数学发展简史数学发展简史
数学发展历程

数学发展历程
数学的发展历程可以大致分为四个时期:
1. 数学形成时期:这是人类建立最基本的数学概念的时期。
人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本、最简单的几何形式,算术与几何还没有分开。
2. 初等数学时期、常量数学时期:这个时期的基本的、最简单的成果构成中学数学的主要内容。
大约持续了两千年,逐渐形成了初等数学的主要分支:算数、几何、代数。
3. 变量数学时期:变量数学产生于17世纪,经历了两个决定性的重大步骤:第一步是解析几何的产生;第二步是微积分(Calculus)的创立。
4. 现代数学时期:数学发展的现代阶段的开端,以其所有的基础--------代数、几何、分析中的深刻变化为特征。
数学发展简史数学发展简史

数学发展简史数学发展简史Last revised by LE LE in 2021数学发展简史数学发展简史一、数学起源1.希腊人发现了推理的作用古典时期(公元前600-前300年)的希腊人,认识到人类有智慧、有思维,能够发现真理。
2.最早提出自然界数学模式的是以毕达哥拉斯(Pythagoras)为领袖的座落于意大利南部的毕达哥拉斯学派。
3.继毕达哥拉斯学派之后,最有影响的是由柏拉图学派,他控制了公元前4世纪这一重要时期希腊人的思想,他是雅典柏拉图学院的创立者,存在了九百年之久。
4.亚里士多德是柏拉图的学生,他批评柏拉图的冥世思想以及把科学归结为数学的认识。
他是一个物理学家,他相信真正的知识是从感性的经验通过直观和抽象而获得。
他认为,基本概念应该是不可定义的,否则就没有起始点。
他又区分了公理和公设。
公理――对所有思想领域皆真。
公设――适用于专业学科,如几何学。
5.欧几里得(Euclid)、阿基米得(Archimedes)、丢番图等属于希腊文化的第二个重要时期,亚历山大里亚时期(公元前300年-公元600年)欧几里得(公元前约300年),他的代表作《几何原本》是一本集希腊数学大成的巨着,成为两千年来用公理法建立演绎的数学体系的典范。
二、数学的繁荣(文艺复兴(15世纪初到17世纪的200年)1.希腊人的宗旨――自然是依数学设计的,与文艺复兴时的信念――上帝是这个设计的作者,融汇在一起,统治了欧洲。
2.笛卡儿(Descartes,1596-1650)被誉为数学王冠上的明珠之一,但他首先是一个哲学家,其次是宇宙学家,第三是物理学家,第四是生物学家,第五才是数学家。
极其敏锐的直觉和对结果的演绎――这就是笛卡儿认识哲学的实质。
笛卡儿认为:思维只有两种方法,这就是:直觉和演绎。
笛卡儿对数学本并没有提出什么新定理,但他却提供了一种非常有效的研究方法,即《解释几何》。
在科学上,笛卡儿的贡献,虽然不如像哥白尼、开普勒以及牛顿那样辉煌灿烂,但也不容轻视。
中国数学发展简史

中国数学发展简史(一)中国古代数学的萌芽原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,考古发现,仰韶文化时期出土的陶器,上面就已刻有表示数字的符号。
到原始公社末期,就已开始用文字符号取代结绳记事了。
(二)春秋战国之际,筹算得到普遍的应用筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。
战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。
《庄子》记载了惠施等人的名家学说和桓团、公孙龙等辩者提出的论题,强调抽象的数学思想,例如“至大无外谓之大一,至小无内谓之小一”、“一尺之棰,日取其半,万世不竭”(是我国古书中最早体现微积分思想的一段)等。
这些许多几何概念的定义、极限思想和其它数学命题是相当可贵的数学思想,但这种重视抽象性和逻辑严密性的新思想未能得到很好的继承和发展。
秦汉是封建社会的上升时期,经济和文化均得到迅速发展。
中国古代数学体系正是形成于这个时期,它的主要标志是算术成为一个专门的学科以及《九章算术》为代表的数学著作的出现。
《九章算术》是战国、秦、汉封建社会创立并巩固时期数学发展的总结,就其数学成就来说,堪称是世界数学名著。
例如分数四则运算,今有术(西方称三率法),开平方与开立方(包括二次方程数值解法),盈不足术(西方称双设法),各种面积和体积公式,线性方程组解法,正负数运算的加减法则,勾股形解法(特别是勾股定理和求勾股数的方法)等,水平都是很高的,其中方程组解法和正负数加减法则在世界数学发展上是遥遥领先的。
就其特点来说,它形成了一个以筹算为中心、与古希腊数学完全不同的独立体系。
(三)中国古代数学体系的发展魏、晋时期出现的玄学有利于数学从理论上加以提高。
吴国赵爽注《周髀算经》,汉末魏初徐岳撰《九章算术》注2卷(已失传),魏末晋初刘徽撰《九章算术》注10卷(263)、《九章重差图》1卷(已失传)都是出现在这个时期,赵爽与刘徽的工作为中国古代数学体系奠定了理论基础。
数的发展简史

数的发展简史1. 数的起源和基本概念数的发展可以追溯到远古时期,人类开始使用手指和石块等物体来计数。
随着时间的推移,人们逐渐发展出了更复杂的计数系统。
最早的计数系统是基于十进制的,即使用十个基本符号来表示不同的数值。
这种十进制系统成为了我们现代数学的基础。
2. 古代数学的发展古代数学家在数的发展过程中做出了重要的贡献。
例如,古埃及人发展了一种简单的分数系统,可以用分数来表示部份数量。
古希腊人则致力于发展几何学,提出了许多几何定理和概念。
古印度人发展了一种复杂的十进制系统,其中包括了零的概念。
3. 阿拉伯数学的兴起阿拉伯数学家在中世纪时期对数学的发展做出了巨大的贡献。
他们引入了阿拉伯数字系统,即我们现在所使用的数字系统。
这个系统使用了十个基本数字(0-9),并采用了位置记数法。
这一系统的优势在于可以表示任意大的数,同时进行简单而高效的计算。
4. 进一步的数学发展随着时间的推移,数学的发展变得更加复杂和抽象。
数学家们开始研究代数学、微积分、几何学等更高级的数学分支。
这些研究不仅推动了科学和工程的发展,还在经济学、统计学和计算机科学等领域发挥了重要作用。
5. 现代数学的应用现代数学在许多领域都有广泛的应用。
例如,在物理学中,数学被用于描述自然界的规律和现象。
在金融学中,数学被用于计算风险和收益。
在计算机科学中,数学被用于算法设计和数据分析。
数学的应用范围越来越广泛,对人类社会的发展起到了重要的推动作用。
总结:数的发展经历了漫长的历史过程,从最早的手指计数到现代复杂的数学体系。
古代数学家和阿拉伯数学家的贡献为数学的发展奠定了基础,而现代数学的应用则广泛涉及到各个领域。
数学的发展不仅丰富了人类的思维方式,还为我们解决问题和探索世界提供了强大的工具。
《数学发展简史》

《数学发展简史》《数学发展简史》是一本详细介绍数学发展历程的经典著作。
它不仅仅是一本数学教材,更是一部引领读者了解数学发展的巨著。
本书由历史学家与数学家共同编写而成,通过详细的叙述和精确的解释,将读者带入了一个神奇而有趣的数学世界。
在人类历史的早期,数学仍然处于萌芽阶段。
最早的数学内容主要包括计数、测量和简单的几何概念。
然而,随着时间的推移,数学逐渐得到了发展和应用。
在古希腊时期,毕达哥拉斯学派的成员开创了几何学并发现了许多基本定律。
欧几里得则将这些定律系统化,并将其写入了《几何原本》之中。
随后,阿拉伯世界的学者们将数学引入到了更高的层次。
通过建立阿拉伯数字系统和十进制计数法,他们为数学发展奠定了基础。
此外,他们还将代数学和三角学引入了欧洲。
这一时期的数学成果为十六世纪的欧洲启蒙运动奠定了基础。
在欧洲启蒙运动时期,数学开始变得更加理论化。
伟大的数学家如牛顿、莱布尼茨等人提出了微积分学和数学分析等重要理论。
这些理论不仅推动了科学研究的进展,也对日常生活产生了深远影响。
通过这些数学工具,人们可以对曲线进行分析、计算面积和体积,并应用于物理学和天文学等领域。
然而,数学的发展并不仅仅在欧洲地区有所突破。
在中国,数学学科也有着悠久的历史。
陶哲轩、华罗庚等数学家都对数学发展做出了重要贡献。
尤其是在代数学、数论和几何学等领域,中国数学家的研究成果填补了欧洲数学的一些空白。
随着现代科学的发展,数学的应用范围也在不断扩大。
在计算机科学、工程学,甚至金融和经济学等领域,数学的地位越来越重要。
人们对现代数学的研究和应用促使了更多重要的数学理论的诞生。
总之,数学的发展是人类智慧的结晶。
从最初的简单抽象到理论化的推导,再到广泛的应用,数学不断地在推动着人类文明的进步。
《数学发展简史》通过对数学历史的回顾,向读者展示了数学的魅力与伟大。
无论是对数学感兴趣的学者,还是对人类文明进程感兴趣的读者,本书都是一部值得深入阅读的重要著作。
数的发展简史

数的发展简史引言概述:数的发展是人类文明发展的重要组成部分,从最早的计数工具到现代的数学理论,数的发展历经了漫长的历史。
本文将从古代计数工具的出现开始,逐步介绍数的发展历程,包括整数、分数、负数、无理数和复数等各个方面。
一、古代计数工具的出现1.1 最早的计数工具是指手指和石头等自然物体,用于进行简单的计数。
1.2 随着社会的发展,人们开始使用符木、算盘等计数工具,提高了计算的效率。
1.3 古代文明如埃及、巴比伦等国家也发展出了自己的计数系统,为后来的数学发展奠定了基础。
二、整数的发展2.1 古代数学家开始研究整数的性质和运算规律,发展出了加法、减法、乘法和除法等基本运算。
2.2 阿拉伯数字的引入使整数表示更加简洁明了,为数学的发展提供了便利。
2.3 整数的研究逐渐深入,涉及到素数、合数、质数等概念,为后来的数论奠定了基础。
三、分数的发展3.1 古代数学家开始研究分数的表示和运算,发展出了分数的加减乘除法规则。
3.2 分数的引入使数学运算更加灵活,可以处理更为复杂的计算问题。
3.3 分数的研究逐渐深入,涉及到循环小数、无限小数等概念,为后来的实数系统奠定了基础。
四、负数和无理数的发展4.1 负数的概念最早出现在中国古代,用于表示欠款等概念。
4.2 负数的引入使数学运算更加完备,可以解决更为复杂的方程和不等式。
4.3 无理数的概念最早由希腊数学家提出,可以表示那些不能用有理数表示的数。
五、复数的发展5.1 复数的概念最早由意大利数学家卡丹提出,用于解决代数方程无实数解的问题。
5.2 复数的引入使数学运算更加丰富多样,可以处理更为复杂的代数问题。
5.3 复数的研究逐渐深入,涉及到共轭复数、复数平面等概念,为后来的复变函数理论奠定了基础。
结语:数的发展历程是人类智慧的结晶,从古代计数工具到现代数学理论,数的发展经历了漫长而辉煌的历程。
希望通过本文的介绍,读者能对数的发展有更深入的了解,进一步探索数学的奥秘。
数学发展简史

数学发展简史人类进入原始社会,就需要数学了,从早期的结绳记事到学会记数,再到简单的加减乘除,这些都是人类日常生活中所遇到的数学问题。
数学是有等级的,就像自然数的运算是小学生的水平一样,超出了这个范围小学生就不能理解了。
像有未知数的运算小学生就无从下手一样,数学的发生发展也是从低级向高级进化的,人类最早理解的是算数,经过额一段时间的发展算数发展到了方程、函数,一级一级的进化,才发展到了现代的的数学。
人类数学的发展做出较大成就的是古希腊时期,奇怪的是古希腊对数的运算并不突出,反而是要到中学才能学到的几何学在古希腊就奠定了基础,学过几何的人对欧几里得不会陌生,欧几里得是古希腊人,数学家,被称为“几何之父”。
他最著名的著作《几何原本》是欧洲数学的基础,提出五大公设,欧几里得几何,被广泛的认为是历史上最成功的教科书。
欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品。
在古希腊教育中几何学占有相当重要的地位,柏拉图提倡的希腊六艺就包括几何,后来希腊文化衰落了,希腊被入侵,希腊图书馆的藏书被掠夺了,被阿拉伯人保存了。
有这么一个说法,是阿拉伯人对希腊语与拉丁语文献的保留,才让欧洲人得以返过来取经,找回“失落”的希罗文化。
其中包括柏拉图学说和欧几里得几何。
经过了中世纪的黑暗,欧洲找回了古希腊古罗马文化,才有了欧洲的文艺复兴。
在算术上,阿拉伯人对数学的贡献是现在人们最熟悉的1、2、……9、0十个数字,称为阿拉伯数字。
但是,在数学发展过程中,阿拉伯人主要吸收、保存了希腊和印度的数学,并将它传给欧洲。
阿拉伯人采用和改进了印度的数字记号和进位记法,也采用了印度的数学记号和进位记法,也采用了印度的无理数运算,但放弃了负数的运算。
代数这门学科名称就是由阿拉伯人发明的。
阿拉伯人还解出一些一次、二次方程,甚至三次方程,我们数数的时候都是从1开始的,标准的0这个数字由古印度人在约公元5世纪时发明。
他们最早用黑点“·”表示零,后来逐渐变成了“0”。
数的发展简史

数的发展简史在人类文明发展的历史长河中,数的发展一直是一个重要的话题。
数的发展不仅仅是一种抽象的概念,更是人类认识世界和改变世界的重要工具。
本文将从古代到现代,简要介绍数的发展历程。
一、古代数的发展1.1 古代数的起源在古代,人们开始意识到需要用数来计数和计量。
最早的数是用手指来计数的,后来发展出了更复杂的计数方法,比如用符木、结绳等来计数。
1.2 古代数学的发展古代数学的发展主要集中在埃及、巴比伦、印度和中国等地。
这些古代文明发展出了各自独特的数学理论和方法,比如埃及人的几何学、巴比伦人的代数学、印度人的数字系统等。
1.3 古代数学的应用古代数学的应用主要集中在土地测量、建筑工程、商业计算等方面。
古代数学家们通过数学方法解决了许多实际问题,为社会的发展做出了重要贡献。
二、中世纪数学的发展2.1 中世纪数学的传播在中世纪,数学知识主要通过阿拉伯人传入欧洲。
阿拉伯人在数学领域取得了重要成就,比如他们引入了阿拉伯数字系统、发展了代数学等。
2.2 中世纪数学的发展中世纪数学的发展主要集中在欧洲。
欧洲的数学家们在代数、几何、三角学等领域取得了重要的成就,为现代数学的发展奠定了基础。
2.3 中世纪数学的应用中世纪数学的应用主要集中在天文学、地理学、商业计算等方面。
中世纪的数学家们通过数学方法解决了许多实际问题,为社会的进步做出了贡献。
三、近现代数学的发展3.1 近现代数学的革命近现代数学的发展经历了几次重大革命,比如微积分的发明、非欧几何的提出、概率论的建立等。
这些革命性的成就为数学的发展开辟了新的道路。
3.2 近现代数学的发展近现代数学的发展主要集中在欧洲和美国。
数学家们在代数、几何、拓扑学、数论等领域取得了许多重要的成就,推动了数学的发展。
3.3 近现代数学的应用近现代数学的应用主要集中在科学研究、工程技术、金融业等领域。
数学方法被广泛应用于各个领域,为社会的发展带来了巨大的影响。
四、当代数学的发展4.1 当代数学的前沿领域当代数学的前沿领域包括数学物理、计算数学、统计学、人工智能等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学发展简史数学发展简史The manuscript was revised on the evening of 2021数学发展简史数学发展简史一、数学起源1.希腊人发现了推理的作用古典时期(公元前600-前300年)的希腊人,认识到人类有智慧、有思维,能够发现真理。
2.最早提出自然界数学模式的是以毕达哥拉斯(Pythagoras)为领袖的座落于意大利南部的毕达哥拉斯学派。
3.继毕达哥拉斯学派之后,最有影响的是由柏拉图学派,他控制了公元前4世纪这一重要时期希腊人的思想,他是雅典柏拉图学院的创立者,存在了九百年之久。
4.亚里士多德是柏拉图的学生,他批评柏拉图的冥世思想以及把科学归结为数学的认识。
他是一个物理学家,他相信真正的知识是从感性的经验通过直观和抽象而获得。
他认为,基本概念应该是不可定义的,否则就没有起始点。
他又区分了公理和公设。
公理――对所有思想领域皆真。
公设――适用于专业学科,如几何学。
5.欧几里得(Euclid)、阿基米得(Archimedes)、丢番图等属于希腊文化的第二个重要时期,亚历山大里亚时期(公元前300年-公元600年)欧几里得(公元前约300年),他的代表作《几何原本》是一本集希腊数学大成的巨着,成为两千年来用公理法建立演绎的数学体系的典范。
二、数学的繁荣(文艺复兴(15世纪初到17世纪的200年)1.希腊人的宗旨――自然是依数学设计的,与文艺复兴时的信念――上帝是这个设计的作者,融汇在一起,统治了欧洲。
2.笛卡儿(Descartes,1596-1650)被誉为数学王冠上的明珠之一,但他首先是一个哲学家,其次是宇宙学家,第三是物理学家,第四是生物学家,第五才是数学家。
极其敏锐的直觉和对结果的演绎――这就是笛卡儿认识哲学的实质。
笛卡儿认为:思维只有两种方法,这就是:直觉和演绎。
笛卡儿对数学本并没有提出什么新定理,但他却提供了一种非常有效的研究方法,即《解释几何》。
在科学上,笛卡儿的贡献,虽然不如像哥白尼、开普勒以及牛顿那样辉煌灿烂,但也不容轻视。
3.帕斯卡(Pascal):是17世纪伟大的数学家之一。
4.伽利略与笛卡尔齐名,他的主要贡献是他在科学方法上的许多变革。
a) 他要研究和证明的是一些运动的性质而不考虑为会什么会这样。
b) 他坚持向自然科学家提议:不要研究为什么会这样,只要讨论怎样定量描述。
c) 他的另一个原则是:科学的任一分支都可用数学模型模仿出来。
5.牛顿是剑桥大学的数学教授,被称为最伟大的数学家之一,牛顿认为数学是枯燥和乏味的,只是表述自然定律的一种工具。
牛顿的真正的成就在于证明了开普勒经过多年观测和研究得出的开普勒三定律可以由万有引力定律和运动三定律用数学方法推导出来。
拉普拉斯曾说过,牛顿是最幸运的人,因为只有一个宇宙,而他成功地发现了它的定律。
6.莱布尼茨(Leibnitz,1646-1716,法国数学家),主要是个哲学家,他多才多艺,对数学、科学、历史、逻辑学、法律、外交和神学的贡献都是首屈一指的。
7.欧拉(Euler,1707-1783,瑞士),是18世纪最伟大的数学家,也是数学史上最多产的数学家,其论着几乎涉及18世纪所有的数学分支。
欧拉认为所有自然现象之所以表现如此,是因为它们要使某些函数达到极大或极小,因而,基本的物理原理应包括达到极大或极小的函数。
△数学支配一切,18世纪最伟大的智者对此深信不疑。
三、第一场灾难:真理的丧失(非欧几何和四元数的发现)1.进入19世纪,数学界正是一派祥瑞景象:1) 拉格朗日:仍然活跃在数学界;2) 拉普拉斯:正处在他智力的顶峰时期;3) 傅立叶:至力于热的传导研究,他发展了无穷三角级数――现称为傅立叶级数的理论。
对他的工作无论用什么词来赞誉都不过分。
4) 高斯(Gauss):发表了他的《算术研究》(1801),这是关于数论的一个里程碑,赢得了数学王子的雅称。
5) 柯西(Cauchy):他的数学论文超过700篇,仅次于欧拉,能与高斯匹敌。
2.到1800年时上帝的存在越来越不被感觉到,然而当时的数学家们还是相信严格的数学真理和自然界的数学法则,在所有的数学分支中,欧氏几何最受推崇。
“上帝”所攻击的正是欧氏几何。
达兰贝尔在1759年解平行公理问题是“几何原理中的家丑”3.非欧几何的产生:1) 1813年起,高斯开始发展他的非欧几何。
2) 创造非欧几何的人是罗巴切夫斯基。
3) 物理空间的几何可以是非欧几里得的,它的创建的是黎曼(Kieman),他是高斯的学生。
4.高斯认为,真理存在于数中,它是算术、代数、微积分以及后续学科的基础。
雅可比(Jacobi)说:“上帝一直在进行算术化”。
一直到1850年,算术在科学上远比几何使用得更为广泛,不幸的是毁灭性的事情接踵而来。
5.从16世纪开始,数学家们就在使用微量的概念了。
复数被用作向量代数――二维数用什么来表示空间中某种三维数的向量及其代数运算呢?6.四元数的引入:1)1843年,哈密尔顿提出了一个有用的复数的空间类似物,为此他困惑了15年。
他的新数包含四个分量,其次,他不得不牺牲了乘法交换律。
他把这种数叫做四元数。
(a+bi+ci+dk)2) 四元数的引入给了数学家们又一次震动。
它是一个确实有用途的代数,却不具备所有实数和复数的基本性质,即ab=ba3) 继四元数后不久,数学家们引入了更奇怪的代数,如,着名代数几何学家凯莱引进了矩阵,它是矩形或正方形数组。
4)对算术真理的最严重打击来自于亥姆霍兹(Helmholtz)他的结论是:只有经验能告诉我们算术的法则能用在哪里,我们并不能肯定一条先验公式是否在任何情况下都适用。
如,分数的加法运算在计算平均速度时,就有7.数学中没有真理,即作为现实世界普适法则。
希腊人试图从几条自明的真理出发和仅仅使用演绎的证明方法来保证数学的真实性被证明是徒劳的。
1)数学并不是一堆天然的钻石,而不过是人工宝石,某些领域的经验启发特定的公理,在这些领域,这些公理及真逻辑结果能够非常精确地作有价值的描述。
但是,一旦这一领域扩展了,这种适用性就可能失去。
2)既然数学家们已经放弃了上帝,我们就应该相信人。
自然法则是人的创造物,是我们,而不是上帝,才是宇宙法则的制定者,自然法则是人的描述而不是上帝的命令。
3) 1750年数学家们可以这样夸耀他们的发明:沐浴着上帝的光芒,我们走向四面八方。
到了1850年,他们不得不沮丧地承认不管我走到哪里,尘世中这条路已不再荣光。
4)这段历史并不会令人失望,伽罗瓦这样评论数学:“数学是人的心智的工作,它注定要去探索而不是知道,去追求真理而不是发现真理”。
四、一门逻辑学科不合逻辑的发展——算术和代数的困境1.非欧几何正是导致欧氏几何之船倾覆的暗礁。
曾经被确信是坚实的土地,如今却被证明是一片沼泽。
2.让我们看看数学的逻辑发展是如何进行的吧。
1) 亚历山大里亚希腊人自由地使用从埃及人和巴比伦人那里继承来的,没有逻辑基础的算术和代数。
2) 古希腊人给后人两门截然不同的、发展得不一样的数学分支:一方面是演绎的、系统的、但有些缺陷的几何,另一方面则是经验算术及其延展代数。
3) 在阿拉伯人最终毁灭了亚历山大里亚希腊文明以后,印度人和阿拉伯人成为数学的执牛耳者。
4) 印度人引入了负数来表示负债,这一举动加重了数学家们逻辑上的苦恼,印度人注重的是算术和计算方面,而不是演绎结构。
印度人有一些不错的思想,例如,①数字1到9用独立的记号表示②将六十进制化为十进制③负数,把0当作一个数来对待。
所以,印度人的工作扩充了建立在经验和直觉基础上的那部分数学。
3.在16、17世纪,并没有许多数学家承认负数4.无理数被自由地运用于文艺复兴时期的一个新发明,对数之中,而无理数究竟是不是真正的数也困扰着这些使用者。
5.当欧洲人还没有从无理数与负数的困境中摆脱出来时,他们又糊里糊涂地陷入了我们现在称之为复数的泥沼之中。
6.韦达是第一个有意识地系统地使用字母的人,字母的主要新用途不仅是用于表示未知量的幂,而且用以表示一般的系数。
7.代数的产生:1)直到17世纪代数的威力才被逐渐认识到,笛卡尔和费马迈出了举足轻重珠一步,这就是坐标几何的产生(代数几何)。
其基本思想是:曲线显然可以用方程来表示。
2) 第二个将代数推向前台的创举是运用代数公式表示函数。
3) 代数的自由使用激起众怒,直到1750年,人们才得以放心大胆地运用代数。
4) 几何学是公元前300年前用演绎的方法建立起来的,但算术与代数学都怎么也找不到逻辑基础。
科学的需要战胜了逻辑上的顾忌。
8.数学家们为什么没有发展一个数与代数的演绎推导结构呢?这是因为几何的概念、公理和原理从直观上看,远比算术和代数的易于接受,作图可辅助解释结构。
但无理数、负数和复数的概念都微妙得多,即使可以得到图形,也无法解释数字作为数和建立于数学基础上的字母表示法的逻辑结构。
五、分析的困境1.以微积分为核心的分析是建立在算术与代数虚构的逻辑基础及欧几里得几何有争议的基础之上的。
2. 17世纪就随着微积分、算术及代数的一片混乱结束了。
3.18世纪伟大的数学家不仅极大地扩展了微积分学而且从中导出了一些全新的学科:无穷级数、常微分方程、偏微分方程、微分几何、变分法及复变函数――这些统称为分析的学科。
从微积分到这些新分支的扩展引入了新概念、新方法,使得微积分的严密性问题更加复杂。
对无穷级数的处理也许可以用来解释一下这些新的麻烦于是,①当时即问题出在:1) 如何讨论级数的求和收敛和发散2) 有限运算和无限运算有何区别?4.几何18世纪的每位数学家都在微积分的逻辑上做了努力,但他们的努力都是没有多大用处的。
人们很难区别很大的数与无穷数;有限项的积与积分也很难区分,数学家们在有限与无限之间随意通行。
策积分变为“计算与度量一个其存在性是不可思议的事物的艺术”。
5. 18世纪结束之际,微积分和建立在微积分基础上的分析的其它分支的逻辑处于一种完全混乱的状态之中。
六、19世纪的困境(逻辑基础)1.无理数,可看作是直线上的点,对它的作用,人们没有异议,直观上难以接受的是负数和复数。
1) 柯西,最伟大的数学家之一,在19世纪初创立了复变函数理论,但不同意把表达式当作数。
2) 哈密尔顿,这位伟大数学家,也不愿意接受负数和复数3) 高斯,在他的着作中,并不愿意承认复数。
2. 19世纪上半期,人们注意到代数也缺乏逻辑基础,主要问题是字母被用来表示各类数并参与运算。
3.除了代数,19世纪早期的分析也处于逻辑困境中,所有分析的基础就是连续函数和函数导数的概念。
直观上,一个连续函数应在任何一点都有导数存在,不幸的是,这是错误的。
4.19世纪任何一门数学在逻辑上都是得不到保证的。
实数系、代数学、欧氏几何,新出现的非欧几何和射影几何,它们要么逻辑不完善,要么根本就没有。