数学的发展历史知识讲解
人教版《义务教育课程标准实验教科书·数学》七年级上册相关数学史知识介绍

人教版《义务教育课程标准实验教科书·数学》七年级上册相关数学史知识介绍引言概述:人教版《义务教育课程标准实验教科书·数学》七年级上册是我国义务教育阶段数学教学的重要教材之一。
在这本教科书中,除了介绍了基本的数学概念和技巧外,还涉及了一些与数学相关的历史知识。
本文将通过六个大点来详细阐述这些数学史知识的内容和意义。
正文内容:1. 数学的起源与发展1.1 古代数学的起源1.2 古希腊数学的发展1.3 中世纪数学的发展1.4 文艺复兴时期数学的进展1.5 近代数学的发展2. 数学史上的重要人物2.1 毕达哥拉斯2.2 欧几里得2.3 阿拉伯数学家2.4 牛顿和莱布尼茨2.5 高斯和欧拉3. 数学史上的重要成就3.1 古代数学成就3.2 文艺复兴时期数学成就3.3 近代数学成就3.4 数学在科学和技术中的应用3.5 数学在现代社会中的地位4. 数学史对数学教学的影响4.1 历史教学的重要性4.2 培养学生对数学的兴趣4.3 培养学生的数学思维能力4.4 培养学生的创新精神4.5 帮助学生理解数学的发展过程5. 数学史知识的教学方法5.1 创设情境引入数学史知识5.2 利用教学资源展示数学史知识5.3 运用问题引导学生思考数学史知识5.4 进行小组合作学习数学史知识5.5 制定适合学生的数学史知识评价方式6. 数学史知识的学习意义6.1 培养学生的历史意识6.2 增强学生对数学的兴趣6.3 提高学生的数学素养6.4 培养学生的创新能力6.5 帮助学生更好地理解数学的本质总结:通过对人教版《义务教育课程标准实验教科书·数学》七年级上册中涉及的数学史知识的介绍,我们可以看到数学的起源与发展、重要人物、重要成就以及对数学教学的影响等方面的内容。
了解数学史知识不仅可以帮助学生更好地理解数学的发展过程和本质,还能培养学生的历史意识、兴趣、数学素养和创新能力。
教师可以通过创设情境、利用教学资源、运用问题引导学生思考等多种教学方法来教授数学史知识,并制定适合学生的评价方式。
数学 历史 知识点总结

数学历史知识点总结第一部分:数学的古代历史数学的历史可以追溯到远古时代,最早的数学知识产生于人类最初的文明社会。
在古代,数学主要是与宗教、天文、建筑和商业等相关联。
古埃及人和美索不达米亚人是最早有数学知识的民族之一。
在古埃及,他们用数学知识解决了水文学问题,进行土地测量,并且建立了一套数学体系。
在美索不达米亚,人们用数学知识解决了土地测量、建筑和商业问题。
古印度人也在数学领域取得了一定的成就,诸如《苏尔达莱数》就是印度数学的一个重要成就。
此外,古希腊人也在数学领域取得了一定的成就,例如毕达哥拉斯学派提出的毕达哥拉斯定理就是古希腊数学的重要成就。
第二部分:数学的中世纪历史在中世纪,数学得到了快速发展。
在古印度的数学知识通过阿拉伯人传入西方后,欧洲的数学得到了巨大的发展。
一些著名的数学家如欧几里德、阿基米德、笛卡尔等相继出现。
同时,阿拉伯数学家的工作也在数学史上留下了浓墨重彩的一笔。
第三部分:数学的近代历史在近代,数学得到了空前的发展。
17世纪,微积分学的发明推动了数学的一次巨革。
微积分学的发明使得人们能够用数学语言更好地描述自然界的规律,从而推动了科学的发展。
同时,数学的其他分支如代数学、几何学、概率论等也得到了快速的发展。
著名的数学家如牛顿、莱布尼茨、高斯等相继出现,在数学领域取得了卓越的成就。
第四部分:数学的现代历史在现代,数学得到了前所未有的发展。
20世纪是数学发展的黄金时期。
在这个时期,数学的多个领域取得了空前的发展。
在代数学领域,人们发明了抽象代数学,从而使得代数学的研究范围得到了巨大的扩展。
在几何学领域,人们发现了非欧几何学,从而使得几何学的研究范围得到了巨大的扩展。
在概率论领域,人们发明了随机过程,从而使得概率论的研究范围得到了巨大的扩展。
同时,数学的应用也得到了前所未有的发展。
数值分析、计算数学、运筹学等新的数学学科相继出现,为现代科学和技术的发展奠定了数学基础。
第五部分:数学的未来发展在未来,数学将继续发展。
数学发展史

数学开展简史数学是人类最古老的科学知识之一。
就人类对数的认识和运用来看,一般讲从公元前3000年左右的埃及象形文字就已开场,迄今已有5000年的历史。
那么到底什么是数学呢?实际上数学是一门历史性很强的科学或者说累积性很强,它的内涵随着时代的变化而变化,给数学下一个一劳永逸的定义是不可能的。
从公元前4世纪的希腊哲学家亚里士多德到17世纪的笛卡儿、19世纪的恩格斯、20世纪的罗素等很多数学家都曾给数学下过定义。
用的较多也较容易理解的是恩格斯的定义。
他说,数学,是研究数量关系与空间形式的一门科学。
20世纪80年代的一批美国学者将数学定义为:数学这个领域已被称作模式的科学,其目的是要提醒人们从自然界和数学本身的抽象世界中所观察到的构造和对称性。
这一定义以其高度的概括性,已日益引起关注并获得大多数数学家的认同与承受。
第一阶段:数学的萌芽阶段〔公元前3000年—公元前600年〕这一阶段,我们称之为数学的萌芽阶段,或者说准学科阶段。
在这一阶段里,数学还没有开展成为一门有明确构造的独立的理性的学科,还不具备抽象,还没有方法论,还没有论证和推理。
数学文化在这一阶段的出色代表是古巴比伦数学、中国数学、埃及数学、印度数学等。
这一阶段的世界数学文化呈一种多元开展态势。
第二阶段:数学的形成阶段〔公元前5世纪—公元16世纪〕这一阶段,通常称之为数学科学的形成时期,它的开场是以希腊人的出场为典型标志,完毕于公元16世纪,也就是在变量数学产生之前,人们常称此阶段为常量数学阶段,也就是数学学科完成了以常量为主要内容的框架体系。
这一时期,希腊数学家取得辉煌成绩,他们引入了证明,提出了抽象,发现了自然数,发现了无理数〔注:这是数学史上第一次危机。
?原本?第五卷中将比例理论由可公度量推广到不可公度量,使它能适用与更广泛的几何命题证明,从而巧妙的回避了无理量引起的麻烦。
但问题的根本解决要到19世纪借助极限过程对无理数做出严格定义之后〕。
数学小掌故讲堂小学生数学知识的历史与发展解析

数学小掌故讲堂小学生数学知识的历史与发展解析数学小掌故讲堂——小学生数学知识的历史与发展解析数学,作为一门现代科学,已经存在了几千年。
它不仅是一门学科,更是一项用于解决问题的工具。
而对于小学生来说,数学是培养逻辑思维和分析能力的重要学科。
在这篇文章中,我们将带您走进数学小掌故讲堂,了解小学生数学知识的历史与发展。
一、古代数学的奇妙发现古代世界的数学思想在很大程度上影响了今天的数学发展。
早在公元前3000年左右,古巴比伦人就开始使用基于60进制的计数系统。
他们还发现了一些重要的几何定理,比如著名的勾股定理。
另外,古埃及人和古希腊人也在数学领域做出了巨大的贡献,他们研究了诸如平行线、比例等概念,并建立起了一套完整的数学体系。
二、阿拉伯数学的传承与发展在中世纪,阿拉伯世界成为数学知识的中心。
阿拉伯学者翻译并学习了古希腊、古埃及以及印度的数学著作,他们的贡献不仅在于传承了古代数学,还做出了许多独创性的贡献。
比如,他们引进了我们现在使用的十进制计数系统,并发现了一些高阶方程的解法。
此外,阿拉伯学者还将代数学引入几何学领域,建立了代数几何学的基础。
三、欧洲数学的复兴与变革随着文艺复兴运动的兴起,欧洲成为了数学的重要发源地。
在这个时期,许多伟大的数学家相继涌现,他们的创造性工作对数学的发展产生了巨大影响。
例如,牛顿和莱布尼茨发明了微积分学,拉格朗日和欧拉则在代数和数论方面做出了突出贡献。
这个时期的数学发展为今天的数学奠定了坚实的基础。
四、现代数学的多元化与拓展20世纪以来,数学经历了快速的发展与变革,涌现出了许多新的分支和应用领域。
在几何学方面,非欧几何学的产生颠覆了传统几何学的观念,拓宽了数学的边界。
在代数学和数论方面,数论的发展不仅对密码学和安全通信产生了重要影响,还为解决其他数学难题提供了新的思路。
五、小学生数学知识的启蒙与培养对于小学生来说,数学的学习不仅仅是为了应对课堂考试,更是为了培养他们的逻辑思维和问题解决能力。
数学的时间轴公式与知识点的历史

数学的时间轴公式与知识点的历史数学是一门源远流长的学科,历经千年的演变与发展,其中的时间轴公式与知识点扮演着重要角色。
本文将回顾数学中一些重要的时间轴公式和知识点,并探索它们的历史起源。
1. 勾股定理(公元前6世纪)勾股定理是古希腊数学家毕达哥拉斯提出的,他发现了直角三角形的边长之间的关系。
勾股定理的数学表达式为a^2 + b^2 = c^2,其中a 和b分别表示直角三角形的两条直角边,c表示斜边。
这个定理有着广泛的应用,尤其在几何学和物理学中。
2. 费马大定理(17世纪)费马大定理是法国数学家费马提出的,其涉及到整数的幂指数。
该定理最初提出的时候并没有给出证明,直到几个世纪后才被英国数学家安德鲁·怀尔斯证明。
费马大定理指出:当n大于2时,方程x^n + y^n = z^n没有整数解。
这个定理激发了许多数学家对数论的研究,直到现在仍然被广泛讨论。
3. 微积分(17世纪)微积分是由牛顿和莱布尼茨独立发现并发展起来的数学分支。
微积分研究了函数、极限、导数和积分等概念。
这个数学领域的建立对物理学和工程学的发展产生了巨大影响。
微积分的时间轴公式包括导数的定义和计算方法,以及积分的定义和计算方法。
4. 高斯曲线(19世纪)高斯曲线是由德国数学家高斯提出的,它是一种钟形曲线,被广泛应用于概率统计学中。
高斯曲线具有对称性,并且可以用来描述大量的自然现象。
数学家们发现,许多随机变量都可以近似地服从高斯分布。
高斯曲线通过时间轴公式e^(-(x-μ)^2/(2σ^2))来进行描述,其中μ表示均值,σ表示标准差。
5. 群论(20世纪)群论是抽象代数学的一个重要分支,它由德国数学家古斯塔夫·莱布尼茨和意大利数学家奥古斯都·柯西等人独立发展起来。
群论主要研究代数结构的对称性与变换。
群的时间轴公式主要包括对称性和运算法则的定义与性质。
总结起来,数学的时间轴公式与知识点涵盖了各个历史时期,并且对数学的应用和发展产生了深远的影响。
数学文化知识整理

数学文化知识整理数学是一门特殊的学科,既是一门科学,又是一门艺术。
它的广泛应用及独特思维方式深受人们的喜爱与追捧。
本文将从数学的历史、数学与艺术、数学在生活中的应用等几个方面进行整理,让我们一起探索数学的魅力。
一、数学的历史数学的历史可追溯到古代,早在古埃及和古希腊时期,人们就开始研究和应用数学。
古希腊的毕达哥拉斯定理、欧几里得几何学以及亚里士多德的逻辑思维,都为后来数学的发展奠定了坚实的基础。
随着时间的推移,数学在不同文化和国家中得到了独特的发展,如古印度的十进制计数法和零的概念,以及中国古代著名的《九章算术》等。
二、数学与艺术的交融数学和艺术之间有着紧密的联系,数学的美学特质常常在艺术作品中得到体现。
如黄金分割比例在绘画和建筑中的应用,使作品更加和谐美观。
此外,数学的对称性、几何形状等概念也广泛应用于设计和雕塑中,赋予作品独特的韵味。
以艺术角度看待数学,让我们发现数学除了是一门理性的学科,也展示了它的创造性和想象力。
三、数学在生活中的应用数学在我们的日常生活中无处不在,它为我们提供了解决问题的方法和工具。
无论是购物时计算折扣,还是规划旅行时计算距离和时间,数学都扮演了重要的角色。
在科学研究和工程领域,数学更是发挥着不可或缺的作用。
例如,微积分为物理学家提供了分析运动和变化的工具,概率论为统计学家提供了评估风险和推断结论的方法。
四、数学的发展方向随着科技的迅速发展,数学也在不断演进和拓展新的领域。
现代数学已经发展出多个分支学科,如代数学、几何学、概率论等,这些学科为各行各业的发展提供了理论支撑。
同时,数学还与计算机科学、统计学等学科形成密切的联系,共同推动着人类社会的进步。
未来,人工智能、量子计算等领域的发展也将进一步促进数学的前沿研究。
总结起来,数学作为一门学科,不仅代表了人类智慧的结晶,也蕴含了人类文化的精髓。
数学与艺术的交融,赋予了数学更加丰富的内涵和魅力。
而数学在生活中的应用和不断发展的方向,则使数学始终与现实紧密相连。
数学发展历史

数学史数学是一门古老的学科,它伴随着人类文明的产生而产生,至少有四、五千年的历史.但它不是某一个民族或某一个地区的产物,而是世界许多民族、诸多地区世世代代的产物,是人们在生产斗争和科学实践中逐渐形成和发展而成的。
数学的最初的概念和原理在远古时代就萌芽了,经过四千多年世界许多民族的共同努力,才发展到今天这样内容丰富、分支众多、应用广泛的庞大系统。
第一节发展历史一般认为,从远古到现在,数学经历了五个历史阶段.一、数学萌芽时期(公元6世纪以前)在人类历史上,这是原始社会和奴隶社会的初期。
这个时期数学的成就以巴比伦、埃及和中国的数学为代表。
古巴比伦是位于幼发拉底河和底格里斯河两河流域的一个文明古国。
巴比伦王国形成于约公元前19世纪,从出土的古巴比伦的泥板上的楔形文字中发现,古巴比伦人具有算术和代数方面的知识,建立了60进位制的记数系统,掌握了自然数的四则运算,广泛使用了分数,能进行平方、立方和简单的开平方、开立方运算.他们迈出了代数的第一步,能用一些特别的术语和符号代表未知数,能解特殊的几种一元一次、二元一次方程和一元二次方程,甚至某些三次、四次(可化为二次的)和个别指数方程,并且能够把它们应用于天文学和商业等实际问题中去。
几何方面掌握了简单平面图形的面积和简单立体体积的计算方法。
中国是最早使用十进位值制记数法的国家。
早在三千多年前的商代中期,在甲骨文中产生了一套十进制数字和记数法,最大的数字为三万.与此同时,殷人用十个天干和十二个地支组成六十甲子,用以记日、记月、记年。
用阴(——)、阳(一)符号构成八卦表示8种事物,后来发展为64卦。
春秋战国之际,筹算已普遍应用,其记数法是十进位值制。
数的概念从整数扩充到分数、负数,建立了数的四则运算的算术系统。
几何方面,4500年前就有测量工具规、矩、准、绳,有圆方平直的概念。
公元前1100年左右的商高知道“勾三股四弦五”的勾股定理.春秋末战国初的墨子在《墨经》中给出了一些数学定义,包含有许多算术、几何方面的知识和无穷、极限的概念。
世界数学发展史

世界数学发展史数学,这个看似平凡的词汇,实则包含了宇宙的秘密和秩序。
它是科学的基础,也是工程的关键,更在我们的日常生活中无处不在。
回望历史,数学的发展历程充满了神奇的色彩和深厚的智慧。
一、古代数学:文明的基石古埃及、古希腊、古罗马等古代文明,都为数学的发展做出了巨大的贡献。
早在公元前3000年,古埃及人就已经开始使用数学来管理他们的农业和商业事务。
他们的数学知识主要基于实际应用,如测量土地、计算税收等。
古希腊人对数学的理解达到了全新的高度。
他们对数学的研究并非出于实际需求,而是为了探索和理解自然世界。
柏拉图、亚里士多德等哲学家都为数学的发展提供了新的思想和理论。
尤其是欧几里得,他的《几何原本》奠定了数学的基本原理和公理体系。
同时,古印度人和阿拉伯人也对数学的发展做出了重要的贡献。
他们发展了算术和代数,为数学的科学化奠定了基础。
二、中世纪数学:照亮黑暗的明珠中世纪时期,欧洲的数学发展受到了基督教教义的影响,但在科学家和学者的努力下,仍然取得了显著的进步。
这个时期的代表性人物是阿基米德和牛顿。
阿基米德发明了许多重要的数学工具,如微积分和杠杆原理,为物理学的发展提供了重要的支持。
三、现代数学:探索未知的宇宙进入现代社会,数学的发展更加迅速和深入。
微积分、概率论、线性代数等新的数学理论和工具不断涌现,为人类探索未知世界提供了更加强大的武器。
同时,计算机科学的兴起也为数学的应用提供了更广阔的平台。
从天气预测到基因编辑,从物理研究到金融建模,现代数学已经渗透到我们生活的每一个角落。
现代数学还在其他领域取得了显著的突破。
例如,数论和代数学的发展为我们理解整数和质数的性质提供了更深层次的认识。
几何学的发展让我们可以更深入地理解空间和形状的本质。
统计学则帮助我们理解和解释大量数据背后的规律和趋势。
四、未来的数学:无限可能随着科技的不断进步和创新,数学的发展也将永不停步、大数据、量子计算等新兴领域的发展将为数学带来新的挑战和机遇。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学的发展历史数学是一门伟大的科学,数学作为一门科学具有悠久的历史,与自然科学相比,数学更是积累性科学,它是经过上千年的演化发展才逐渐兴盛起来。
同时数学也反映着每个时代的特征,美国数学史家克莱因曾经说过:"一个时代的总的特征在很大程度上与这个时代的数学活动密切相关。
这种关系在我们这个时代尤为明显"。
"数学不仅是一种方法、一门艺术或一种语言,数学更主要是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时影响着政治家和神学家的学说"。
数学已经广泛地影响着人类的生活和思想,是形成现代文化的主要力量。
而数学的历史更从另一个侧面反映了数学的发展。
但有一点值得注意的是,人是这一方面的创造者,因此人本身的作用起着举足轻重的作用,首先表现为是否爱数学,是否愿为数学贡献毕生的精力。
正是这主导着数学。
数学史是研究数学发展历史的学科,是数学的一个分支,和所有的自然科学史一样,数学史也是自然科学和历史科学之间的交叉学科。
数学史和数学研究的各个分支,和社会史与文化史的各个方面都有着密切的联系,这表明数学史具有多学科交叉与综合性强的性质。
数学出现于包含著数量、结构、空间及变化等困难问题内。
一开始,出现于贸易、土地测量及之后的天文学;今日,所有的科学都存在着值得数学家研究的问题,且数学本身亦存在了许多的问题。
而这一切都源于数学的历史。
数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。
从历史时代的一开始,数学内的主要原理是为了做测量等相关计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。
这些需要可以简单地被概括为数学对数量、结构方面的研究。
数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。
数学在历史上有着许多的发现,并且直至今日都还不断地发现中。
数学发展具有阶段性,因此根据一定的原则把数学史分成若干时期。
目前通常将数学发展划分为以下五个时期:1.数学萌芽期(公元前600年以前);2.初等数学时期(公元前600年至17世纪中叶);3.变量数学时期(17世纪中叶至19世纪20年代);4.近代数学时期(19世纪20年代至第二次世界大战);5.现代数学时期(20世纪40年代以来)在数学萌芽期这一时期,数学经过漫长时间的萌芽阶段,在生产的基础上积累了丰富的有关数和形的感性知识。
到了公元前六世纪,希腊几何学的出现成为第一个转折点,数学从此由具体的、实验的阶段,过渡到抽象的、理论的阶段,开始创立初等数学。
此后又经过不断的发展和交流,最后形成了几何、算术、代数、三角等独立学科。
世界上最古老的几个国家都位于大河流域:黄河流域的中国;尼罗河下游的埃及;幼发拉底河与底格里斯河的巴比伦国;印度河与恒河的印度。
这些国家都是在农业的基础上发展起来的,因此他们就必须掌握四季气候变迁的规律。
现在对于古巴比伦数学的了解主要是根据巴比伦泥版,这些数学泥版表明,巴比伦自公元前2000年左右即开始使用60进位制的记数法进行较复杂的计算了,并出现了60进位的分数,用与整数同样的法则进行计算;已经有了关于倒数、乘法、平方、立方、平方根、立方根的数表;借助于倒数表,除法常转化为乘法进行计算。
巴比伦数学具有算术和代数的特征,几何只是表达代数问题的一种方法。
这时还没有产生数学的理论。
对埃及古代数学的了解,主要是根据两卷纸草书。
从这两卷文献中可以看到,古埃及是采用10进位制的记数法。
埃及人的数学兴趣是测量土地,几何问题多是讲度量法的,涉及到田地的面积、谷仓的容积和有关金字塔的简易计算法。
但是由于这些计算法是为了解决尼罗河泛滥后土地测量和谷物分配、容量计算等日常生活中必须解决的课题而设想出来的,因此并没有出现对公式、定理、证明加以理论推导的倾向。
埃及数学的一个主要用途是天文研究,也在研究天文中得到了发展。
由于地理位置和自然条件,古希腊受到埃及、巴比伦这些文明古国的许多影响,成为欧洲最先创造文明的地区。
希腊的数学是辉煌的数学,第一个时期开始于公元前6世纪,结束于公元前4世纪。
泰勒斯开始了命题的逻辑证明,开始了希腊伟大的数学发展。
进入公元前5世纪,爱利亚学派的芝诺提出了四个关于运动的悖论,柏拉图强调几何对培养逻辑思维能力的重要作用,亚里士多德建立了形式逻辑,并且把它作为证明的工具;德谟克利特把几何量看成是由许多不可再分的原子所构成。
第二个时期自公元前4世纪末至公元1世纪,这时的学术中心从雅典转移到了亚历山大里亚,因此被称为亚历山大里亚时期。
这一时期有许多水平很高的数学书稿问世,并一直流传到了现在。
公元前3世纪,欧几里得写出了平面几何、比例论、数论、无理量论、立体几何的集大成的著作几何原本,第一次把几何学建立在演绎体系上,成为数学史乃至思想史上一部划时代的名著。
之后的阿基米德把抽象的数学理论和具体的工程技术结合起来,根据力学原理去探求几何图形的面积和体积,奠定了微积分的基础。
阿波罗尼写出了《圆锥曲线》一书,成为后来研究这一问题的基础。
公元一世纪的赫伦写出了使用具体数解释求积法的《测量术》等著作。
二世纪的托勒密完成了到那时为止的数理天文学的集大成著作《数学汇编》,结合天文学研究三角学。
三世纪丢番图著《算术》,使用简略号求解不定方程式等问题,它对数学发展的影响仅次于《几何原本》。
希腊数学中最突出的三大成就--欧几里得的几何学,阿基米德的穷竭法和阿波罗尼的圆锥曲线论,标志着当时数学的主体部分--算术、代数、几何基本上已经建立起来了。
罗马人征服了希腊也摧毁了希腊的文化。
公元前47年,罗马人焚毁了亚历山大里亚图书馆,两个半世纪以来收集的藏书和50万份手稿竞付之一炬。
从5世纪到15世纪,数学发展的中心转移到了东方的印度、中亚细亚、阿拉伯国家和中国。
在这1000多年时间里,数学主要是由于计算的需要,特别是由于天文学的需要而得到迅速发展。
古希腊的数学看重抽象、逻辑和理论,强调数学是认识自然的工具,重点是几何;而古代中国和印度的数学看重具体、经验和应用,强调数学是支配自然的工具,重点是算术和代数。
印度的数学也是世界数学的重要组成部分。
数学作为一门学科确立和发展起来。
印度数学受婆罗门教的影响很大,此外还受希腊、中国和近东数学的影响,特别是受中国的影响。
此外,阿拉伯数学也有着举足轻重的作用,阿拉伯人改进了印度的计数系统,"代数"的研究对象规定为方程论;让几何从属于代数,不重视证明;引入正切、余切、正割、余割等三角函数,制作精密的三角函数表,发现平面三角与球面三角若干重要的公式,使三角学脱离天文学独立出来。
在我国,春秋战国之际,筹算已得到普遍的应用,筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。
这个时期的测量数学在生产上有了广泛应用,在数学上亦有相应的提高。
战国时期的百家争鸣也促进了数学的发展,秦汉是封建社会的上升时期,经济和文化均得到迅速发展。
中国古代数学体系正是形成于这个时期,它的主要标志是算术已成为一个专门的学科,以及以《九章算术》为代表的数学著作的出现。
《九章算术》是战国、秦、汉封建社会创立并巩固时期数学发展的总结,就其数学成就来说,堪称是世界数学名著。
魏、晋时期赵爽与刘徽的工作为中国古代数学体系奠定了理论基础。
刘徽用无穷分割的方法证明了直角方锥与直角四面体的体积比恒为2:1,解决了一般立体体积的关键问题。
在证明方锥、圆柱、圆锥、圆台的体积时,刘徽为彻底解决球的体积提出了正确途径。
这之后,我国数学经过像秦九邵、祖冲之、郭守敬、程大位这样的数学家进一步发展了我国的数学事业。
在西欧的历史上,中世纪的黑暗在一定程度上阻碍了数学的发展,15世纪开始了欧洲的文艺复兴,使欧洲的数学得以进一步发展,15世纪的数学活动集中在算术、代数和三角方面。
缪勒的名著《三角全书》是欧洲人对平面和球面三角学所作的独立于天文学的第一个系统的阐述。
16世纪塔塔利亚发现三次方程的代数解法,接受了负数并使用了虚数。
16世纪最伟大的数学家是伟达,他写了许多关于三角学、代数学和几何学的著作,其中最著名的《分析方法入门》改进了符号,使代数学大为改观;斯蒂文创设了小数。
17世纪初,对数的发明是初等数学的一大成就。
1614年,耐普尔首创了对对数,1624年布里格斯引入了相当于现在的常用对数,计算方法因而向前推进了一大步。
至此,初等数学的主体部分--算术、代数与几何已经全部形成,并且发展成熟。
变量数学时期从17世纪中叶到19世纪20年代,这一时期数学研究的主要内容是数量的变化及几何变换。
这一时期的主要成果是解析几何、微积分、高等代数等学科。
17世纪是一个开创性的世纪。
这个世纪中发生了对于数学具有重大意义的三件大事。
首先是伽里略实验数学方法的出现,它表明了数学与自然科学的一种崭新的结合。
其特点是在所研究的现象中,找出一些可以度量的因素,并把数学方法应用到这些量的变化规律中去。
第二件大事是笛卡儿的重要著作《方法谈》及其附录《几何学》于1637年发表。
它引入了运动着的一点的坐标的概念,引入了变量和函数的概念。
由于有了坐标,平面曲线与二元方程之间建立起了联系,由此产生了一门用代数方法研究几何学的新学科--解析几何学。
这是数学的一个转折点,也是变量数学发展的第一个决定性步骤。
第三件大事是微积分学的建立,最重要的工作是由牛顿和莱布尼兹各自独立完成的。
他们认识到微分和积分实际上是一对逆运算,从而给出了微积分学基本定理,即牛顿-莱布尼兹公式。
17世纪的数学,发生了许多深刻的、明显的变革。
在数学的活动范围方面,数学教育扩大了,从事数学工作的人迅速增加,数学著作在较广的范围内得到传播,而且建立了各种学会。
在数学的传统方面,从形的研究转向了数的研究,代数占据了主导地位。
在数学发展的趋势方面,开始了科学数学化的过程。
最早出现的是力学的数学化,它以1687年牛顿写的《自然哲学的数学原理》为代表,从三大定律出发,用数学的逻辑推理将力学定律逐个地、必然地引申出来。
18世纪数学的各个学科,如三角学、解析几何学、微积分学、数论、方程论,得到快速发展。
19世纪20年代出现了一个伟大的数学成就,它就是把微积分的理论基础牢固地建立在极限的概念上。
柯西于1821年在《分析教程》一书中,发展了可接受的极限理论,然后极其严格地定义了函数的连续性、导数和积分,强调了研究级数收敛性的必要,给出了正项级数的根式判别法和积分判别法。
而在这一时期,非欧几何的出现,成为数学史上的一件大事,非欧几何的出现,改变了人们认为欧氏几何唯一地存在是天经地义的观点。
它的革命思想不仅为新几何学开辟了道路,而且是20世纪相对论产生的前奏和准备。
这时人们发现了与通常的欧几里得几何不同的、但也是正确的几何--非欧几何。