中国数学发展简史起源
中国数学发展简史

中国数学发展简史(一)中国古代数学的萌芽原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,考古发现,仰韶文化时期出土的陶器,上面就已刻有表示数字的符号。
到原始公社末期,就已开始用文字符号取代结绳记事了。
(二)春秋战国之际,筹算得到普遍的应用筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。
战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。
《庄子》记载了惠施等人的名家学说和桓团、公孙龙等辩者提出的论题,强调抽象的数学思想,例如“至大无外谓之大一,至小无内谓之小一”、“一尺之棰,日取其半,万世不竭”(是我国古书中最早体现微积分思想的一段)等。
这些许多几何概念的定义、极限思想和其它数学命题是相当可贵的数学思想,但这种重视抽象性和逻辑严密性的新思想未能得到很好的继承和发展。
秦汉是封建社会的上升时期,经济和文化均得到迅速发展。
中国古代数学体系正是形成于这个时期,它的主要标志是算术成为一个专门的学科以及《九章算术》为代表的数学著作的出现。
《九章算术》是战国、秦、汉封建社会创立并巩固时期数学发展的总结,就其数学成就来说,堪称是世界数学名著。
例如分数四则运算,今有术(西方称三率法),开平方与开立方(包括二次方程数值解法),盈不足术(西方称双设法),各种面积和体积公式,线性方程组解法,正负数运算的加减法则,勾股形解法(特别是勾股定理和求勾股数的方法)等,水平都是很高的,其中方程组解法和正负数加减法则在世界数学发展上是遥遥领先的。
就其特点来说,它形成了一个以筹算为中心、与古希腊数学完全不同的独立体系。
(三)中国古代数学体系的发展魏、晋时期出现的玄学有利于数学从理论上加以提高。
吴国赵爽注《周髀算经》,汉末魏初徐岳撰《九章算术》注2卷(已失传),魏末晋初刘徽撰《九章算术》注10卷(263)、《九章重差图》1卷(已失传)都是出现在这个时期,赵爽与刘徽的工作为中国古代数学体系奠定了理论基础。
数的发展简史

数的发展简史引言概述:数的发展是人类文明发展的重要组成部分,从最早的计数工具到现代的数学理论,数的发展历经了漫长的历史。
本文将从古代计数工具的出现开始,逐步介绍数的发展历程,包括整数、分数、负数、无理数和复数等各个方面。
一、古代计数工具的出现1.1 最早的计数工具是指手指和石头等自然物体,用于进行简单的计数。
1.2 随着社会的发展,人们开始使用符木、算盘等计数工具,提高了计算的效率。
1.3 古代文明如埃及、巴比伦等国家也发展出了自己的计数系统,为后来的数学发展奠定了基础。
二、整数的发展2.1 古代数学家开始研究整数的性质和运算规律,发展出了加法、减法、乘法和除法等基本运算。
2.2 阿拉伯数字的引入使整数表示更加简洁明了,为数学的发展提供了便利。
2.3 整数的研究逐渐深入,涉及到素数、合数、质数等概念,为后来的数论奠定了基础。
三、分数的发展3.1 古代数学家开始研究分数的表示和运算,发展出了分数的加减乘除法规则。
3.2 分数的引入使数学运算更加灵活,可以处理更为复杂的计算问题。
3.3 分数的研究逐渐深入,涉及到循环小数、无限小数等概念,为后来的实数系统奠定了基础。
四、负数和无理数的发展4.1 负数的概念最早出现在中国古代,用于表示欠款等概念。
4.2 负数的引入使数学运算更加完备,可以解决更为复杂的方程和不等式。
4.3 无理数的概念最早由希腊数学家提出,可以表示那些不能用有理数表示的数。
五、复数的发展5.1 复数的概念最早由意大利数学家卡丹提出,用于解决代数方程无实数解的问题。
5.2 复数的引入使数学运算更加丰富多样,可以处理更为复杂的代数问题。
5.3 复数的研究逐渐深入,涉及到共轭复数、复数平面等概念,为后来的复变函数理论奠定了基础。
结语:数的发展历程是人类智慧的结晶,从古代计数工具到现代数学理论,数的发展经历了漫长而辉煌的历程。
希望通过本文的介绍,读者能对数的发展有更深入的了解,进一步探索数学的奥秘。
数的发展简史

数的发展简史在人类文明发展的历史长河中,数的发展一直是一个重要的话题。
数的发展不仅仅是一种抽象的概念,更是人类认识世界和改变世界的重要工具。
本文将从古代到现代,简要介绍数的发展历程。
一、古代数的发展1.1 古代数的起源在古代,人们开始意识到需要用数来计数和计量。
最早的数是用手指来计数的,后来发展出了更复杂的计数方法,比如用符木、结绳等来计数。
1.2 古代数学的发展古代数学的发展主要集中在埃及、巴比伦、印度和中国等地。
这些古代文明发展出了各自独特的数学理论和方法,比如埃及人的几何学、巴比伦人的代数学、印度人的数字系统等。
1.3 古代数学的应用古代数学的应用主要集中在土地测量、建筑工程、商业计算等方面。
古代数学家们通过数学方法解决了许多实际问题,为社会的发展做出了重要贡献。
二、中世纪数学的发展2.1 中世纪数学的传播在中世纪,数学知识主要通过阿拉伯人传入欧洲。
阿拉伯人在数学领域取得了重要成就,比如他们引入了阿拉伯数字系统、发展了代数学等。
2.2 中世纪数学的发展中世纪数学的发展主要集中在欧洲。
欧洲的数学家们在代数、几何、三角学等领域取得了重要的成就,为现代数学的发展奠定了基础。
2.3 中世纪数学的应用中世纪数学的应用主要集中在天文学、地理学、商业计算等方面。
中世纪的数学家们通过数学方法解决了许多实际问题,为社会的进步做出了贡献。
三、近现代数学的发展3.1 近现代数学的革命近现代数学的发展经历了几次重大革命,比如微积分的发明、非欧几何的提出、概率论的建立等。
这些革命性的成就为数学的发展开辟了新的道路。
3.2 近现代数学的发展近现代数学的发展主要集中在欧洲和美国。
数学家们在代数、几何、拓扑学、数论等领域取得了许多重要的成就,推动了数学的发展。
3.3 近现代数学的应用近现代数学的应用主要集中在科学研究、工程技术、金融业等领域。
数学方法被广泛应用于各个领域,为社会的发展带来了巨大的影响。
四、当代数学的发展4.1 当代数学的前沿领域当代数学的前沿领域包括数学物理、计算数学、统计学、人工智能等。
中国数学简史

数学文化课程报告论文题目:中国数学简史定义数学(mathematics或math),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。
上述是百度百科对数学所下的定义,在我看来数学是有所不同的。
最早,在幼儿园的时候,老师就开始教我们阿拉伯数字。
被蒙在鼓里很久才知道阿拉伯数字并不是由阿拉伯人创造,而是由印度人发明,由阿拉伯人传入欧洲将其现代化。
因为阿拉伯人的传播,成为该种数字最终被国际通用的关键节点,所以人们称其为“阿拉伯数字”。
从幼儿园到小学,从小学到初中到高中,直到现在,至始至终数学都陪伴在我们身边。
第一次感受到数学的魅力是在小学阶段,那时还没有学设未知数求解。
脑子里总觉得少了个东西,前后思维连不上。
后来在大哥的指导下,用设未知数的方法很快便把问题解决了。
我看着结果,愣了好半天。
这种新的思维新方法让我对数学这门学科产生了浓厚的学习兴趣。
再后来随着笛卡尔坐标系、三维坐标系的学习,我深深地感受到数学并不是他们所说的那么高深,它来源于生活,能在纸上用数学的简洁形式表现出来,它可以理想化,取微元、求极限,它用自己独特的方式展现着不同寻常的美。
回望人类光辉的发展史,数学在其中扮演着举足轻重的角色。
各种科学只有在成功应用了数学才算达到真正完善的地步。
数学分支1:数学史2:数理逻辑与数学基础3:数论4:代数学5:代数几何学6:几何学7:拓扑学8:数学分析9:非标准分析10:函数论11:常微分方程12:偏微分方程13:动力系统14:积分方程15:泛函分析16:计算数学17:概率论18:数理统计学19:应用统计数学20:应用统计数学其他学科21:运筹学22:组合数学23:模糊数学24:量子数学25:应用数学(具体应用入有关学科)26:数学其他学科中国数学简史中国数学从远古走来,分为先秦萌芽时期、汉唐奠基时期、宋元全盛时期、西学输入时期以及近现代数学发展时期五个阶段。
上古至先秦萌芽时期1.传说(4000年前):上古结绳而治;皇帝使吏首作数;伏羲造八卦、规矩。
数的发展简史

数的发展简史引言概述:数的发展是人类文明发展的重要组成部分,从古代的计数方法到现代的数学理论,数的发展经历了漫长而复杂的历程。
本文将从数的起源、古代数学、中世纪数学、近代数学以及现代数学五个大点来阐述数的发展简史。
正文内容:1. 数的起源1.1 计数的起源1.2 数字的发展1.3 位制计数法的出现2. 古代数学2.1 古代数学的发展2.2 古代数学的应用2.3 古代数学的成就3. 中世纪数学3.1 罗马数字的使用3.2 阿拉伯数字的传入3.3 中世纪数学的发展4. 近代数学4.1 文艺复兴时期数学的兴起4.2 笛卡尔坐标系的发明4.3 牛顿和莱布尼茨的微积分理论5. 现代数学5.1 集合论的建立5.2 线性代数的发展5.3 数学分析的进展总结:数的发展简史可以归纳为从计数的起源,古代数学,中世纪数学,近代数学到现代数学的五个阶段。
数的起源可以追溯到原始社会的计数方法,随着社会的发展,数字的概念逐渐形成并演化为位制计数法。
古代数学在古希腊、古印度和古中国等文明中得到了独立的发展,为几何学和代数学的兴起奠定了基础。
中世纪数学主要以罗马数字为计数方式,直到阿拉伯数字的传入才有了重大突破。
近代数学在文艺复兴时期兴起,并在笛卡尔、牛顿和莱布尼茨等数学家的努力下,微积分等理论得到了重大发展。
现代数学则以集合论、线性代数和数学分析等为主要研究领域,为现代科学和技术的发展提供了坚实的基础。
总的来说,数的发展简史见证了人类智慧的积累和科学知识的进步。
无论是古代的数学家还是现代的数学家,他们的贡献都为数学的发展做出了重要贡献,为我们今天的生活奠定了坚实的数学基础。
中国古代数学

中国古代数学中国古代数学是世界上最古老的数学之一,具有重要的历史和文化价值。
古代中国的数学发展可以追溯到至少公元前14世纪的商朝,人们在商朝就开始使用计算方法和数学符号。
以下是有关中国古代数学的相关内容:古代数学的起源与发展古代中国数学的起源可以追溯到商朝,商朝人民使用的计算方法和数学符号记录在《甲骨文》中。
《甲骨文》中的很多符号表示了数字和几何形状,这表明商朝人民已经掌握了一定的计算和几何知识。
随着时间的推移,数学在周朝和秦朝得到了进一步的发展。
《周髀算经》和《九章算术》是两本流传最广的古代中国数学著作,它们涵盖了从初级的算术到高级的几何和代数的内容。
这些著作为后世的数学研究奠定了基础,并影响了中国古代数学的发展。
古代数学的主要研究内容古代中国数学的研究内容主要包括算术、几何和代数。
算术是古代中国数学的基础,主要涉及整数、分数、正负数等的运算、约分、等式等。
几何主要研究了圆、直线、曲线等的性质和计算方法。
代数主要研究了方程的解法和多项式的计算。
除了这些基本内容之外,古代数学家还研究了一些高级概念,如数论、几何证明、求根方法等。
这些研究内容体现了古代中国人民在数学领域的聪明才智和丰富的数学思维。
古代数学成就的应用古代中国数学的成就不仅仅停留在理论上,还有广泛的应用。
在农业方面,古代数学可以用于测量土地面积、规划农田和水利工程。
在商业方面,古代数学可以用于计算货币价值、盈亏比率和税收等。
在天文学方面,古代数学可以用于计算地球和天体的位置、运行轨迹等。
这些应用展示了古代中国数学的实用性和功能性,对古代社会的发展起到了积极的推动作用。
古代数学的传承与影响古代中国数学的传承和发展离不开数学家和教育工作者的努力。
古代数学家通过书籍和教育机构传播数学知识,使其得到了广泛的传承和应用。
古代数学的一些重要著作被翻译成多种语言,传播到其他国家和地区。
这些传承和影响使古代中国数学成为世界上重要的数学学派之一,对后世数学的发展产生了深远的影响。
数学发展简史
数学发展简史数学发展史可以分为四个阶段。
第一阶段是数学形成时期,大约在公元前5世纪左右。
在这个时期,人们开始建立自然数的概念,创造简单的计算法,并认识了一些简单的几何图形。
算术和几何尚未分开。
第二阶段是常量数学时期,也称为初等数学时期,大约从前5世纪持续到公元17世纪。
在这个时期,形成了初等数学的主要分支:算术、几何、代数和三角。
这个时期的基本成果构成了中学数学的主要内容。
在古希腊时期,XXX提出了“万物皆数”的观点,XXX写出了《几何原本》,XXX研究了面积和体积,XXX写出了《圆锥曲线论》,XXX研究了三角学,丢番图研究了不定方程。
在东方,中国的XXX和XXX提出了出入相补原理和割圆术,还算出了π的近似值;宋元四大家XXX、XXX、XXX、XXX提出了天元术、正负开方术和大衍总数术;印度的XXX开创了弧度制度量,XXX提出了代数成就可贵的修正体系和XXX,婆什迦罗研究了算术、代数和组合学。
阿拉伯国家在吸收、融汇、保存古希腊、印度和中国数学成果的基础上,又有他们自己的创造,使阿拉伯数学对欧洲文艺复兴时期数学的崛起,作了很好的学术准备。
第三阶段是变量数学时期,大约从公元17世纪持续到19世纪。
在这个时期,家庭手工业、作坊转变为工场手工业,最终演变为机器大工业,对运动和变化的研究成了自然科学的中心。
第四阶段是现代数学时期,从19世纪末开始至今。
在这个时期,数学的发展呈现出高度多样化和高度专业化的趋势,涉及到各种领域,如数学物理学、数学生物学、数学金融学等等。
1.XXX的坐标系(1637年的《几何学》)XXX曾说:“数学中的转折点是XXX的变数。
有了变数,运动进入了数学。
有了变数,辩证法也进入了数学。
有了变数,微分和积分也就立刻成为必要的了。
”XXX的坐标系是数学发展史上的一个重要里程碑,它为数学的发展带来了新的思维方式。
2.XXX和莱布尼兹的微积分(17世纪后半期)17世纪后半期,XXX和XXX分别发明了微积分,这是数学发展史上的又一个重要里程碑。
中国数学发展简史起源
中国数学发展简史起源古代的中国数学以实际问题为导向,主要集中在计数、计量和天文测量等领域。
早在商朝(公元前1600年至公元前1046年)时期,中国人就开始使用简单的计数系统,比如使用节点计数。
到了东周时期(公元前771年至公元前256年),中国人开始使用更复杂的计数系统,比如“六十进制”和“十进制位系统”。
中国在汉代(公元前202年至公元220年)时期开始了科学思想的昌盛时期。
在西汉时期,张衡开创了中国数学中流传下来的重要方法之一,“虚实法”,该方法用于解决一元高次方程。
而东汉时期,刘徽编写的《九章算术》被认为是中国数学史上的一个里程碑,该书包含了方程求解、几何、数论等方面的内容,并且影响了后来的数学发展。
唐代(公元618年至公元907年)是中国数学史上的黄金时期。
数学家李淳风(公元679年至公元730年)在这个时期为中国数学的发展做出了重要贡献。
他的著作《详解九章算术》在实际问题解决和数学教育方面产生了巨大影响。
唐朝数学家周密还在《数术九章》中首次提出了一种近似计算根号的方法,为后来的数学研究提供了指导。
随着科学技术的发展,宋代(公元960年至公元1279年)时期成为中国数学史上的另一个重要阶段。
数学家秦九韶(公元1202年至公元1261年)是这个时期最重要的数学家之一、秦九韶和他的学生李之中合作编写了《天元术》,该书是中国古代代数学最重要的文献之一、《天元术》介绍了中国古代的算术和代数问题,并为后来的数学研究提供了基础。
明清时期(公元1368年至公元1912年)是中国数学发展的又一个重要时期。
明代数学家朱世杰在编写《数学研究全书》时提出了“连分数”和“渐进法”的概念,为数学分析的发展打下了基础。
同时,中国数学家徐光启对数列和方程的研究也具有重要意义。
到了现代,中国的数学发展取得了长足进步。
20世纪初,中国的数学家如华罗庚、陈省身等在代数几何、数论、微积分等领域取得了重要突破。
现代中国的数学教育也逐渐发展壮大,中国的数学奥林匹克竞赛也屡次获得好成绩,培养出众多优秀的数学人才。
数学简史_完整版
数学简史_完整版数学,作为一门研究数量、结构、变化和空间等概念的学科,是人类文明的重要组成部分。
它不仅是一种工具,更是一种语言,一种思维方式。
数学的发展历程,如同一条源远流长的河流,承载着人类智慧的结晶,见证着人类文明的进步。
数学的起源可以追溯到古代,那时的人们为了解决生活中的实际问题,如测量土地、分配资源等,开始运用简单的数学概念。
在中国,最早的数学文献可以追溯到公元前一世纪的《九章算术》,它详细介绍了分数、比例、开方等基本数学概念,并解决了许多实际问题。
在古希腊,数学家毕达哥拉斯提出了勾股定理,这是数学史上第一个被广泛认可的定理。
在古印度,数学家阿耶波多提出了零的概念,并发展了十进制计数法。
随着文明的进步,数学逐渐成为一门独立的学科。
在17世纪,牛顿和莱布尼茨分别独立发明了微积分,这是数学史上的一次重大突破。
微积分的发明,使得人们能够更准确地描述和预测自然现象,从而推动了科学技术的快速发展。
在18世纪,欧拉提出了复数和欧拉公式,进一步丰富了数学的内涵。
19世纪是数学发展的黄金时代,数学家们开始研究抽象的数学概念,如群论、环论、域论等。
德国数学家高斯提出了代数基本定理,证明了每一个非零的复数多项式方程都有复数根。
法国数学家庞加莱提出了拓扑学,研究几何图形在连续变换下的不变性质。
英国数学家罗素提出了集合论,试图为数学提供一个坚实的基础。
20世纪以来,数学的发展更加迅速,计算机科学的兴起为数学提供了新的研究方向和应用领域。
数学家们开始研究复杂系统、混沌理论、分形几何等新兴领域。
同时,数学在经济学、生物学、物理学等领域的应用也越来越广泛。
例如,在经济学中,数学被用于建立模型和分析市场行为;在生物学中,数学被用于研究生物系统的动态变化;在物理学中,数学被用于描述和预测自然现象。
数学的发展历程充满了挑战和机遇。
它不仅需要数学家们不断探索和创新,更需要全社会的支持和参与。
让我们共同关注数学的发展,为人类的进步贡献自己的力量。
数的发展简史
数的发展简史
引言概述:
数的概念是人类文明发展过程中最基本的数学概念之一。
从古至今,数的概念和应用经历了漫长而复杂的发展过程。
本文将从数的起源开始,通过五个大点来阐述数的发展简史。
正文内容:
1. 数的起源
1.1 早期人类的计数方法
1.2 数的符号化和计算工具的发展
1.3 埃及和巴比伦数学的贡献
2. 古代数学的发展
2.1 古希腊数学的兴起
2.2 古印度数学的发展
2.3 中国古代数学的独特性
2.4 阿拉伯数学的传播与发展
3. 中世纪数学的突破
3.1 十进制计数法的引入
3.2 代数学的兴起
3.3 几何学的发展
4. 近代数学的革新
4.1 微积分的发展
4.2 概率论的浮现
4.3 线性代数的发展
5. 现代数学的发展
5.1 集合论的建立
5.2 数论的研究
5.3 应用数学的发展
5.4 计算机科学与数学的结合
总结:
数的发展经历了漫长而复杂的历史过程。
从早期人类的计数方法开始,到数的符号化和计算工具的发展,再到古代数学的兴起和中世纪数学的突破,数学在近代和现代经历了微积分、概率论、线性代数等多个领域的革新。
现代数学的发展包括集合论、数论、应用数学以及与计算机科学的结合。
数的发展简史展示了人类对于数学的不断探索和创新,为我们提供了丰富的数学知识和应用领域。
数学的发展将继续为人类社会的进步做出贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国数学发展简史—起源
翻开任何一部中国数学发展史,你都不难发现,祖先们每前进一步,都伴随着奋斗的汗水。
(1)中国数学的起源(上古~西汉末期)
古希腊学者毕达哥拉斯(约公元约前580~约前500年)有这样一句名言:“凡物皆数”。
的确,一个没有数的世界是不堪设想的。
今天,我们会不屑一顾从1数到10这样的小事,然而上万年以前,我们祖先为了这事可煞费苦心了。
在7000年以前,我们的祖先甚至连2以上的数字还数不上来,如果要问他们所捕的4只野兽是多少,他们会回答:“很多只”。
如果当时要有人能数到10,那一定会被认为是杰出的天才了。
后来人们慢慢地会把数字和双手联系在一起了。
每只手各拿一件东西,就是2。
数到3时又被难住了,于是把第3件东西放在脚边,“难题”才得到解决。
就这样,在逐步摸索中,祖先从混混沌沌的世界中走出来了。
先是结绳记数,然后又发展到“书契”,五六千年前就会写
1~30的数字,到了2019多年前的春秋时代,祖先们不但能写3000以上的数学,还有了加法和乘法的意识。
在金文周《※鼎》中有这样一段话:“东宫迺曰:偿※禾十秭,遗十秭为廾秭,来岁弗偿,则付秭。
”这段话包含着一个利滚利的问题。
说的是,如果借了10捆粟子,晚点还,就从借时的10
捆变成20捆。
如果隔年才还,就得从借时的10捆涨到40捆。
用数学式子表达即:
10+10=20
20×2=40
除了在记数和算法上有了较大的进步外,祖先还开始把一些数字知识记载在书上。
春秋时代孔子(公元前551~前479)年修改过的古典书籍之一《周易》中,就出现了八卦。
这神奇的八卦至今在中国和外国仍然是人们努力研究和对象,它在数学、天文、物理等多方面都发挥着不可低估和作用。
到了战国时期,祖先们的数学知识已远远超出了会数1~3000的水平。
这一阶段他们在算术、几何,甚至在现代应用数学的领域,都开始了耕耘播种。
算术领域,四则运算在这一时期内得到了确立,乘法中诀已经在《管子》、《荀子》、《周逸书》等著作中零散出现,分数计算也开始被应用于种植土地、分配粮食等方面。
几何领域,出现了勾股定理。
代数领域,出现了负数概念的萌芽。
最令后人惊异的是,在这一时期出现了“对策论”的萌芽,对策论是现代应用数学领域的问题。
它是运筹学的一个分支,主要是用数学方法来研究有利害冲突的双方,在竞争性的活动中,是否存自己制胜对方的最优策略,以及如何找出这些策略等问题。
这一数学分支是在本世纪第二次世界大战期间或以后,才作为一门学科形成的,可是早在2019多年前,战国时期著名的军事家孙膑(公元
前360~前330年)就提出过“斗马术”问题,而这一问题的内容,正反映了对策论中争取总体最优的数学思想。
“斗马术”问题说的是,齐威王要和大将田忌赛马,他们每人各有上、中、下等马各1匹,田忌那3匹马比起齐威王的来,都要略逊一筹,如果用同等级的对应较量法,田忌必输无疑,田忌为此急得不知如何是好。
这时,孙膑从旁点拨,田忌用了孙膑的办法,以2:1取胜齐威王。
孙膑用的是什么方法呢?请看下面的示意图:
田忌齐威王
上等马上等马
中等马中等马
下等马下等马
看到这,你不觉得我们的祖先实在是很聪明吗?
当历史推进到秦汉时期,祖先们不再往骨头上刻字了。
他们把需要记的事都用毛笔写在竹片上、木片上,这种写了字的竹、木片被称为“简”或“牍”。
这种简或牍以西汉时期的流传下来最多。
从那些汉简中,我们发现,秦汉时期在算术方面乘除法算例明显增多,还出现了多步乘除法和趋于完整的九九乘法中诀。
在几何方面,对于长方形面积的计算以及体积计算的知识也具备了。
这个时期最值得一提的,要算是算筹和十进位制系统了。
有
了它们,祖先们就不再为没有合适的计算手段而发愁了。
在我国古代,直到唐朝以前,一直用着这一套计算系统。
我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。
特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。
知道“是这样”,就是讲不出“为什么”。
根本原因还是无“米”下“锅”。
于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。
所以,词汇贫乏、内容空洞、千篇一律便成了中学生作文的通病。
要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积累足够的“米”。
算筹的确切起源时间至今还不清楚,只知道,大约在秦汉时期,算筹已经形成制度了。
要明白算筹是怎么
回事,先得知道什么叫筹。
筹就是一些直径1分、长6分的小棍儿,这些小棍儿的质料有竹、木、骨、铁、铜等。
它们的功用同算盘珠相仿。
目前,筹的实物已出土多批,1971年在陕西千阳县出土的一座长方形男女合墓中发现,那具男尸的胯部系着一个丝绢带囊,囊内装有一把骨筹。
1980年在石家庄南郊出土的一批早期骨筹,也是挂在死者的腰部。
由引可见,算筹在汉代知识分子中已经通用。
关于如何使用筹,根据记载是这样的:在计算时,将筹摆于特制的案子上,或随便摆放都可。
对于5以下的数字,是几就放几根筹,而对6~9这4个数字,则需要用一根横放或竖放的算筹当5,余下的数则仍是有几摆几根算筹。
我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。
特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本
结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。
知道“是这样”,就是讲不出“为什么”。
根本原因还是无“米”下“锅”。
于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。
所以,词汇贫乏、内容空洞、千篇一律便成了中学生作文的通病。
要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积累足够的“米”。
为了计算方便,古人规定了纵横表示法。
纵表示法用于个、百、万位数字;横表示法用于十、千位数字,遇到零时,则空一位。
十进位制系统,正是我们今天日常生活中常用的逢十进一法。
就是说,对正整数或正小数而言,以十为基础,逢十进一,逢百进二,逢千进三等等。
十进位制系统的产生,为四则运算的发展创造了良好的条件。