世界数学发展史

合集下载

《数学发展史》课件

《数学发展史》课件
详细描述
解析几何的诞生可以追溯到17世纪,由法国数学家笛卡尔创立。笛卡尔通过引入坐标 系,将几何图形与代数方程联系起来,从而开启了用代数方法研究几何的新时代。解析 几何的诞生不仅为数学带来了新的研究工具,还为物理学、工程学等领域的发展奠定了
基础。
微积分的诞生
要点一
总结词
微积分是数学中研究连续变化和速度的分支,它的诞生标 志着数学进入了一个新的时代。
欧几里得
古希腊数学家,他撰写了《几何原 本》,系统地总结了当时的几何知 识,并建立了欧几里得几何学。
古代印度数学
印度数学家发明了阿拉伯数字 和阿拉伯数字的计数系统,为 现代数学的发展奠定了基础。
印度数学家阿叶彼海特发明了 阿拉伯数字的十进制位值记数 法,使得数字的表示和计算变 得更加简便。
印度数学家婆罗摩笈多研究了 三角形的各种恒等式,并给出 了三角函数的计算方法。
解决复杂的优化和控制问题。
量子计算与数学
量子计算原理
量子计算利用量子力学的原理进行信息处理,而数学是理解和应 用量子计算的重要工具。
线性代数与量子力学
线性代数在描述量子态和量子操作中起到关键作用,为理解量子计 算提供了数学框架。
概率论与量子测量
概率论在描述量子测量和量子随机性中也有重要应用,有助于理解 量子计算的局限性和优势。
了深远影响。
古巴比伦数学
古巴比伦数学是数学发展史上的 另一个重要阶段,其数学成就主 要表现在天文学和土地测量等方
面。
古巴比伦人使用楔形文字记录数 学问题,最早的数学文献可以追
溯到公元前18世纪左右。
古巴比伦人发展出了60进制的计 数法,以及三角形、平方根等数 学概念,这些概念对后来的数学
发展产生了重要影响。

【学科起源】世界数学历史发展简介(原版)

【学科起源】世界数学历史发展简介(原版)

第【2】页
共【5】页
【学科起源】世界数学历史发展简介
公元1665年 公元1666年 公元1670年 约公元1680年 公元1684年 公元1687年 公元1689年 公元1707年 公元1713年 公元1715年 公元1722年 公元1730年 公元1731年 公元1736年 公元1742年 公元1744年 公元1747年 公元1748年 公元1750年 公元1770年 公元1777年 公元1779年 公元1788年 公元1794年 公元1795年 公元1797年 公元1799年 公元1799~1825年 公元1801年 公元1802年 公元1807年 公元1810年 公元1812年 公元1814年 公元1817年 公元1818年 公元1821年 公元1822年 公元1826年
共【5】页
公元499年 公元581~公元618年 公元600年 公元618~公元907年 约公元625年
第【1】页
Hale Waihona Puke 【学科起源】世界数学历史发展简介
公元628年 公元656年 公元820年 约公元870年 公元960~公元1279年 约公元1050年 公元1100年 公元1150年 公元1202年 公元1247年 公元1248年 约公元1250年 公元1279~公元1368年 公元1303年 公元1325年 公元14世纪 约公元1360年 公元1368~公元1644年 公元1427年 公元1464年 公元1482年 公元1489年 公元1545年 公元1572年 公元1585年 公元1591年 公元1592年 公元1606年 公元1614年 公元1615年 公元1629年 公元1635年 公元1637年 公元1639年 公元1640年 公元1642年 公元1644~公元1911年 公元1655年 公元1657年 印度婆罗摩笈多著《婆罗摩历算书》,已知圆内接四边形面积计算法,推进了一、二次不定方程的研 究; 中国李淳风等注释十部算经,后通称《算经十书》; 阿拉伯花拉子米著《代数学》,以二次方程求解为主要内容,12世纪该书被译成拉丁文传入欧洲; 印度出现包括零的十进制数码,后传入阿拉伯演变为现今的印度-阿拉伯数码; 宋; 中国贾宪提出二项式系数表(现称贾宪三角和增乘开方法); 阿拉伯奥马· 海亚姆首创用两条圆锥曲线的交点来表示三次方程的根; 印度婆什迦罗II著《婆什迦罗文集》为中世纪印度数学的代表作,其中给出二元不定方程x⒉=1+py⒉若干 特解,对负数有所认识,并使用了无理数; 意大利斐波那契著《算盘书》,向欧洲人系统地介绍了印度-阿拉伯数码及整数、分数的各种算法; 中国秦九韶著《数书九章》,创立解一次同余式的大衍求一术和求高次方程数值解的正负开方术,相 当于西方的霍纳法(1819); 中国李冶著《测圆海镜》,是中国现存第一本系统论述天元术的著作; 阿拉伯纳西尔丁· 图西开始使三角学脱离天文学而独立,将欧几里得《几何原本》译为阿拉伯文; 元; 中国朱世杰著《四元玉鉴》,将天元术推广为四元术,研究高阶等差数列求和问题; 英国布雷德沃丁将正切、余切引入三角计算; 珠算在中国普及; 法国奥尔斯姆撰《比例算法》,引入分指数概念,又在《论图线》等著作中研究变化与变化率,创图 线原理,即用经、纬度(相当于横、纵坐标)表示点的位置并进而讨论函数图像; 明; 阿拉伯卡西著《算术之钥》,系统论述算术、代数的原理、方法,并在《圆周论》中求出圆周率17位 准确数字; 德国雷格蒙塔努斯著《论一般三角形》,为欧洲第一本系统的三角学著作,其中出现正弦定律; 欧几里得《几何原本》(拉丁文译本)首次印刷出版; 捷克韦德曼最早使用符号+、-表示加、减运算; 意大利卡尔达诺的《大术》出版,载述了费罗(1515)、塔尔塔利亚(1535)的三次方程解法和费拉里(1544) 的四次方程解法; 意大利邦贝利的《代数学》出版,指出对于三次方程的不可约情形,通过虚数运算必可得三个实根, 给出初步的虚数理论; 荷兰斯蒂文创设十进分数(小数)的记法; 法国韦达著《分析方法入门》,引入大量代数符号,改良三、四次方程解法,指出根与系数的关系, 为符号代数学的奠基者; 中国程大位写成《直指算法统宗》,详述算盘的用法,载有大量运算口诀,该书明末传入日本、朝 鲜; 中国徐光启和利玛窦合作将欧几里得《几何原本》前六卷译为中文; 英国纳皮尔创立对数理论; 德国开普勒著《酒桶新立体几何》,有求酒桶体积的方法,是阿基米德求积方法向近代积分法的过 渡; 荷兰吉拉尔最早提出代数基本定理; 法国费马已得解析几何学要旨,并掌握求极大极小值方法; 意大利卡瓦列里建立“不可分量原理”; 法国笛卡儿的《几何学》出版,创立解析几何学; 法国费马提出“费马大定理”; 法国德扎格著《试论处理圆锥与平面相交情况初稿》,为射影几何先驱; 法国帕斯卡发表《圆锥曲线论》; 法国帕斯卡发明加减法机械计算机; 清(1661~1796史称康乾盛世); 英国沃利斯著《无穷算术》,导入无穷级数与无穷乘积,首创无穷大符号∞; 荷兰惠更斯著《论骰子游戏的推理》,引入数学期望概念,是概率论的早期著作。在此以前帕斯卡、 费马等已由处理赌博问题而开始考虑概率理论;

数学的发展历史

数学的发展历史
阿基米德的理论为几何和微积分的
开创写下了不可磨灭的一章
阿基米德的墓碑上刻的图
此后是千余年的停滞
• 随着希腊科学的终结,在欧洲出现了科学萧条,数学 发展的中心移到了印度、中亚细亚和阿拉伯国 家.在这些地方从5世纪到15世纪的一千年中间, 数学主要由于计算的需要而发展.印度人发明了 现代记数法 后来传到阿拉伯,从发掘出的材料看, 中国是使用十进制最早的国家 ,引进了负数.
的大小关系,平行线理论,三角形和多角形等积 面积相等 的条件,第一卷最 后两个命题是 毕达哥拉斯定理的正逆定理;
第二卷:几何与代数。讲如何把三角形变成等积的正方形;其中12、 13命题相当于余弦定理。
第三卷:本卷阐述圆,弦,切线,割线,圆心角,圆周角的一些定理。 第四卷:讨论圆内接和外切多边形的做法和性质; 第五卷:讨论比例理论,多数是继承自欧多克斯的比例理论,被认为 是"最重要的数学杰作之一" 第六卷:讲相似多边形理论,并以此阐述了比例的性质。 第五、第七、第八、第九、第十卷:讲述比例和算术的理论;第十 卷是篇幅最大的一卷,主要讨论无理量 与给定的量不可通约的量 ,其中第 一命题是极限思想的雏形。 第十一卷、十二、十三卷:最后讲述立体几何的内容.
学的内容,年代可以追溯到公元前2000年,其中甚至有“整勾 股数”及二次方程求解的记录。
莱茵德纸草书 1650 B.C.
莫斯科纸草书 vh(a2 abb2)
3
古巴比伦的“记事泥板”中关于 “整勾股数”的记载”
约公元前1000年
马其顿,1988年
20世纪在两河流域有约50万块泥版文 书出土,其中300多块与数学有关
秦九韶的《数书九章》 卷一“大衍总数术”
“贾宪三角”, 也称“杨辉三角”

数学发展史

数学发展史

数学开展简史数学是人类最古老的科学知识之一。

就人类对数的认识和运用来看,一般讲从公元前3000年左右的埃及象形文字就已开场,迄今已有5000年的历史。

那么到底什么是数学呢?实际上数学是一门历史性很强的科学或者说累积性很强,它的内涵随着时代的变化而变化,给数学下一个一劳永逸的定义是不可能的。

从公元前4世纪的希腊哲学家亚里士多德到17世纪的笛卡儿、19世纪的恩格斯、20世纪的罗素等很多数学家都曾给数学下过定义。

用的较多也较容易理解的是恩格斯的定义。

他说,数学,是研究数量关系与空间形式的一门科学。

20世纪80年代的一批美国学者将数学定义为:数学这个领域已被称作模式的科学,其目的是要提醒人们从自然界和数学本身的抽象世界中所观察到的构造和对称性。

这一定义以其高度的概括性,已日益引起关注并获得大多数数学家的认同与承受。

第一阶段:数学的萌芽阶段〔公元前3000年—公元前600年〕这一阶段,我们称之为数学的萌芽阶段,或者说准学科阶段。

在这一阶段里,数学还没有开展成为一门有明确构造的独立的理性的学科,还不具备抽象,还没有方法论,还没有论证和推理。

数学文化在这一阶段的出色代表是古巴比伦数学、中国数学、埃及数学、印度数学等。

这一阶段的世界数学文化呈一种多元开展态势。

第二阶段:数学的形成阶段〔公元前5世纪—公元16世纪〕这一阶段,通常称之为数学科学的形成时期,它的开场是以希腊人的出场为典型标志,完毕于公元16世纪,也就是在变量数学产生之前,人们常称此阶段为常量数学阶段,也就是数学学科完成了以常量为主要内容的框架体系。

这一时期,希腊数学家取得辉煌成绩,他们引入了证明,提出了抽象,发现了自然数,发现了无理数〔注:这是数学史上第一次危机。

?原本?第五卷中将比例理论由可公度量推广到不可公度量,使它能适用与更广泛的几何命题证明,从而巧妙的回避了无理量引起的麻烦。

但问题的根本解决要到19世纪借助极限过程对无理数做出严格定义之后〕。

数学发展史与数学家的贡献与成就

数学发展史与数学家的贡献与成就

近代几何学及拓扑思想萌芽
近代几何学的变革
19世纪,几何学经历了重大变革,非欧几何学的出现打破了欧几里得几何学的统治地位,为几何学的发展注入了 新的活力。
拓扑思想的萌芽
拓扑学是研究空间形态和结构的数学分支。18世纪,一些数学家开始尝试用新的方法来研究空间的连续性和变换 性质,这些研究为拓扑学的诞生奠定了基础。
推动数学研究
鼓励年轻一代积极参与数学研究,探索新的数学理论和算法,为 数学领域的发展做出自己的贡献。
THANKS
感谢观看
梳理本次报告主要内容
数学发展史的概述
01
从古代数学到现代数学的演变过程,包括各个时期的重要数学
家和他们的贡献。
数学家的贡献与成就
02
详细介绍了几位杰出的数学家,如欧几里得、阿基米德、牛顿
、高斯等,以及他们在数学领域的突出贡献和成就。
数学对未来科技发展的重要性
03
阐述了数学在物理、化学、生物、经济、计算机等各个领域中

Hale Waihona Puke 3近代数学突破与体系建立微积分学创立背景及意义
17世纪科学革命推动
伽利略、开普勒等物理学家的研究需 要新的数学工具来描述运动规律,促 进了微积分的创立。
牛顿和莱布尼茨的贡献
微积分学的意义
微积分学的创立不仅推动了数学本身 的发展,还为物理学、工程学、经济 学等多个领域提供了强有力的数学工 具。
古代中国数学贡献
《九章算术》
该书是中国古代数学的重要著作,包含了丰富的数学问题及其解法,反映了当时 中国数学的高度成就。
祖冲之与圆周率
祖冲之是中国南北朝时期的数学家,他精确计算出了圆周率的值,这一成就领先 世界近千年。
印度与阿拉伯数学发展

数学发展史简介

数学发展史简介
阿拉伯学者在吸收融汇保存古希腊印度和中国数学成果的基础上又有他们自己的创造使阿拉伯数学对欧洲文艺复兴时期数学的崛起作了很2印度3阿拉伯国家公元8世纪15世纪花拉子米代数学阿拉伯文还原与对消计算概要曾长期算术代数组合近代数学时期公元17世纪19世纪初我们来简要说明以下这个时期世界的经济背景和历史背景
数学发展史
数学发展史 大致可以分为四个阶段:
1、数学起源时期 2、初等数学时期
3、近代数学时期
4、现代数学时期
数学起源时期: ( 远古——公元前5世纪 )
在四个“河谷文明”地域,当对数的认识(计数)变得越来越明 这一时期:建立自然数的概念;认识简单的几何图形; 确时,人们感到有必要以某种方式来表达事物的这一属性, 算术与几何尚未分开。数学起源于四个“河谷文明”地域: 于是导致了记数。人类现在主要采用十进制,与“人的手指 共有十个”有关。而记数也是伴随着计数的发展而发展的。 •非洲的 尼罗河; 四个“河谷文明”地域的记数归纳如下: 这个区域主要是埃及王国:采用10进制,只有加法。 • 西亚的 底格里斯河与幼发拉底河; •刻痕记数是人类最早的数学活动,考古发现有 3万年前的狼 埃及的主要数学贡献:定义了基本的四则运算,并推广 骨上的刻痕。古埃及的象形数字出现在约公元前 3400年; 这个区域主要是巴比伦:采用 60进 到了分数;给出了求近似平方根的方法; 他们的几何知 •中南亚的 印度河与恒河; 10进制,并发明了 •巴比伦的楔形数字出现在约公元前 2400年; 制。巴比伦王国的主要数学贡献可以归结为以下三点:度 识主要是平面图形和立体图形的求积法。 •中国的甲骨文数字出现在约公元前 1600年。 量矩形,直角三角形和等腰三角形的面积,以及圆柱体等 •东亚的 黄河与长江; •古埃及的纸草书和羊皮书及巴比伦的泥板文书记载了早期数 柱体的体积;计数上,没有“零”的概念;天文学上,总 学的内容,年代可以追溯到公元前 2000年,其中甚至有“整 结出很多天文学周期,但绝对不是科学。 勾股数”及二次方程求解的记录。

数学的发展史

数学的发展史
域——数学分析(包括无穷级数论、微 分方程、微分几何、变分法等学科),它 后来成为数学发展的一个主流。数学方 法也发生了完全的转变,完成了从几何 方法向解析方法的转变。 十九世纪是数学发展史上一个伟大转折 的世纪。微积分发展成为数学分析,方 程论发展成为高等代数,解析几何发展 成为高等几何都取得了重大的成就。同 时还有一个独特的贡献,就是数学基础 的研究形成了三个理论:实数理论、集 合论和数理逻辑。
数学对人类的重要性

就,出现了许多闻名世界的数学家,如刘徽、祖冲之、 王孝通、李冶、秦九韶、朱世杰等人。出现了许多专 门的数学著作,特别是《九章算术》的完成,标志着 我国的初等数学已形成了体系。这部书不但在中国数 学史上而且在世界数学史上都占有重要的地位,一直 受到中外数学史家的重视。我国传统数学在线性方程 组、同余式理论、有理数开方、开立方、高次方程数 值解法、高阶等差级数以及圆周率计算等方面,都长 期居世界领先地位。
这个时期的起点是笛卡尔的著作,他引
这个时期是科学技术
飞速发展的时期,不 断出现震撼世界的重 大创造与发明。二十 世纪的历史表明,数 学已经发生了空前巨 大的飞跃,其规模之 宏伟,影响之深远, 都远非前几个世纪可 比,目前发展处于不 断加速的趋势。
从历史上看,远在巴比伦、埃及时代,由于人类生活和劳动生产的需要积累了一系列 算术和几何的知识。经过希腊时代,将这些比较零散的知识上升为理论的系统。西方
3 、变量数学 入了变量的概念。这个时期中还创立了 一系列新领域:解析几何、微积分、概 时期(十七世 率论、射影几何和数论等。并且出现了 代数化的趋势。随着数学新分支的创立, 新的概念层出不穷,如无理数、虚数、 纪初到十九世 导数、积分等等。 十八世纪是数学蓬勃发展的时期。以微 纪末) 积分为基础发展出一门宽广的数学领

数学史简介200字

数学史简介200字

数学史简介200字
数学是一门古老的学科,它为人们提供了一种理解和处理世界的方法。

数学的历史可以追溯到古代古埃及、古希腊和古印度,这些古代文明中就已经有了一定水平的数学知识。

从最近到最远,可以把数学史分为古代数学、中世纪数学、文艺复兴时期数学和现代数学四个阶段。

古代数学主要是古埃及、古希腊和古印度三个文明的数学。

古埃及文明的数学是实用的,以大量的实践性的计算、测量等活动为主;古希腊文明的数学则以理论为主,以抽象认识和分析质量为主;古印度的数学则介于两者之间,以抽象的认识和实践的应用为主。

中世纪数学主要是由伊斯兰文明发展起来的。

伊斯兰文明对数学的发展以印第安拉尔曼为主,他更注重数学的使用,言简意赅地表达概念,使得数学从抽象变得更加具体,从而促进数学的发展。

文艺复兴时期的数学,由欧洲文化发展而来,以古希腊、罗马文化为开端,以欧洲文化为主。

这段时期的数学发展大多数集中在阿基米德的各种数学理论和研究上,他的数学理论极大地影响了世界各地的数学发展。

现代数学的发展主要是从17世纪开始的,它拥有更多的发展方向,其中早期数学家如弗洛伊德、费曼等都建立了一些重要的数学理论,这些理论为今天的数学发展奠定了基础。

此外,在20世纪,数学仍在继续发展,出现了一些新的数学理论和数学分支,例如数学物理学、数理统计、计算机数学等。

数学是一门古老的学科,其发展历史可以追溯到古代古埃及、古希腊和古印度,可以分为古代数学、中世纪数学、文艺复兴时期数学和现代数学四个阶段。

从古至今,数学从抽象变得越来越具体,数学理论也在不断发展,推动科学发展和社会进步。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一节数学发展的主要阶段2009-10-12 10:05:28 来源:中外数学网浏览:7次乔治·萨顿曾说过:“科学史是人类认识自然的经验的历史回顾。

”数学史是数学发展历史的回顾,它研究数学产生发展的历史过程,探求其发展的规律。

研究数学史,可以通过历史留下的丰富材料,了解数学何时兴旺发达,何时停滞衰退,从中总结经验教训,以利于数学更进一步的发展。

关于数学发展史的分期,一般来说,可以按照数学本身由低级到高级分阶段进行,也就是分成四个本质不同的发展时期,每一新时期的开始都以卓越的科学成就作标志,这些成就确定了数学向本质上崭新的状态过渡.这里我们主要介绍世界数学史的发展。

一、数学的萌芽时期这一时期大体上从远古到公元前六世纪.根据目前考古学的成果,可以追溯到几十万年以前.这一时期可以分为两段,一是史前时期,从几十万年前到公元前大约五千年;二是从公元前五千年到公元前六世纪.数学萌芽时期的特点,是人类在长期的生产实践中,逐步形成了数的概念,并初步掌握了数的运算方法,积累了一些数学知识.由于土地丈量和天文观测的需要,几何知识初步兴起,但是这些知识是片断和零碎的,缺乏逻辑因素,基本上看不到命题的证明.这个时期的数学还未形成演绎的科学.这一时期对数学的发展作出贡献的主要是中国、埃及、巴比伦和印度.从很久以前的年代起,我们中华民族勤劳的祖先就已经懂得数和形的概念了.在漫长的萌芽时期中,数学迈出了十分重要的一步,形成了最初的数学概念,如自然数、分数;最简单的几何图形,如正方形、矩形、三角形、圆形等.一些简单的数学计算知识也开始产生了,如数的符号、记数方法、计算方法等等.中小学数学中关于算术和几何的最简单的概念,就是在这个时期的日常生活实践基础上形成的.总之,这一时期是最初的数学知识积累时期,是数学发展过程中的渐变阶段.二、初等数学时期从公元前六世纪到公元十七世纪初,是数学发展的第二个时期,通常称为常量数学或初等数学时期.这一时期也可以分成两段,一是初等数学的开创时代,二是初等数学的交流和发展时代.1.初等数学的开创时代.这一时代主要是希腊数学.从泰勒斯(Thales,公元前636—前546)到公元641年亚历山大图书馆被焚,前后延续千余年之久,一般把它划分为以下几个阶段:(1)爱奥尼亚阶段(公元前600—前480年);(2)雅典阶段(公元前480—前330年);(3)希腊化阶段(公元前330—前200年);(4)罗马阶段(公元前200—公元600年).爱奥尼亚阶段的主要代表有米利都学派、毕达哥拉斯(Pythagoras,公元前572—前497)学派和巧辩学派.在这个阶段上数学取得了极为重要的成就,其中有:开始了命题的逻辑证明,发现了不可通约量,提出了几何作图的三大难题——三等分任意角、倍立方和化圆为方,并且试图用“穷竭法”去解决化圆为方的问题.所有这些成就,对数学后来的发展产生了深远的影响.雅典阶段的主要代表有柏拉图(Plato,公元前427—前347)学派、亚里斯多德(Aristotle,公元前384—前322)的吕园学派、埃利亚学派和原子学派.他们在数学上取得的成果,十分令人赞叹,如柏拉图强调几何对培养逻辑思维能力的重要作用;亚里斯多德建立了形式逻辑,并且把它作为证明的工具.所有这些成就把数学向前推进了一大步.上述两个阶段称为古典时期.这一时期的数学发展,在希腊化阶段上开花结果,取得了极其辉煌的成就,产生了三个名垂青史的大数学家欧几里得、阿基米德(Archimeds,公元前287—前212)和阿波罗尼(Apollonius,约公元前262—前190).欧几里得的《几何原本》第一次把几何学建立为演绎体系,从而成为数学史乃至思想史上一部划时代的著作.阿基米德善于将抽象的数学理论和具体的工程技术结合起来.他根据力学原理去探求几何图形的面积和体积,第一个播下了积分学的种子.阿波罗尼综合前人的成果,写出了有创见的《圆锥曲线》一书,它成为后来所有研究这一问题的基础和出发点.这三大数学家的丰功伟绩,把希腊数学推向光辉的顶点.随着罗马成为地中海一带的统治者,希腊数学也就转入到罗马阶段.在这个阶段也出现了许多有成就的数学家,其中特别值得一提的是托勒密(C·Ptolemy,公元90—168)结合天文学对三角学的研究、尼可马修斯(Nichomachus,公元100年左右)的《算术入门》和丢番图(Diophantus,约246—330)的《算术》.后两本著作把数学研究从形转向数,在希腊数学中独树一帜.尤其是《算术》一书,它对后来数学发展的影响,仅次于《几何原本》.总之,这一时代的特点是:数学已经开始发展成为一门独立科学,建立了真正意义上的数学理论;数学的两个分支——算术和几何,已经作为演绎系统建立起来;数学发生了非常明显的变化,即从经验形态上升为理论形态.特别要指出的是,关于数学研究的对象,当时已经比较明确地提了出来.古希腊数学家亚里斯多德在《形而上学》第十三篇第三章中说,数学的东西(例如点、线)是感性事物的抽象.他的这个思想直到现在仍然值得我们赞赏,因为它明确地、清楚地揭示出数学研究的特点,这就是把物体、现象、生活的一个方面抽象化.2.初等数学的交流和发展时代.从公元六世纪到十七世纪初,是初等数学在各个地区之间交流,并且取得了重大进展的时期.在亚洲地区,有中国数学、印度数学和日本数学.我国在数学上取得的成就将在后面专门叙述.印度数学的特点是受婆罗门教的影响很大,此外,它还受到中国、希腊和近东数学的影响,特别是中国的影响.印度数学的成就主要在算术和代数方面,最为人称道的是位值制记数法,现行的“阿拉伯数码”源于印度.七世纪以后,建立了以巴格达为中心的阿拉伯数学.它主要受希腊数学和印度数学的影响.这一时期产生了阿尔·花拉子模(AL-Khowarizmi,780—850)等一大批数学家,为世界数学宝库增添了光彩.代数是阿拉伯数学中最先进的部分,“代数”这个名词出自花拉子模的著作,它的研究对象被规定为方程论;几何从属于代数,不重视证明;三角学是他们的最大贡献,他们引入正切、余切、正割、余割等三角函数,制作精密的三角函数表,发现平面三角与球面三角若干重要的公式,使三角学脱离天文学独立出来.中世纪欧洲的数学家们基本上是引进,学习中国、印度、希腊和阿拉伯的数学,其中著名的数学家有意大利的斐波那契(L·Fibonacci,约1170—1250)、法国的奥雷斯姆(N·Oresme,约1323—1382)等.到了十五、十六世纪,意大利的数学家帕西奥里(L·Pacioli,1445—1509)、塔塔利亚(N·Tartaglia,1500—1557)等人在代数方程论方面作了一系列突破性的工作,并使用了虚数,欧洲人终于取得了超过前人的成就.法国的韦达(F·Vieta,1540—1603)改进了符号,使代数学大为改观.苏格兰的纳皮尔(J.Napi-er,1550—1617)发明了对数,使计算方法向前推进了一大步.这个时期的特点是初等数学的主体部分(算术、代数与几何)已全部形成,并且发展成熟了.例如在算术方面,除了继承原有的计算技术之外,还发明了对数,代数也有很大的发展,韦达建立了符号代数.在三角学方面,雷琼蒙塔努斯(J·Regiomontanus,1436—1476)著了《三角全书》,其中包括平面三角和球面三角.在几何方面,透视法满足了绘画的需要,投影法满足了绘制地图的需要,等等.3.中国在这一时期对数学的贡献.我们伟大的祖国是世界上公认的四大文明古国之一,有悠久的历史和灿烂的文化.上下五千年的中国文化丰富多采、为世界文明作出了不朽的贡献.中国数学的发展和成就,在世界数学史上占有非常重要的地位.在世界数学的宝库里,中国古代数学是影响深远、风格独特的体系.在初等数学时期,我国在数学领域取得了许多伟大成就,出现了许多闻名世界的数学家,如刘徽(公元三世纪)、祖冲之(429—500)、王孝通(公元六世纪—七世纪)、李冶(1192—1279)、秦九韶(1202—1261)、朱世杰(十三、四世纪)等人.出现了许多专门的数学著作,特别是《九章算术》的完成,标志着我国的初等数学已形成了体系.这部书不但在中国数学史上而且在世界数学史上都占有重要的地位,一直受到中外数学史家的重视.我国传统数学在线性方程组、同余式理论、有理数开方、开立方、高次方程数值解法、高阶等差级数以及圆周率计算等方面,都长期居世界领先地位.例如,1802年,一个意大利科学协会为了改进高次方程的解法,曾颁发一枚金质奖章,这枚奖章为意大利数学家鲁菲尼(P·Ruffini,1765—1822)所获得,1819年英国数学家霍纳(G·Horner,1786—1837)完全独立地发展了一个相同的方法.不过他们谁也不知道,早在十三世纪,秦九韶就已经发展了古代解数值高次方程的方法,他的方法与1819年霍纳重新发现的方法实质上是相同的.我国十一世纪杰出的数学家贾宪是最早得出关于二项式展开式的系数规律的(贾宪三角形),在欧洲称之为“巴斯卡”(B·Pascal,1623—1662)三角形,而巴斯卡是在十七世纪才得出这一结果的.由刘徽在公元三世纪根据《九章算术》推导的羡除公式,欧洲人却误认为是勒让德(A·M·Legendre,1752—1833)首创的.祖冲之把圆周率π计算到范围为3.1415926<π<3.1415927,以及密率,保持世界记录千年以上。

古代中国数学家的伟大成就,不仅是中国人民的财富,而且还是世界科学的瑰宝.三、近代数学时期从十七世纪初到十九世纪末,是数学发展的第三个时期,通常称为变量数学时期或近代数学时期.其中从十七世纪初到十八世纪末,是近代数学的创立与发展阶段;十九世纪是近代数学的成熟阶段.这个时期的起点是笛卡尔(R·Descartes,1596—1650)的著作,他引入了变量的概念,恩格斯对此给予很高的评价:“数学中的转折点是笛卡尔的变数.有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了,而它们也就立刻产生,并且是由牛顿和莱布尼兹大体上完成的,但不是由他们发明的.”十七世纪是数学发展史上一个开创性的世纪,创立了一系列影响很大的新领域:解析几何、微积分、概率论、射影几何和数论等.每一个领域都使古希腊人的成就相形见绌.这一世纪的数学还出现了代数化的趋势,代数比几何占有重要的位置,它进一步向符号代数转化,几何问题常常反过来用代数方法解决.随着数学新分支的创立,新的概念层出不穷,如无理数、虚数、导数、积分等等,它们都不是经验事实的直接反映而是数学认识进一步抽象的结果.十八世纪是数学蓬勃发展的时期.以微积分为基础发展出一门宽广的数学领域——数学分析(包括无穷级数论、微分方程、微分几何、变分法等学科),它后来成为数学发展的一个主流.数学方法也发生了完全的转变,主要是欧拉、拉格朗日(Lagrange,1736—1813)和拉普拉斯(Laplace,1749—1827)完成了从几何方法向解析方法的转变.这个世纪数学发展的动力,除了来自物质生产之外,一个直接的动力来自物理学,特别是来自力学、天文学的需要.十九世纪是数学发展史上一个伟大转折的世纪,它突出地表现在两个方面.一方面是近代数学的主体部分发展成熟了,经过一个多世纪数学家们的努力,它的三个组成部分取得了极为重要的成就:微积分发展成为数学分析,方程论发展成为高等代数,解析几何发展成为高等几何,这就为近代数学向现代数学转变准备了充分的条件.另一方面,近代数学的基本思想和基本概念,在这一时期中发生了根本的变化:在分析学中,傅立叶(J·Fourier,1768—1830)级数论的产生和建立,使得函数概念有了重大突破;在代数学中,伽罗瓦(E·Galois,1811—1832)群论的产生,使得代数运算的概念发生了重大的突破;在几何学中,非欧几何的诞生在空间概念方面发生了重大突破,这三项突破促使近代数学迅速向现代数学转变.十九世纪还有一个独特的贡献,就是数学基础的研究形成了三个理论:实数理论、集合论和数理逻辑.这三个理论的建立为即将到来的现代数学准备了更为深厚的基础.四、现代数学时期从十九世纪末至现在的时期,是现代数学时期,其中主要是二十世纪.这个时期是科学技术飞速发展的时期,不断出现震撼世界的重大创造与发明.本世纪前八十年的历史表明,数学已经发生了空前巨大的飞跃,其规模之宏伟,影响之深远,都远非前几个世纪可比,目前发展还有加速的趋势,最后二十年大概还要超过前八十年.二十世纪数学的主要特点,可简略概括如下:1.电子计算机进入数学领域,产生难以估量的影响.计算机1945年制造成功,到现在四十多年,已经改变或正在改变整个数学的面貌.围绕着计算机,很快就形成了计算科学这门庞大的学科.离散数学的飞速发展,动摇了分析数学十七世纪以来占有的统治地位,目前大有和分析数学分庭抗礼之势.自古以来,数学证明都是数学家在纸上完成的.随着计算机的发明,出现了机器证明这一新课题.1976年,两位美国数学家利用计算机终于证明了“四色定理”这个难题,轰动了数学界,它开辟了人机合作去解决理论问题的途径.2.数学渗透到几乎所有的科学领域里去,起着越来越大的作用.四十年代以后,涌现出大量新的应用数学科目,内容的丰富,名目的繁多,都是前所未有的.今天,在人类的一切智力活动中,没有受到数学(包括电子计算机)的影响的领域,已经廖廖无几了.即使过去很少使用数学的生物学,现在也和数学结合形成了生物数学、生物统计学、数理生物学等等学科.应用数学的新科目如雨后春笋般兴起,如对策论、规划论、排队论、最优化方法、运筹学等.六十年代模糊数学产生以后,数学的对象更加扩大,应用的范围也就更广了.3.数学发展的整体化趋势日益加强.从十九世纪起,数学分支越来越多,到本世纪初,可以数出上百个不同的分支.另一方面,这些学科又彼此融合,互相促进,错综复杂地交织在一起,产生出许多边缘性和综合性的学科.单科独进,孤立地发展的情况已不复存在.4.纯粹数学不断向纵深发展.集合论的观点渗透到各个领域里去,逐渐取得支配的地位.公理化方法日趋完善.数学一方面勇往直前,另一方面又重视基础的巩固.数理逻辑和数学基础已经成为数学大厦的基础,在它的上面矗立起泛函分析,抽象代数和拓扑学这三座宏伟的建筑.数学在获得广泛应用的同时,新理论、新观点、新方法也不断产生,如代数拓扑、积分论、测度论、赋范环论、紧李群等许多重大的基础学科,都是本世纪产生和成熟的.现代数学在这些基地上又向更新的高度攀登.本世纪的许多古典难题,包括希尔伯特的23个问题,有些已经获得了解决,有些取得了可喜的成果,还有不少振奋人心的突破。

相关文档
最新文档