=﹣3<0,此时抛物线开口向下,又∵抛物线恒过点(1,2),∴抛物线与线段AB一个交点时,2m+8>2,得m>﹣3,∴﹣3<m<0;由上可得,0<m<32或﹣3<m<0或m=3,故选:D.8.(2021•柳南区校级模拟)如图,现要在抛物线y=x(6﹣x)上找点P(a,b);针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=15,则点P的个数为0;乙:若b=9,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对【分析】把点P的坐标代入抛物线解析式,即可得到关于a的一元二次方程,根据根的判别式即可判断甲、乙、丙的判断对与错.【解答】解:∵点P(a,b),当b=15时,则15=a(6﹣a),整理得a2﹣6a+15=0,∵Δ=36﹣4×15<0,∴点P的个数为0;当b=9时,则9=a(6﹣a),整理得a2﹣6a+9=0,∵Δ=36﹣4×9=0,∴a有两个相同的值,∴点P的个数为1;当b=3时,则3=a(6﹣a),整理得a2﹣6a+3=0,∵Δ=36﹣4×3>0,∴有两个不相等的值,∴点P 的个数为2; 故甲、乙对,丙错, 故选:C .9.(2021•商河县一模)在平面直角坐标系xOy 中,抛物线y =mx 2﹣2mx +m ﹣3与x 轴交于点A 、B .下列结论正确的有( )个.①m 的取值范围是m >0;②抛物线的顶点坐标为(1,﹣3);③若线段AB 上有且只有5个点的横坐标为整数,则m 的取值范围是13<m ≤34;④若抛物线在﹣3<x <0这一段位于x 轴下方,在5<x <6这一段位于x 轴上方,则m 的值为316.A .1B .2C .3D .4【分析】根据抛物线与x 轴有两个交点,得出Δ>0,即可判断①;用配方法将抛物线解析式配成顶点式,即可判断②;先判断出x =3时,y ≤0,当x =4时,y >0,解不等式,即可判断③;先判断出抛物线在﹣4<x <﹣3这一段位于x 轴上方,结合抛物线在﹣3<x <0这一段位于x 轴下方,得出当x =﹣3时,y =0,即可得出判断④.【解答】解:①∵抛物线y =mx 2﹣2mx +m ﹣3与x 轴交于点A 、B , ∴Δ=(﹣2m )2﹣4m (m ﹣3)>0, ∴m >0,故①正确;②∵y =mx 2﹣2mx +m ﹣3=m (x 2﹣2x +1)﹣3=m (x ﹣1)2﹣3, ∴抛物线的顶点坐标为(1,﹣3),故②正确;③由②知,抛物线的对称轴为直线为x =1, ∵线段AB 上有且只有5个点的横坐标为整数, ∴这些整数为﹣1,0,1,2,3, ∵m >0,∴当x =3时,y =9m ﹣6m +m ﹣3≤0, ∴m ≤34,当x =4时,y =16m ﹣8m +m ﹣3>0,∴m >13,∴13<m ≤34,故③正确;④∵抛物线的对称轴为直线为x =1,且m >0,抛物线在5<x <6这一段位于x 轴上方, ∴由抛物线的对称性得,抛物线在﹣4<x <﹣3这一段位于x 轴上方, ∵抛物线在﹣3<x <0这一段位于x 轴下方, ∴当x =﹣3时,y =9m +6m +m ﹣3=0, ∴m =316,故④正确, 故选:D .10.(2021•河北模拟)对二次函数y =12x 2+2x +3的性质描述正确的是( ) A .该函数图象的对称轴在y 轴左侧 B .当x <0时,y 随x 的增大而减小 C .函数图象开口朝下D .该函数图象与y 轴的交点位于y 轴负半轴 【分析】根据二次函数图象与系数的关系判断.【解答】解:A 、y =12x 2+2x +3对称轴为x =﹣2,在y 轴左侧,故A 符合题意;B 、因y =12x 2+2x +3对称轴为x =﹣2,x <﹣2时y 随x 的增大而减小,故B 不符合题意; C 、a =12>0,开口向上,故C 不符合题意;D 、x =0是y =3,即与y 轴交点为(0,3)在y 轴正半轴,故D 不符合题意;故选:A .二.填空题(共5小题)11.(2021•河北模拟)在平面直角坐标系中,已知A (﹣1,m )和B (5,m )是抛物线y =x 2+bx +1上的两点,b = ﹣4 ;m = 6 ;将抛物线y =x 2+bx +1向上平移n (n 是正整数)个单位,使平移后的图象与x 轴没有交点,则n 的最小值为 4 .【分析】根据抛物线的对称性得到抛物线的对称轴为直线x =2,则−b2×1=2,解得b =﹣4,再把(﹣1,m )代入y =x 2﹣4x +1中求出m 的值;利用二次函数图象平移的规律得到抛物线向上平移n 个单位后的解析式为y =x 2﹣4x +1+n ,根据判别式的意义得到△=(﹣4)2﹣4(1+n)<0,然后解不等式后可确定n的最小值.【解答】解:∵A(﹣1,m)和B(5,m)是抛物线y=x2+bx+1上的两点,∴点A和点B为抛物线上的对称点,∴抛物线的对称轴为直线x=2,即−b2×1=2,解得b=﹣4,∴抛物线解析式为y=x2﹣4x+1,把(﹣1,m)代入得m=1+4+1=6;抛物线向上平移n个单位后的解析式为y=x2﹣4x+1+n,∵抛物线y=x2﹣4x+1+n与x轴没有交点,∴△=(﹣4)2﹣4(1+n)<0,解得n>3,∵n是正整数,∴n的最小值为4.故答案为﹣4,6;4.12.(2021•永德县模拟)抛物线y=x2+bx+c经过点A(0,3),B(2,3),抛物线的对称轴为直线x=1 .【分析】先根据抛物线上两点的纵坐标相等可知此两点关于对称轴对称,再根据中点坐标公式求出这两点横坐标的中点坐标即可.【解答】解:∵抛物线y=x2+bx+c经过点A(0,3)和B(2,3),∴此两点关于抛物线的对称轴对称,∴x=0+22=1.故答案为:直线x=1.13.(2020•秦皇岛一模)如图,将抛物线y=12x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和点O(0,0),它的顶点为P,它的对称轴与抛物线y=12x2交于点Q.(1)点P的坐标为(−3,−92 );(2)图中阴影部分的面积为272.【分析】(1)抛物线C 1与抛物线y =13x 2的二次项系数相同,利用待定系数法即可求得函数的解析式,进而即可求得顶点P 的坐标;(2)图中阴影部分的面积与△POQ 的面积相同,利用三角形面积公式即可求解. 【解答】解:(1)∵把抛物线y =12x 2平移得到抛物线m ,且抛物线m 经过点A (﹣6,0)和原点O (0,0),∴抛物线m 的解析式为y =12(x ﹣0)(x +6)=12x 2+3x =12(x +3)2−92. ∴P (−3,−92). 故答案是:(−3,−92);(2)把x =﹣3代入=12x 2得y =92, ∴Q (﹣3,92),∵图中阴影部分的面积与△POQ 的面积相同,S △POQ =12×9×3=272. ∴阴影部分的面积为272.故答案为:272.14.(2021•桥西区模拟)在平面直角坐标系中,函数y =x 2﹣4x 的图象为C 1,C 1关于原点对称的函数图象为C 2.①则C 2对应的函数表达式为 y =﹣x 2﹣4x ,②直线y =a (a 为常数)分别与C 1、C 2围成的两个封闭区域内(不含边界)的整点(横、纵坐标都是整数的点)个数之比为4:15时,a 的取值范围 ﹣2<a <﹣1 .【分析】(1)根据关于原点对称的关系,可得C2;(2)根据图象可得答案.【解答】解:(1)函数y=x2﹣4x的图象为C1,C1关于原点对称的图象为C2,C2图象是y =﹣x2﹣4x;故答案为y=﹣x2﹣4x;(2)由图象可知,直线y=a(a为常数)分别与C1、C2围成的两个封闭区域内(不含边界)的整点(横、纵坐标都是整数的点)个数之比为4:15时,a的取值范围﹣2<a<﹣1.故答案为﹣2<a<﹣1.15.(2021•石家庄模拟)“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐很小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把“焦脆而不糊”的豆腐块数的百分比称为“可食用率”.在特定条件下,“可食用率”P 与加工煎炸时间t (单位:min )近似满足的函数关系为:p =at 2+bt +c (a ≠0,a ,b ,c 是常数),如图记录了三次实验的数据.根据上述函数关系和实验数据,可以得到P 与t 的解析式为 P =﹣0.2t 2+1.5t ﹣1.9 ;并得到加工煎炸臭豆腐的最佳时间为 3.75分钟 .【分析】将图象中的三个点(3,0.8)、(4,0.9)、(5,0.6)代入函数关系p =at 2+bt +c 中,可得函数关系式为:p =﹣0.2t 2+1.5t ﹣1.9,再根据加工煎炸臭豆腐的最佳时间为抛物线顶点的横坐标,求出即可得结论.【解答】解:将图象中的三个点(3,0.8)、(4,0.9)、(5,0.6)代入函数关系P =at 2+bt +c 中,{9a +3b +c =0.816a +4b +c =0.925a +5b +c =0.6, 解得{a =−0.2b =1.5c =−1.9,所以函数关系式为:P =﹣0.2t 2+1.5t ﹣1.9,由题意可知:加工煎炸臭豆腐的最佳时间为抛物线顶点的横坐标:t =−b 2a=−1.52×(−0.2)=3.75,则当t =3.75分钟时,可以得到最佳时间. 故答案为:P =﹣0.2t 2+1.5t ﹣1.9,3.75分钟. 三.解答题(共3小题)16.(2021•路北区一模)如图,抛物线L :y =﹣(x ﹣t )2+t +2,直线l :x =2t 与抛物线、x 轴分别相交于Q 、P 两点.(1)t =1时,Q 点的坐标为 (2,2) ;(2)当P、Q两点重合时,求t的值;(3)当Q点达到最高时,求抛物线解析式;(4)在抛物线L与x轴所围成的封闭图形的边界上,我们把横坐标是整数的点称为“可点”,直接写出1≤t≤2时“可点”的个数.【分析】(1)把t=1代入x=2t即可求出直线l的解析式,把x=2,t=1代入抛物线L的解析式得y=2,即可求出Q点的坐标;(2)由P、Q两点重合,可知直线与抛物线交于x轴,即交点的纵坐标为0,代入抛物线解析式,即可求得t的值;(3)由题意可知,直线与抛物线交于抛物线顶点,即可得到关于t的方程,求解方程得出t的值,代入y=﹣(x﹣t)2+t+2,即可得出抛物线解析式;(4)根据“可点”的定义,分t=1,t=2,1<t<2三种情况讨论,即可得出“可点”的个数.【解答】解:(1)当t=1时,x=2,∴直线l的解析式为:x=2,把x=2,t=1代入抛物线L的解析式得:y=﹣(2﹣1)2+1+2=2,∴Q点的坐标为(2,2),故答案为:(2,2);(2)∵P、Q两点重合,∴直线与抛物线交于x轴,∴交点为(2t,0),∴﹣(2t﹣t)2+t+2=0,解得:t=2或t=﹣1;(3)∵抛物线L:y=﹣(x﹣t)2+t+2,∴抛物线顶点坐标为(t,t+2),当Q点达到最高时,则直线与抛物线交于顶点,∴2t=t,解得:t=0,∴抛物线解析式为:y=﹣x2+2;(4)∵1≤t≤2时,∴分三种情况讨论,当t=1时,抛物线解析式为:y=﹣(x﹣1)2+3,令y=0,则﹣(x﹣1)2+3=0,解得:x=1±√3,∴“可点”在x轴上有3个,抛物线上有3个,共有6个,当t=2时,抛物线解析式为:y=﹣(x﹣2)2+4,令y=0,则﹣(x﹣2)2+4=0,解得:x=0或4,∴“可点”在x轴上有5个,抛物线上有3个,共有8个,当1<t<2时,抛物线与x轴的交点在1−√3和4之间,当L过(3,0)时,“可点”在x轴上有4个,抛物线上有3个,共有7个,综上所述,“可点”的个数为6或7或8.17.(2021•开平区一模)如图,一位运动员进行投篮训练,设篮球运行过程中的距离地面的高度为y,篮球水平运动的距离为x,已知y﹣3.5与x2成正比例,(1)当x=√5时,y=2.5,根据已知条件,求y与x的函数解析式;(2)直接写出篮球在空中运行的最大高度.(3)若运动员的身高为1.8米,篮球投出后在离运动员水平距离2.5米处到达最高点,球框在与运动员水平距离4米处,且球框中心到地面的距离为3.05米,问计算说明此次投篮是否成功?【分析】(1)设y﹣3.5=kx2,用待定系数法求函数解析式即可;(2)由(1)解析式求函数最大值即可;(3)根据题意球框距离篮球最高点的水平距离是1.5米,把x=1.5代入(1)中解析式得出y3.05米即可.【解答】解:(1)由题意可设y﹣3.5=kx2,∵当x=√5时,y=2.5,∴2.5﹣3.5=k×(√5)2,解得:k=−1 5,∴y与x的函数解析式为y=−15x2+3.5;(2)∵y=−15x2+3.5,∴篮球在空中运行的最大高度为3.5米;(3)此次投篮成功,理由:把x=4﹣2.5=1.5代入y=−15x2+3.5得:y=−15×1.52+3.5=3.05,∴(1.5,3.05)在抛物线y=−15x2+3.5上,∴此次投篮成功.18.(2021•海港区模拟)已知抛物线y=ax2﹣2ax+a2﹣2a(a≠0)与y轴交于点A,顶点为B.(1)若抛物线过点(1,4),求抛物线解析式.(2)设点A的纵坐标为y A,用含a的代数式表示y A,求出y A的最小值.(3)若a>0,随着a增大A点上升而B点下降,求a的取值范围.【分析】(1)把(1,4)代入抛物线解析式求解.(2)用含a代数式表示表示y A,并将解析式化为顶点式求解.(3)分别用含a代数式表示y A,y B,并将其化为顶点式求解.【解答】解:(1)把(1,4)代入y=ax2﹣2ax+a2﹣2a得4=a﹣2a+a2﹣2a,解得a1=﹣1,a2=4.∴抛物线解析式为y=﹣x2+2x+3或y=4x2﹣8x+8.(2)把x=0代入y=ax2﹣2ax+a2﹣2a,即y A=a2−2a=(a﹣1)2﹣1,∴y A的最小值为﹣1.(3)∵y=ax2﹣2ax+a2﹣2a=a(x﹣1)2+a2﹣3a,∴y A=a2−2a=(a﹣1)2﹣1,y B=a2−3a=(a−32)2−94,∴当a>1时,随着a增大A点上升;当a<1.5时,随着a增大B点下降.∴当1<a<1.5时,随着a增大A点上升而B点下降.。

二次函数的图像和性质总结

二次函数的图像和性质总结

二次函数的图像和性质总结二次函数的图像和性质二次函数的图像与性质可以通过解析式、a的取值、开口方向、函数值的增减、顶点坐标、对称轴和图像与y轴的交点来确定。

当a>0时,二次函数的开口向上;顶点坐标在对称轴上方;在对称轴的左侧,y随x的增大而减小,在对称轴的右侧,y随x的增大而增大。

图像与y轴的交点坐标为(0.c)。

当a<0时,二次函数的开口向下;顶点坐标在对称轴下方;在对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小。

图像与y轴的交点坐标为(0.c)。

抛物线的平移法则可以通过把抛物线y=ax^2平移k个单位或h个单位得到y=ax^2+k或y=a(x+h)^2的图像。

当k>0时,向上平移;当k0时,向左平移;当h<0时,向右平移。

二次函数的最值公式:当a>0时,函数有最小值,最小值为y=4ac-b^2/4a;当a<0时,函数有最大值,最大值为y=4ac-b^2/4a。

与y轴的交点坐标为(0.c)。

抛物线的开口大小由a决定,a越大开口越小。

二次函数与一元二次方程的关系:二次函数y=ax^2+bx+c 的图像与一元二次方程ax^2+bx+c=0的解有关,即二次函数的顶点坐标和最值问题可以通过一元二次方程的解来求得。

当a>0时,函数有最小值,最小值为y=4ac-b^2/4a,对应一元二次方程的两根。

当a<0时,函数有最大值,最大值为y=4ac-b^2/4a,对应一元二次方程的两根。

当$\Delta>0$时,二次函数与x轴有两个交点;当$\Delta=0$时,二次函数与x轴有一个交点;当$\Delta<0$时,二次函数与x轴没有交点。

当$\Delta\geq0$时,二次函数与x 轴有交点。

(此定理的逆定理也成立。

)7.二次函数的三种常用形式:1) 一般式:$y=ax^2+bx+c$2) 顶点式:$y=a(x-h)^2+k$3) 两根式:$y=a(x-x_1)(x-x_2)$8.一元二次方程的解法:通过求解方程$ax^2+bx+c=0$中的根来解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点11 二次函数的图象性质及其相关考点二次函数作为初中三大函数中考点最多,出题最多,难度最大的函数,一直都是各地中考数学中最重要的考点。

而对于二次函数图象和性质的考察,也主要集中在二次函数的图象、图象与系数的关系、与方程及不等式的关系、图象上点的坐标特征等几大方面。

出题形式虽然多是选择、填空题,但解答题中也时有出现,且题型变化较多,考生复习时需要熟练掌握相关知识,熟悉相关题型,认真对待该考点的复习。

一、二次函数的表达式二、二次函数的图象特征与最值三、二次函数图象与系数的关系四、二次函数与方程、不等式(组)五、二次函数图象上点的坐标特征考向一、二次函数的表达式2.二次函数平移的方法:①转化成顶点式(已经是顶点式的此步忽略),②“左加右减(x),上加下减(y)”;1.把y=(2﹣3x)(6+x)变成y=ax2+bx+c的形式,二次项,一次项系数为,常数项为.2.用配方法将二次函数y=x2﹣2x﹣4化为y=a(x﹣h)2+k的形式为()A.y=(x﹣2)2﹣4B.y=(x﹣1)2﹣3C .y =(x ﹣2)2﹣5D .y =(x ﹣2)2﹣63.在平面直角坐标系中,若将抛物线y =2x 2+1先向左平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的解析式是( ) A .y =2(x ﹣3)2+3 B .y =2(x +3)2+3 C .y =2(x ﹣3)2+1D .y =2(x +3)2+24.抛物线y =2x 2向下平移3个单位长度后所得新抛物线的顶点坐标为( ) A .(﹣3,0)B .(3,0)C .(0,﹣3)D .(0,3)5.如图,在平面直角坐标系中,点A 的坐标为(0,3),点B 的坐标为(6,3).若抛物线y =mx 2+2mx +m +3(m 为常数,m ≠0)向右平移a (a >0)个单位长度,平移后的抛物线的顶点在线段AB 上,则a 的取值范围为 .考向二、二次函数的图象特征与最值1. 对于二次函数y =ax 2+bx +c (a ≠0):对称轴:直线a bx 2-=;顶点坐标:)442(2a b ac a b --,; 开口向上 a > 二次函数有最小值ab ac 442-;开口向下 a < 二次函数有最大值ab ac 442-;2. 图象的增减性问题:抛物线的增减性问题,由a 的正负和对称轴同时确定,单一的直接说y 随x 的增大而增大(或减小)是不对的,必须附加一定的自变量x 取值范围;1.已知二次函数的图象(0≤x ≤3)如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是平面直角坐标系内两图象的存在性问题,一般先假设简单函数图象成立,再验证复杂函数是否成立, 利用排除法,得到最后答案。

()A.函数有最小值1,有最大值3B.函数有最小值﹣1,有最大值3C.函数有最小值﹣1,有最大值0D.函数有最小值﹣1,无最大值2.如图是四个二次函数的图象,则a、b、c、d的大小关系为()A.d<c<a<b B.d<c<b<a C.c<d<a<b D.c<d<b<a3.如图是二次函数y=ax2+bx的大致图象,则一次函数y=(a+b)x﹣b的图象大致是()A.B.C.D.4.在同一坐标系中一次函数y=ax﹣b和二次函数y=ax2+bx的图象可能为()A.B.C.D.5.已知二次函数y=x2﹣2x+2在m≤x≤m+1时有最小值m,则整数m的值是()A.1B.2C.1或2D.±1或26.如图,点P是抛物线y=﹣x2+2x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为.考向三、二次函数图象与系数的关系二次函数图象题符号判断类问题大致分为以下几种基本情形∶1.抛物线y=ax2+bx+c的对称轴为直线x=−1,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④6a﹣2b+c<0;⑤若点(0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2,其中正确的判断是()A.②③④⑤B.②③④C.②③⑤D.②④⑤2.已知二次函数y=ax2+bx+c的y与x的部分对应值如表:x⃯﹣1013⃯y⃯0﹣1.5﹣20⃯根据表格中的信息,得到了如下的结论:①二次函数y=ax2+bx+c可改写为y=a(x﹣1)2﹣2的形式;②二次函数y=ax2+bx+c的图象开口向下;③关于x的一元二次方程ax2+bx+c=﹣1.5的两个根为0或2;④若y>0,则x>3;⑤a(am+b)≥a﹣b(m为任意实数).其中所有正确的结论为()A.①②④B.②③⑤C.②③④D.①③⑤3.无论k为何值,直线y=kx﹣2k+2与抛物线y=ax2﹣2ax﹣3a总有公共点,则a的取值范围是()A.a>0B.C.或a>0D.4.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1.其中所有正确结论的序号是()A.①③④B.①②③⑤C.①②③④D.①②③④⑤5.已知二次函数y=x2﹣2mx+m2+2m(1)①函数的顶点坐标为(用含m的代数式表示);②该顶点所在直线的解析式为;在平面直角坐标系中画出该直线的图象;(2)当m=1时,二次函数关系式为,在平面直角坐标系中画出此函数的图象;(3)已知点A(﹣3,1)、B(1,1)连结AB.若抛物线y=x2﹣2mx+m2+2m与线段AB有且只有一个交点,求m的取值范围;(4)把二次函数y=x2﹣2mx+m2+2m(x≤2m)的图象记为G,当G的最低点到x轴的距离为1时,直接写出m的值.考向四、二次函数与方程、不等式(组)1.二次函数y=ax2+bx+c(a≠0)与一元二次方程之间的关系:1)求交点:①求抛物线与x轴交点坐标→直接让y=0,即:ax2+bx+c=0②求抛物线与某直线l的交点坐标→联立抛物线与直线解析式,得新组成的一元二次方程,解新方程即的两图象交点横坐标,再代入直线或抛物线解析式即可得交点坐标。

2)利用△判断抛物线y=ax2+bx+c(a≠0)与直线交点个数:①求抛物线y=ax2+bx+c(a≠0)与x轴交点个数∵△=b2-4ac,∴△>0,抛物线与x轴有2个交点;△=0,抛物线与x轴有1个交点;△<0,抛物线与x轴无交点;②求抛物线与某直线l的交点个数→联立抛物线与直线l解析式,得新组成的一元二次方程,后续求交点个数方法同上;3)一元二次方程方程ax2+bx+c=n的解的几何意义:表示抛物线y=ax2+bx+c(a≠0)与水平直线y=n的交点横坐标;2.二次函数y=ax2+bx+c(a≠0)与一元一次不等式之间的关系:利用图象的交点坐标和上下关系,直接确定不等式的解集,常见关系如下:①ax2+bx+c>0的解表示:抛物线y=ax2+bx+c(a≠0)在x轴上方时,自变量x的取值范围;②ax2+bx+c<0的解表示:抛物线y=ax2+bx+c(a≠0)在x轴下方时,自变量x的取值范围;③ax2+bx+c>kx+m的解表示:抛物线y=ax2+bx+c(a≠0)在直线y=kx+m上方时,自变量x的取值范围;④ax2+bx+c<kx+m的解表示:抛物线y=ax2+bx+c(a≠0)在直线y=kx+m下方时,自变量x的取值范围;1.已知关于x的方程ax2+bx+c=0(a>0,b<0)有两个不相等的实数根,则抛物线y=ax2+bx+c的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限2.对于二次函数y=x2+4x+7,下列说法正确的是()A.当x<0,y随x的增大而减小B.当x=﹣2时,y有最小值3C.图象的顶点坐标为(2,3)D.图象与x轴有两个交点3.下表是二次函数y=ax2+bx+c的几组对应值:x 6.17 6.18 6.19 6.20 y=ax2+bx+c﹣0.03﹣0.010.020.06根据表中数据判断,方程ax2+bx+c=0的一个解x的范围是()A.6<x<6.17B.6.17<x<6.18C.6.18<x<6.19D.6.19<x<6.204.某二次函数y1=ax2+bx+c(a≠0)Z的图象与直线y2=kx+m(k≠0)相交于点M、N,则当y1<y2时,自变量x的取值范围是.5.如图,已知抛物线y1=x2+mx与x轴交于点A(2,0).(1)求m的值和顶点M的坐标;(2)求直线AM的解析式y2;(3)根据图象,直接写出当y1>y2时x的取值范围.考向五、二次函数图象上点的坐标特征二次函数图象上点的坐标特征主要考点:1.点在图象上,点的特征符合其解析式2.和二次函数图象性质结合考察抛物线上各点纵坐标比较大小的问题3.和其他几何图形结合,综合考察两者的性质1.已知函数y=(x﹣2)2的图象上有A(﹣1,y1),B(1,y2),C(4,y3)三点,则y1、y2、y3的大小关系()A.y1<y2<y3B.y2<y3<y1C.y3<y1<y2D.y3<y2<y12.二次函数y=2x2的图象如图所示,点O为坐标原点,点A在y轴的正半轴上,点B、C在函数图象上,四边形OBAC为菱形,且∠AOB=30°,则点C的坐标为.3.如图,在平面直角坐标系中,点A、点B均在抛物线y=x2上,且AB∥x轴,点C、点D为线段AB的三等分点,以CD为边向下作矩形CDEF,矩形CDEF的顶点E、F均在此抛物线上,若矩形CDEF的面积为2,则AB的长为.4.二次函数的图象如图所示,点A0位于坐标原点,点A1,A2,A3,…,A2023在y轴的正半轴上,点B1,B2,B3,…,B2023在二次函数位于第一象限的图象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2022B2023A2023都为等边三角形,则△A2022B2023A2023的边长为.5.已知二次函数y=﹣x2+bx+c的图象经过点A(x1,y1),B(x2,y2),且当x1=﹣2,x2=6时,y1=y2.(1)求b的值;(2)若P(m+3,n1),Q(m,n2)也是该二次函数图象上的两个点,且n1<n2,求实数m的取值范围;(3)若点T(t,2t)不在该二次函数的图象上,求c的取值范围.1.(2022•哈尔滨)抛物线y=2(x+9)2﹣3的顶点坐标是()A.(9,﹣3)B.(﹣9,﹣3)C.(9,3)D.(﹣9,3)2.(2022•株洲)已知二次函数y=ax2+bx﹣c(a≠0),其中b>0、c>0,则该函数的图象可能为()A.B.C.D.3.(2022•衢州)已知二次函数y=a(x﹣1)2﹣a(a≠0),当﹣1≤x≤4时,y的最小值为﹣4,则a的值为()A.或4B.或﹣C.﹣或4D.﹣或44.(2022•阜新)下列关于二次函数y=3(x+1)(2﹣x)的图象和性质的叙述中,正确的是()A.点(0,2)在函数图象上B.开口方向向上C.对称轴是直线x=1D.与直线y=3x有两个交点5.(2022•黑龙江)若二次函数y=ax2的图象经过点P(﹣2,4),则该图象必经过点()A.(2,4)B.(﹣2,﹣4)C.(﹣4,2)D.(4,﹣2)6.(2022•泸州)抛物线y=﹣x2+x+1经平移后,不可能得到的抛物线是()A.y=﹣x2+x B.y=﹣x2﹣4C.y=﹣x2+2021x﹣2022D.y=﹣x2+x+17.(2022•通辽)在平面直角坐标系中,将二次函数y=(x﹣1)2+1的图象向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为()A.y=(x﹣2)2﹣1B.y=(x﹣2)2+3C.y=x2+1D.y=x2﹣18.(2022•潍坊)抛物线y=x2+x+c与x轴只有一个公共点,则c的值为()A.B.C.﹣4D.49.(2022•泰州)已知点(﹣3,y1)、(﹣1,y2)、(1,y3)在下列某一函数图象上,且y3<y1<y2,那么这个函数是()A.y=3x B.y=3x2C.y=D.y=﹣10.(2022•朝阳)如图,二次函数y=ax2+bx+c(a为常数,且a≠0)的图象过点(﹣1,0),对称轴为直线x=1,且2<c<3,则下列结论正确的是()A.abc>0B.3a+c>0C.a2m2+abm≤a2+ab(m为任意实数)D.﹣1<a<﹣11.(2022•陕西)已知二次函数y=x2﹣2x﹣3的自变量x1,x2,x3对应的函数值分别为y1,y2,y3.当﹣1<x1<0,1<x2<2,x3>3时,y1,y2,y3三者之间的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y1<y2D.y2<y1<y312.(2022•巴中)函数y=|ax2+bx+c|(a>0,b2﹣4ac>0)的图象是由函数y=ax2+bx+c(a>0,b2﹣4ac>0)的图象x轴上方部分不变,下方部分沿x轴向上翻折而成,如图所示,则下列结论正确的是()①2a+b=0;②c=3;③abc>0;④将图象向上平移1个单位后与直线y=5有3个交点.A.①②B.①③C.②③④D.①③④13.(2022•淄博)若二次函数y=ax2+2的图象经过P(1,3),Q(m,n)两点,则代数式n2﹣4m2﹣4n+9的最小值为()A.1B.2C.3D.414.(2022•锦州)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣1,0)和点(2,0),以下结论:①abc<0;②4a﹣2b+c<0;③a+b=0;④当x<时,y随x的增大而减小.其中正确的结论有.(填写代表正确结论的序号)15.(2022•黄石)已知二次函数y=ax2+bx+c的部分图象如图所示,对称轴为直线x=﹣1,有以下结论:①abc<0;②若t为任意实数,则有a﹣bt≤at2+b;③当图象经过点(1,3)时,方程ax2+bx+c﹣3=0的两根为x1,x2(x1<x2),则x1+3x2=0,其中,正确结论的个数是()A.0B.1C.2D.316.(2022•日照)已知二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为x=,且经过点(﹣1,0).下列结论:①3a+b=0;②若点(,y1),(3,y2)是抛物线上的两点,则y1<y2;③10b﹣3c=0;④若y≤c,则0≤x≤3.其中正确的有()A.1个B.2个C.3个D.4个17.(2022•荆州)规定:两个函数y1,y2的图象关于y轴对称,则称这两个函数互为“Y函数”.例如:函数y1=2x+2与y2=﹣2x+2的图象关于y轴对称,则这两个函数互为“Y函数”.若函数y=kx2+2(k﹣1)x+k﹣3(k为常数)的“Y函数”图象与x轴只有一个交点,则其“Y函数”的解析式为.18.(2022•贺州)已知二次函数y=2x2﹣4x﹣1在0≤x≤a时,y取得的最大值为15,则a的值为()A.1B.2C.3D.419.(2022•赤峰)如图,抛物线y=﹣x2﹣6x﹣5交x轴于A、B两点,交y轴于点C,点D(m,m+1)是抛物线上的点,则点D关于直线AC的对称点的坐标为.20.(2022•杭州)设二次函数y1=2x2+bx+c(b,c是常数)的图象与x轴交于A,B两点.(1)若A,B两点的坐标分别为(1,0),(2,0),求函数y1的表达式及其图象的对称轴.(2)若函数y1的表达式可以写成y1=2(x﹣h)2﹣2(h是常数)的形式,求b+c的最小值.(3)设一次函数y2=x﹣m(m是常数),若函数y1的表达式还可以写成y1=2(x﹣m)(x﹣m﹣2)的形式,当函数y=y1﹣y2的图象经过点(x0,0)时,求x0﹣m的值.1.(2022•杭州)已知二次函数y=x2+ax+b(a,b为常数).命题①:该函数的图象经过点(1,0);命题②:该函数的图象经过点(3,0);命题③:该函数的图象与x轴的交点位于y轴的两侧;命题④:该函数的图象的对称轴为直线x=1.如果这四个命题中只有一个命题是假命题,则这个假命题是()A.命题①B.命题②C.命题③D.命题④2.(2022•兰州)已知二次函数y=2x2﹣4x+5,当函数值y随x值的增大而增大时,x的取值范围是()A.x<1B.x>1C.x<2D.x>23.(2022•新疆)已知抛物线y=(x﹣2)2+1,下列结论错误的是()A.抛物线开口向上B.抛物线的对称轴为直线x=2C.抛物线的顶点坐标为(2,1)D.当x<2时,y随x的增大而增大4.(2022•荆门)抛物线y=x2+3上有两点A(x1,y1),B(x2,y2),若y1<y2,则下列结论正确的是()A.0≤x1<x2B.x2<x1≤0C.x2<x1≤0或0≤x1<x2D.以上都不对5.(2022•资阳)如图是二次函数y=ax2+bx+c的图象,其对称轴为直线x=﹣1,且过点(0,1).有以下四个结论:①abc>0,②a﹣b+c>1,③3a+c<0,④若顶点坐标为(﹣1,2),当m≤x≤1时,y有最大值为2、最小值为﹣2,此时m的取值范围是﹣3≤m≤﹣1.其中正确结论的个数是()A.4个B.3个C.2个D.1个6.(2022•湖北)二次函数y=(x+m)2+n的图象如图所示,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限7.(2022•绵阳)如图,二次函数y=ax2+bx+c的图象关于直线x=1对称,与x轴交于A(x1,0),B(x2,0)两点.若﹣2<x1<﹣1,则下列四个结论:①3<x2<4;②3a+2b>0;③b2>a+c+4ac;④a>c>b,正确结论的个数为()A.1个B.2个C.3个D.4个8.(2022•黔东南州)若二次函数y=ax2+bx+c(a≠0)的图象如图所示,则一次函数y=ax+b与反比例函数y=﹣在同一坐标系内的大致图象为()A.B.C.D.9.(2022•鄂州)如图,已知二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象顶点为P(1,m),经过点A(2,1).有以下结论:①a<0;②abc>0;③4a+2b+c=1;④x>1时,y随x的增大而减小;⑤对于任意实数t,总有at2+bt≤a+b,其中正确的有()A.2个B.3个C.4个D.5个10.(2022•温州)已知点A(a,2),B(b,2),C(c,7)都在抛物线y=(x﹣1)2﹣2上,点A在点B 左侧,下列选项正确的是()A.若c<0,则a<c<b B.若c<0,则a<b<cC.若c>0,则a<c<b D.若c>0,则a<b<c11.(2022•玉林)小嘉说:将二次函数y=x2的图象平移或翻折后经过点(2,0)有4种方法:①向右平移2个单位长度②向右平移1个单位长度,再向下平移1个单位长度③向下平移4个单位长度④沿x轴翻折,再向上平移4个单位长度你认为小嘉说的方法中正确的个数有()A.1个B.2个C.3个D.4个12.(2022•包头)已知实数a,b满足b﹣a=1,则代数式a2+2b﹣6a+7的最小值等于()A.5B.4C.3D.213.(2022•铜仁市)如图,若抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,若∠OAC=∠OCB.则ac的值为()A.﹣1B.﹣2C.D.14.(2022•凉山州)已知实数a、b满足a﹣b2=4,则代数式a2﹣3b2+a﹣14的最小值是.15.(2022•内江)如图,抛物线y=ax2+bx+c与x轴交于两点(x1,0)、(2,0),其中0<x1<1.下列四个结论:①abc<0;②a+b+c>0;③2a﹣c>0;④不等式ax2+bx+c>﹣x+c的解集为0<x<x1.其中正确结论的个数是()A.4B.3C.2D.116.(2022•福建)已知抛物线y=x2+2x﹣n与x轴交于A,B两点,抛物线y=x2﹣2x﹣n与x轴交于C,D 两点,其中n>0.若AD=2BC,则n的值为.17.(2022•牡丹江)已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,顶点为D.(1)求该抛物线的解析式;(2)连接BC,CD,BD,P为BD的中点,连接CP,则线段CP的长是.注:抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣,顶点坐标是(﹣,).18.(2022•青岛)已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P(2,4).(1)求m的值;(2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.19.(2022•河北)如图,点P(a,3)在抛物线C:y=4﹣(6﹣x)2上,且在C的对称轴右侧.(1)写出C的对称轴和y的最大值,并求a的值;(2)坐标平面上放置一透明胶片,并在胶片上描画出点P及C的一段,分别记为P′,C′.平移该胶片,使C′所在抛物线对应的函数恰为y=﹣x2+6x﹣9.求点P′移动的最短路程.20.(2022•黑龙江)如图,抛物线y=x2+bx+c经过点A(﹣1,0),点B(2,﹣3),与y轴交于点C,抛物线的顶点为D.(1)求抛物线的解析式;(2)抛物线上是否存在点P,使△PBC的面积是△BCD面积的4倍,若存在,请直接写出点P的坐标;若不存在,请说明理由.1.(2023•临川区校级一模)抛物线y=x2﹣2x﹣1的顶点坐标为.2.(2022•鹿城区校级三模)已知二次函数y=x2﹣4x﹣1,当1<x≤5时,对应的函数值y不可能是()A.﹣5B.﹣4C.4D.53.(2022•长治二模)将抛物线先向下平移2个单位长度,再向左平移1个单位长度后,所得抛物线的函数表达式为y=x2﹣6x+5,则原抛物线的函数表达式为()A.y=(x﹣4)2﹣6B.y=(x﹣1)2﹣3C.y=(x﹣2)2﹣6D.y=(x﹣4)2﹣2 4.(2022•海珠区一模)若二次函数y=ax2﹣6ax+3(a<0),当2≤x≤5时,8≤y≤12,则a的值是()A.1B.﹣C.﹣D.﹣15.(2022•长安区模拟)抛物线的形状、开口方向与y=x2﹣4x+3相同,顶点在(﹣2,1),则关系式为()A.y=(x﹣2)2+1B.y=(x+2)2﹣1C.y=(x+2)2+1D.y=﹣(x+2)2+16.(2022•凤泉区校级一模)关于抛物线y=﹣2x2+4x+1,下列说法正确的是()A.开口向上B.对称轴是直线x=2C.顶点坐标是(1,3)D.x>2时,y随x增大而减小7.(2022•青县一模)如图,二次函数y=ax2﹣2ax+1(a<0)的图象所在坐标系的原点是()A.点O1B.点O2C.点O3D.点O48.(2022•成都模拟)将二次函数y=x2﹣14x+13化为y=(x﹣h)2+k的形式,结果为()A.y=(x+7)2+49B.y=(x+7)2﹣36C.y=(x﹣7)2+49D.y=(x﹣7)2﹣369.(2022•德城区模拟)如果二次函数y=ax2+c的图象如图所示,那么一次函数y=ax+c的图象大致是()A.B.C.D.10.(2022•宁波模拟)如图,二次函数y=ax2+bx+c(a≠0)与x轴交点的横坐标为x1,x2与y轴正半轴的交点为C,一1<x1<0,x2=2,则下列结论正确的是()A.b2﹣4ac<0.B.9a+3b+c>0C.abc>0D.a+b>011.(2022•鹿城区二模)已知二次函数y=ax2+bx+c(a<0)的图象如图所示,点(﹣1,y1),(0,y2),(1.5,y3)在该二次函数图象上,则()A.y2<y1<y3B.y1<y3<y2C.y1<y2<y3D.y3<y1<y212.(2022•萧山区校级二模)已知二次函数y=﹣(x+m﹣1)(x﹣m)+1,点A(x1,y1),B(x2,y2)(x1<x2)是图象上两点,下列说法正确的是()A.若x1+x2>1,则y1>y2B.若x1+x2<1,则y1>y2C.若x1+x2>﹣1,则y1>y2D.若x1+x2<﹣1,则y1>y213.(2022•安顺模拟)在平面直角坐标系中,抛物线y=ax2﹣5ax+c与直线y=2x+2022上纵坐标为m的点共有3个,且它们的横坐标分别为x1,x2,x3(x1,x2,x3互不相同).若n=x1+x2+x3,则m﹣n的值为()A.2012B.2022C.1006D.101114.(2022•碑林区校级模拟)已知二次函数y=ax2+bx+c,其函数y与自变量x之间的部分对应值如下表所示,则下列式子:x……﹣4﹣﹣1……y……﹣0……①abc>0;②当﹣3<x<1时,y>0;③4a+2b+c>0;④关于x的一元二次方程ax2+bx+c=﹣(a≠0)的解是x1=﹣4,x2=3.正确的个数是()A.1个B.2个C.3个D.4个15.(2022•瑞安市校级三模)如图,将一个含45°的直角三角板ABC放在平面直角坐标系的第一象限,使直角顶点A的坐标为(1,0),点C在y轴上.过点A,C作抛物线y=2x2+bx+c,且点A为抛物线的顶点.要使这条抛物线经过点B,那么抛物线要沿对称轴向下平移()A.5个单位B.6个单位C.7个单位D.8个单位16.(2022•南充模拟)在直角坐标系xOy中,点(2,﹣2)在二次函数y=ax2+bx﹣2(a<0)的图象上,对于0<n<1,当x=n+1,n﹣1,n﹣2时,依次对应的函数值y1,y2,y3中最大的是()A.y1B.y2C.y3D.y1或y2(y1=y2)17.(2023•鼓楼区校级一模)若抛物线y=ax2+c与x轴交于点A(m,0)、B(n,0),与y轴交于点C(0,c),则称△ABC为“抛物三角线”.特别地,当mnc<0时,称△ABC为“正抛物三角形”;当mnc>0时,称△ABC为“倒抛物三角形”.那么,当△ABC为“倒抛物三角形”时,a、c应分别满足条件.18.(2022•北仑区校级三模)如图,二次函数y=ax2+bx+c(a<0)与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=2,则下列说法中正确的有()①abc<0;②>0;③16a+4b+c>0;④5a+c>0;⑤方程ax2+bx+c=0(a≠0)其中一个解的取值范围为﹣2<x<﹣1.A.1个B.3个C.4个D.5个19.(2022•花都区二模)如图,抛物线y1=ax2+bx+c与直线y2=mx+n相交于点(3,0)和(0,3),若ax2+bx+c >mx+n,则x的取值范围是()A.0<x<3B.1<x<3C.x<0或x>3D.x<1减x>320.(2022•鹿城区校级三模)如图,抛物线y=﹣x2+bx+c经过点A(﹣1,0),点B(3,0),与y轴交于点C.(1)求该抛物线的函数表达式和对称轴.(2)点D在射线CO上,过点D作x轴的平行线交抛物线于点E,F(点E在点F的左侧),若EF=CD,求点E的坐标.21.(2022•夏邑县校级模拟)如图,在平面直角坐标系中,直线y=mx+n与坐标轴交于A,B两点,点A 在x轴上,点B在y轴上,OA=OB=2OC,抛物线y=ax2+bx+2经过点A,B,C(1)求抛物线的解析式;(2)根据图象写出不等式ax2+(b﹣m)x+2<n的解集:(3)点P是抛物线上的一动点,过点P作直线AB的垂线段,垂足为Q,当PQ=时,求P点的坐标.22.(2022•清丰县校级一模)某班“数学兴趣小组”对函数y=﹣x2+2|x|+1的图象和性质进行了探究,探究过程如下,请补充完整.x…﹣3﹣﹣2﹣10123…y…﹣2﹣m2121﹣﹣2…(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如表:其中,m=.(2)根据表中数据,在如图所示的平面直角坐标系中描点,画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,回答下列问题:①函数图象的对称性是:.②当x>1时,写出y随x的变化规律:.(4)进一步探究函数图象发现:①函数图象与x轴有个交点,所以方程﹣x2+2|x|+1=0有个实数根;②关于x的方程﹣x2+2|x|+1=a有4个实数根时,a的取值范围是.。

相关文档
最新文档