数学发展史
数学的发展历史

数学的发展历史一、古代数学的萌芽数学的历史可以追溯到公元前1800年的古巴比伦,那时候出现了一些代数问题和几何问题。
他们使用类似于解谜游戏的方法来解决问题,这些解题方法在那个时代已经很先进了。
在公元前600年左右,古希腊的毕达哥拉斯学派开创了完整的数学理论,这阶段被认为是古代数学的黄金时代。
他们发现了自然数、几何元素和研究了三角形的一些基本理论。
二、欧几里得与数学元素欧几里得是古希腊的数学家、几何学家,他发表了著名的《几何原本》一书,成为了古代希腊数学理论的代表。
欧几里得的《几何原本》对许多几何概念和证明进行了全面的系统总结,成为了数学教育中的经典教材。
三、中世纪的数学沉寂中世纪的欧洲数学长期受到罗马帝国的灭亡和各种教会的禁忌的影响而停滞不前。
然而,在伊斯兰世界,穆斯林数学家保留下了希腊的数学遗产,发展出了乘法表和代数学,同时也为十进制数学系统提供了发展思路,这大大促进了基础数学的发展。
四、文艺复兴与数学的繁荣在文艺复兴时期,欧洲兴起的人文主义和启蒙思想极大地推动了数学的发展。
意大利数学家费拉利和巴西科等人提出了大量的代数方法和解决方案,而德国数学家克拉默在线性代数和矩阵理论上的突破对现代数学的发展产生了深刻的影响。
五、科技革命与数学的重要角色随着科技的飞跃,数学的应用价值也越来越受到重视。
数学提供了解决数值计算问题和控制系统问题的数学方法,使得机械、电子和计算机技术得到了迅速的发展。
现代数学的很多理论和方法都是为了解决这些工程和科学问题而发展起来的。
六、现代数学的哲学与未来现代数学不仅让人们更好的理解世界,更开启了理解科学和宇宙的新的宏观和微观层次。
随着技术的飞速发展,数学的应用也不断得到了创新和拓展,预示着数学将在未来担任越来越重要的角色,成为推动人类进步的重要力量。
《数学发展史》课件

解析几何的诞生可以追溯到17世纪,由法国数学家笛卡尔创立。笛卡尔通过引入坐标 系,将几何图形与代数方程联系起来,从而开启了用代数方法研究几何的新时代。解析 几何的诞生不仅为数学带来了新的研究工具,还为物理学、工程学等领域的发展奠定了
基础。
微积分的诞生
要点一
总结词
微积分是数学中研究连续变化和速度的分支,它的诞生标 志着数学进入了一个新的时代。
欧几里得
古希腊数学家,他撰写了《几何原 本》,系统地总结了当时的几何知 识,并建立了欧几里得几何学。
古代印度数学
印度数学家发明了阿拉伯数字 和阿拉伯数字的计数系统,为 现代数学的发展奠定了基础。
印度数学家阿叶彼海特发明了 阿拉伯数字的十进制位值记数 法,使得数字的表示和计算变 得更加简便。
印度数学家婆罗摩笈多研究了 三角形的各种恒等式,并给出 了三角函数的计算方法。
解决复杂的优化和控制问题。
量子计算与数学
量子计算原理
量子计算利用量子力学的原理进行信息处理,而数学是理解和应 用量子计算的重要工具。
线性代数与量子力学
线性代数在描述量子态和量子操作中起到关键作用,为理解量子计 算提供了数学框架。
概率论与量子测量
概率论在描述量子测量和量子随机性中也有重要应用,有助于理解 量子计算的局限性和优势。
了深远影响。
古巴比伦数学
古巴比伦数学是数学发展史上的 另一个重要阶段,其数学成就主 要表现在天文学和土地测量等方
面。
古巴比伦人使用楔形文字记录数 学问题,最早的数学文献可以追
溯到公元前18世纪左右。
古巴比伦人发展出了60进制的计 数法,以及三角形、平方根等数 学概念,这些概念对后来的数学
发展产生了重要影响。
数学发展史

数学发展简史数学发展史大致可以分为四个阶段:一、数学起源时期二、初等数学时期三、近代数学时期四、现代数学时期一、数学起源时期(远古——公元前5世纪)这一时期:建立自然数的概念;认识简单的几何图形;算术与几何尚未分开。
数学起源于四个“河谷文明”地域:非洲的尼罗河;这个区域主要是埃及王国:采用10进制,只有加法。
埃及的主要数学贡献:定义了基本的四则运算,并推广到了分数;给出了求近似平方根的方法;他们的几何知识主要是平面图形和立体图形的求积法。
西亚的底格里斯河与幼发拉底河;这个区域主要是巴比伦:采用10进制,并发明了60进制。
巴比伦王国的主要数学贡献可以归结为以下三点:度量矩形,直角三角形和等腰三角形的面积,以及圆柱体等柱体的体积;计数上,没有“零”的概念;天文学上,总结出很多天文学周期,但绝对不是科学。
中南亚的印度河与恒河;东亚的黄河与长江在四个“河谷文明”地域,当对数的认识(计数)变得越来越明确时,人们感到有必要以某种方式来表达事物的这一属性,于是导致了记数。
人类现在主要采用十进制,与“人的手指共有十个”有关。
而记数也是伴随着计数的发展而发展的。
四个“河谷文明”地域的记数归纳如下:刻痕记数是人类最早的数学活动,考古发现有3万年前的狼骨上的刻痕。
古埃及的象形数字出现在约公元前3400年;巴比伦的楔形数字出现在约公元前2400年;中国的甲骨文数字出现在约公元前1600年。
古埃及的纸草书和羊皮书及巴比伦的泥板文书记载了早期数学的内容,年代可以追溯到公元前2000年,其中甚至有“整勾股数”及二次方程求解的记录。
二、初等数学时期(前6世纪——公元16世纪)这个时期也称常量数学时期,这期间逐渐形成了初等数学的主要分支:算术、几何、代数、三角。
该时期的基本成果,构成现在中学数学的主要内容。
这一时期又分为三个阶段:古希腊;东方;欧洲文艺复兴。
下面我们分别介绍:1.古希腊(前6世纪——公元6世纪)毕达哥拉斯——“万物皆数”欧几里得——几何《原本》阿基米德——面积、体积阿波罗尼奥斯——《圆锥曲线论》托勒密——三角学丢番图——不定方程2.东方(公元2世纪——15世纪)1)中国西汉(前2世纪)——《周髀算经》、《九章算术》魏晋南北朝(公元3世纪——5世纪)——刘徽、祖冲之:出入相补原理,割圆术,算术。
数学的发展历史

数学的发展历史
数学的发展史大致可以分为四个时期分别是:第一时期是数学形成时期,第二时期是
常量数学时期,第三时期:变量数学时期,第四时期:现代数学时期。
其研究成果有李氏
恒定式、华氏定理、苏氏锥面。
第一时期:数学形成时期(远古—公元前六世纪),这是人类建立最基本的数学概念
的时期。
人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本、最
简单的几何形式,算术与几何还没有分开。
第二时期:初等数学时期、常量数学时期(公元前六世纪—公元十七世纪初)这个时
期的基本的、最简单的成果形成中学数学的主要内容,大约持续了两千年。
这个时期逐渐
构成了初等数学的主要分支:算数、几何、代数。
第三时期:变量数学时期(公元十七世纪初—十九世纪末)变量数学产生于17世纪,经历了两个决定性的重大步骤:第一步是解析几何的产生;第二步是微积分(calculus)
的创立。
第四时期:现代数学时期(十九世纪末已经开始),数学发展的现代阶段的开端,以
其所有的基础--------代数、几何、分析中的深刻变化为特征。
数学发展史时间轴

数学发展史时间轴
数学发展史可以追溯到人类文明的起源,几乎与人类思维和社会发展同步进行。
下面是一个简要的数学发展史时间轴:
1. 古代数学(约公元前3000年-公元5世纪):
古代数学主要集中在古巴比伦、古埃及、古希腊、古印度和古中国等地。
这个时期的数学主要涉及算术、几何和代数等基本概念和方法的发展。
2. 中世纪数学(公元5世纪-15世纪):
中世纪数学主要由阿拉伯数学家和欧洲学者推动。
阿拉伯人引入了印度-阿拉伯数字系统和代数的进一步发展。
欧洲学者则致力于恢复和传播古代数学知识,推动了几何学的发展。
3. 文艺复兴时期(15世纪-17世纪):
文艺复兴时期是数学发展的黄金时期,涌现出许多伟大的数学家。
代表性的有勒内·笛卡尔和伽利略·伽利雷,他们为代数和几何学的发展做出了重要贡献。
4. 近代数学(17世纪-19世纪):
近代数学的突破主要来自于微积分学的发展。
牛顿和莱布尼茨同
时独立发现了微积分的基本原理。
这一时期还涌现出许多其他重要的数学家,如欧拉、高斯和拉格朗日等。
5. 现代数学(20世纪至今):
现代数学涉及的领域非常广泛,包括数学分析、代数学、几何学、概率论、统计学、拓扑学等。
数学家们不断提出新的理论、方法和应用,推动着数学的不断发展和应用的扩展。
这只是一个简要的数学发展史时间轴,数学的发展一直在不断演进,影响着我们的生活和科学技术的进步。
数学的发展史

数学对人类的重要性
)
就,出现了许多闻名世界的数学家,如刘徽、祖冲之、 王孝通、李冶、秦九韶、朱世杰等人。出现了许多专 门的数学著作,特别是《九章算术》的完成,标志着 我国的初等数学已形成了体系。这部书不但在中国数 学史上而且在世界数学史上都占有重要的地位,一直 受到中外数学史家的重视。我国传统数学在线性方程 组、同余式理论、有理数开方、开立方、高次方程数 值解法、高阶等差级数以及圆周率计算等方面,都长 期居世界领先地位。
这个时期的起点是笛卡尔的著作,他引
这个时期是科学技术
飞速发展的时期,不 断出现震撼世界的重 大创造与发明。二十 世纪的历史表明,数 学已经发生了空前巨 大的飞跃,其规模之 宏伟,影响之深远, 都远非前几个世纪可 比,目前发展处于不 断加速的趋势。
从历史上看,远在巴比伦、埃及时代,由于人类生活和劳动生产的需要积累了一系列 算术和几何的知识。经过希腊时代,将这些比较零散的知识上升为理论的系统。西方
3 、变量数学 入了变量的概念。这个时期中还创立了 一系列新领域:解析几何、微积分、概 时期(十七世 率论、射影几何和数论等。并且出现了 代数化的趋势。随着数学新分支的创立, 新的概念层出不穷,如无理数、虚数、 纪初到十九世 导数、积分等等。 十八世纪是数学蓬勃发展的时期。以微 纪末) 积分为基础发展出一门宽广的数学领
数学的发展历史

数学的发展历史无理数的发现──第一次数学危机大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。
当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称为"四艺",在其中追求宇宙的和谐规律性。
他们认为:宇宙间一切事物都可归结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形,如直角边长均为1的直角三角形就是如此。
这一悖论直接触犯了毕氏学派的根本信条,导致了当时认识上的"危机",从而产生了第一次数学危机。
到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。
他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中。
欧多克斯和狄德金于1872年给出的无理数的解释与现代解释基本一致。
今天中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微妙之处。
第一次数学危机对古希腊的数学观点有极大冲击。
这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之却可以由几何量来表示出来,整数的权威地位开始动摇,而几何学的身份升高了。
危机也表明,直觉和经验不一定靠得住,推理证明才是可靠的,从此希腊人开始重视演译推理,并由此建立了几何公理体系,这不能不说是数学思想上的一次巨大革命!无穷小是零吗?──第二次数学危机18世纪,微分法和积分法在生产和实践上都有了广泛而成功的应用,大部分数学家对这一理论的可靠性是毫不怀疑的。
1734年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,矛头指向微积分的基础--无穷小的问题,提出了所谓贝克莱悖论。
他指出:"牛顿在求xn的导数时,采取了先给x以增量0,应用二项式(x+0)n,从中减去xn以求得增量,并除以0以求出xn的增量与x 的增量之比,然后又让0消逝,这样得出增量的最终比。
数学的发展史

数学的发展史
数学发展史可追溯到古人发现使用数字来统计物体数量的行为。
早在3000多年前,埃及人就发明了第一种数字系统。
公元前1700年,印度人发明了类似现代数学符号的符号系统,包括“ + ”、“-”、“ × ”、“÷”和根号等标记。
后来,古希腊人就利用其系统进行
形式化的数学研究,将数学从实际应用转变为理论抽象的学科。
经历了古希腊文明的发展,中世纪的数学受到了穆斯林的影响,
以独特的方法对数学进行了完善。
17世纪,1686年,英国的伽利略和
德国的斐波那契已经建立了新的数学理论体系,它不仅清晰明确地证
实了新发现的宇宙学,而且也是现代数学的基础。
18世纪,数学有了显著进步,德国数学家勃兰特开创了微积分,
拓展了古希腊时期的几何。
德国科学家博宁根据独特的方法,发现了
著名的博宁准则;而法国数学家和物理学家拉格朗日将分析几何的概
念应用到实际问题中,建立了令人惊叹的拉格朗日几何。
19世纪,海森堡、费马等俄罗斯数学家也有着重要贡献,运用所
谓的“数学分析方法”,他们把几何中的重要性质和属性抽象出来,
这就是现代数学研究的源泉。
20世纪之前,数学不断发展,深入探索
数理逻辑,发展不同类型的数论,大量新的数学定理也随之诞生。
而
20世纪以后,随着计算机的发展,数学研究也取得了非常大的进步,
数学的应用被实际应用到科学、工程、经济和社会等各个领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学发展简史
数学是人类最古老的科学知识之一。
就人类对数的认识和运用来看,一般讲从公元前3000年左右的埃及象形文字就已开始,迄今已有5000年的历史。
那么到底什么是数学呢?实际上数学是一门历史性很强的科学或者说累积性很强,它的内涵随着时代的变化而变化,给数学下一个一劳永逸的定义是不可能的。
从公元前4世纪的希腊哲学家亚里士多德到17世纪的笛卡儿、19世纪的恩格斯、20世纪的罗素等很多数学家都曾给数学下过定义。
用的较多也较容易理解的是恩格斯的定义。
他说,
数学,是研究数量关系与空间形式的一门科学。
20世纪80年代的一批美国学者将数学定义为:数学这个领域已被称作模式的科学,其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性。
这一定义以其高度的概括性,已日益引起关注并获得大多数数学家的认同与接受。
第一阶段:数学的萌芽阶段(公元前3000年—公元前600年)
这一阶段,我们称之为数学的萌芽阶段,或者说准学科阶段。
在这一阶段里,数学还没有发展成为一门有明确结构的独立的理性的学科,还不具备抽象,还没有方法论,还没有论证和推理。
数学文化在这一阶段的杰出代表是古巴比伦数学、中国数学、埃及数学、印度数学等。
这一阶段的世界数学文化呈一种多元发展态势。
第二阶段:数学的形成阶段(公元前5世纪—公元16世纪)
这一阶段,通常称之为数学科学的形成时期,它的开始是以希腊人的出场为典型标志,结束于公元16世纪,也就是在变量数学产生之前,人们常称此阶段为常量数学阶段,也就是数学学科完成了以常量为主要内容的框架体系。
这一时期,希腊数学家取得辉煌成绩,他们引入了证明,提出了抽象,发现了自然数,发现了无理数(注:这是数学史上第一次危机。
《原本》第五卷中将
比例理论由可公度量推广到不可公度量,使它能适用与更广泛的几何命题证明,从而巧妙的回避了无理量引起的麻烦。
但问题的根本解决要到19世纪借助极限过程对无理数做出严格定义之后)。
最大的光荣是欧几里得写的《原本》和阿波罗尼奥斯的《圆锥曲线论》。
欧几里得的《原本》可以说是数学史上的第一座理论丰碑。
这一阶段,中国的数学文化也是最辉煌的时代,《九章算术》可以说是东方的《原本》,圆周率的定值比世界上其他国家最先进的成就早了1000年。
第一、二阶段的数学──十七世纪以前的数学称为初等数学阶段。
其特点是:数是常数,形是孤立的、规则的几何体,而且数和形往往是相互独立的。
分为初等代数和初等几何。
第三阶段:变量数学阶段(公元17世纪—公元19世纪上半叶)(或称近代数学阶段)
这一时期是世界数学文化史上的辉煌时期,人们通常称之为牛顿时代。
这一时期是欧洲人的天下,最典型的学科标志就是由常量数学转向变量数学。
变量数学的第一个里程碑是解析几何的诞生。
1637 法国数学家笛卡尔Descartes创立解析几何,将变量引入数学.为微积分创立搭建了历史的舞台。
1665 经过半个世纪酝酿, 英国科学家牛顿(Newton)发表了«流数简论»标志着微积分的诞生。
微积分的创立是牛顿最卓越的数学成就。
他将自古希腊以来求解无限小问题的各种技巧统一为两类普通的算法——微分和积分,并确立了这两类运算的互逆关系,从而完成了微积分发明中最关键的一步,为近代科学发展提供了最有效的工具,开辟了数学上的一个新纪元。
严格地说,微积分是牛顿和德国科学家莱布尼茨(Leibniz)各自独立创立的。
莱布尼茨是17、18世纪之交德国最重要的数学家、物理学家和哲学家,一个举世罕见的科学天才。
他博览群书,涉猎百科,其著作涉及数学、力学、机械、地质、逻辑、哲学、法律、外交、神学和语言学等。
在数学方面,莱布尼茨的贡
献也远不止微积分,他的研究及成果渗透到数学的许多领域。
牛顿和莱布尼茨都是他们时代的巨人。
应该说,微积分能成为独立的科学并给整个自然科学带来革命性的影响,主要是靠了他们的工作。
但是微积分在产生之初并不是现在我们课本上的这种形式,我们学习的微积分是将十七、十八、十九世纪的结果经过系统归纳、整理而得到的。
实际上牛顿和莱布尼茨的微积分是不严格的,特别在实用无限小概念上的随意与混乱,而数学的严格性,自古希腊以来一直是数字家们追求的目标,因此关于微积分基础的争论引发了第二次数学危机。
经过一个世纪的尝试,欧拉、拉格朗日、达朗贝尔、柯西等数学家在严格化基础上重建微积分的努力到19世纪初才开始获得成效。
(详见分析严格化的进程)
18世纪数学家一方面努力探索使微积分严格化的途径,一方面又往往不顾基础困难而大胆前进,大大扩展了微积分的应用范围,尤其是与力学的结合,成为18世纪数学的鲜明特征之一,这种结合的紧密度是数学史上任何时期不能比拟的。
当时几乎所有数学家都不同程度的也是力学家。
正是微积分的广泛应用,使得一系列新的数学分支成长起来。
在18世纪,微分方程、变分法等分支与微积分本身一起,形成了被称之为“分析”的广大领域,它与代数、几何并列为数学的三大学科(注:高等代数、高等几何、与数学分析统称为高等数学,也称为初等微积分。
研究对象是函数,主要的工具是极限。
),并且在这个世纪里,其繁荣程度远远超过了代数与几何。
第四阶段:数学飞速发展阶段(1874年以后的数学)(或称现代数学阶段)
经过近两个世纪的开拓,在18世纪行将结束的时候,数学家们对自己从事的这门科学却奇怪的存在着一种普遍悲观的情绪,拉格朗日在1781年给达朗贝尔的一封信中说:“在我看来似乎数学的矿井已经挖掘很深了,除非发现新的矿脉,否则迟早势必放弃它……科学院中几何(数学)的处境将会有一天变成目前大学中阿拉伯语的处境一样。
”
然而进入19世纪,数学却跨入一个前所未有,突飞猛进的历史时期。
代数、几何、分析三大领域都获得了惊人的成就。
19世纪-纯粹数学形成期
在分析学严格化的进程中诞生了集合论(1874年德国数学家Cantor创立集合论,为微积分奠定了坚实的基础),它成为当时分析严格化的最高成就。
因此在1900年巴黎国际数学大会上庞加莱宣称:完全的严格化已经达到了。
(但第二年罗素悖论引发了关于数学基础的新争论-第三次数学危机)集合论的产生使人们对数学的认识达到了空前的高度。
在19世纪和20世纪数学交界线上高耸着三个巨大身影:庞加莱、克莱因、希尔伯特。
他们反射着19世纪数学的光辉。
同时照耀着通往20世纪数学的道路。
在19世纪末,数学发展呈现出一派生机蓬勃的景象。
这与18世纪形成了鲜明的对比,无论从内部需要还是外部应用看,数学家们似乎都有做不完的问题。
1900年8月5日庞加莱宣布巴黎国际数学家大会开幕,正是这次会议期间,希尔伯特充满信心地走上讲台,以他著名的23个问题揭开了20世纪数学的序幕。
20世纪-既是纯粹数学期,也是应用数学的时代
进入20世纪,数学已经不再仅仅是代数、几何、分析经典学科的集合,数学得到了空前发展,成为分支众多、庞大的知识体系。
(目前数学包括60多个二级学科,400多个三级学科。
庞加莱曾被称为最后的一位数学通才。
)与19世纪相比20世纪纯数学发展表现了如下主要特征或趋势。
更高的抽象性、更强的统一性、更深的基础探讨。
抽象化最初主要受两大因素推动即集合论观点渗透和公理化方法的运用,他们的结合将数学引向高度抽象化道路。
这方面的发展,导致了20世纪上半叶实变、泛函、拓扑、抽象代数等具有标志性的四大抽象分支的崛起。
20世纪下半叶,统一化趋势空前加强。
不同分支领域的数学思想与数学方法相互融合,导致一系列重大发现以及数学内部新的综合交叉学科的不断兴起。
而且从使用的数学方法而论,数学中不同分支的界限还在变得模糊。
此外,罗素悖论明白无疑的揭示了集合论本身确实存在矛盾,在数学界引起一片震惊。
法国数学家弗雷格在他刚完成的符号逻辑专著《算数基础》第二卷合卷处写到:“一个科学家不会碰到比这更尴尬的事情了,即在一项工作完成的时
候他的基础却在崩溃……”
为了消除悖论,首先求助于将“朴素集合论”(康托)加以公理化。
第一集合论公理系统是1908年由第梅格篆书,但庞加莱形象的评论:“为了防狼,羊群已经被圈起来。
却不知道圈内有没有狼”。
进一步的尝试,是从逻辑上寻找问题的症结。
形成了关于数学基础的三大学派:逻辑主义、有觉主义、形式主义,这三大学派在20世纪前30年间非常活跃,争论非常激烈,现在看来,都未做出满意的解答,但他们的研究却将人类对数学基础的认识引向了空前的深度。
1930年在哥德尔定理引起震动之后,关于数学基础争论渐趋淡化,数学家们更多地专注于数理逻辑的具体研究。
20世纪40年代后,数学以空前的广度、深度向其他科技和人类知识领域渗透。
结束语
纵观数学的历史,不难看出自微积分创立之后的三、四百年间,数学的发展是空前的,因此微积分的创立是数学发展史上重要的转折点。
同时,对微积分深入的研究,大大扩展了数学的应用范围,所以恩格斯说:“微积分是人类精神的最高胜利。
”学习微积分对每个愿意探索、愿意求知的人来说都是重要的。