超滤微滤技术的应用和原理

合集下载

微滤和超滤的原理

微滤和超滤的原理

微滤和超滤的原理
微滤和超滤的原理区别如下:
1. 微滤是依靠筛滤原理,使用孔径0.1-10μm的滤膜隔离颗粒物质。

2. 超滤是通过溶质分子量的不同进行分离,使用孔径1-100nm的滤膜。

3. 微滤主要根据颗粒物的大小进行截留,超滤主要根据分子量截留。

4. 微滤可去除悬浮物、藻类、沙粒等较大颗粒杂质。

5. 超滤可以去除病毒、细菌、蛋白质、糖类、油脂等较小分子杂质。

6. 微滤通常在0.1-0.5Mpa的压力下进行。

超滤在0.5-4Mpa压力下进行。

7. 微滤滤速较快,超滤滤速较慢。

8. 微滤滤膜较超滤滤膜筛孔粗大,水通量大。

9. 超滤操作和设备成本较高,但可以取得更高的去除率。

10. 两者可结合使用,微滤去除大颗粒,超滤深度净化。

超滤工作模式

超滤工作模式

超滤工作模式超滤工作模式是一种高效的过滤方法,通过超滤膜对水进行过滤,将水中的悬浮物、胶体、细菌等微生物去除,从而得到清澈透明的水质。

超滤工作模式在水处理领域被广泛应用,具有过滤效果好、操作简便、节能环保等优点。

超滤工作模式的原理是利用超滤膜的微孔结构,将水中的杂质截留在膜表面,而将水分子通过膜孔,从而实现对水的过滤。

超滤膜的孔径通常在0.01-0.1微米之间,能有效去除水中的微生物、有机物质、颗粒物等。

超滤工作模式适用于家庭自来水的净化、工业废水处理、饮用水生产等领域。

在超滤工作模式中,通常会采用压力差驱动水通过超滤膜,从而实现水的过滤。

在过程中,超滤膜会不断积累杂质,需要定期清洗或更换超滤膜以保持过滤效果。

超滤工作模式操作简便,只需设定好压力差和流量即可实现自动运行,无需人工干预。

超滤工作模式在水处理领域有着广泛的应用。

在家庭中,可以利用超滤水壶或超滤水龙头直接饮用经过超滤的水,保障家人的健康。

在工业领域,超滤工作模式可用于废水回收再利用,降低对环境的污染。

在饮用水生产中,超滤工作模式可以去除水中的异味、色泽等不良物质,提高水质的口感和安全性。

除了过滤水质,超滤工作模式还可以用于浓缩、分离等工艺。

在蛋白质提取、果汁浓缩等过程中,超滤工作模式可以有效分离目标物质,提高产品纯度和产量。

在生物制药、食品加工等领域,超滤工作模式也有着重要的应用价值。

总的来说,超滤工作模式是一种高效、节能、环保的过滤方法,适用于各种领域的水处理和工艺应用。

通过超滤工作模式,可以获得清洁透明的水质,保障人们的健康和生产的顺利进行。

希望超滤工作模式能够得到更广泛的应用,为人类的生活和生产带来更多便利和益处。

超滤系统工作原理

超滤系统工作原理

超滤系统工作原理
超滤系统是一种物理分离技术,利用超滤膜筛选溶液中的溶质和颗粒物质。

其工作原理是基于压力驱动,将溶质通过微孔隔离。

以下是超滤系统的工作原理:
1. 进料:需要处理的溶液被引入超滤系统中,通常是通过管道连接到超滤膜的一侧。

2. 压力驱动:在超滤系统中施加一定的压力,如液体泵或其他压力装置,使溶液在超滤膜上形成一定的压力差。

3. 分离:超滤膜的孔径大小一般在0.01-0.1微米之间,根据溶质颗粒的大小选择合适的膜孔径。

较大的分子、颗粒物质和悬浮物将被留在超滤膜的一侧,而较小的分子和溶质则能通过超滤膜的微孔,形成过滤物。

4. 收集:超滤膜另一侧通过管道收集所得的过滤物,也即留在膜表面的较大分子和颗粒。

5. 结果:通过超滤系统处理后,溶液中的大部分悬浮颗粒和高分子物质被分离,产生的过滤物质较为纯净。

需要注意的是,超滤系统是一种物理分离方法,不改变原溶液中溶质的化学结构和溶解状态,而主要实现对颗粒、胶体和大分子物质的分离。

超滤微滤膜分离实验报告

超滤微滤膜分离实验报告

超滤微滤膜分离实验报告
超滤和微滤是常用的膜分离技术,可以将溶质和溶剂分离开来。

超滤
是通过压力差将大分子物质和水分离开来,而微滤是通过滤网将大分子物
质滤掉。

本次实验旨在探究超滤和微滤的原理及其应用。

实验材料与方法:
材料:蛋白酶胰酶液、超滤膜和微滤膜。

方法:
1. 在2个应用超滤的实验管中各加入1ml含蛋白酶胰酶的液体;
2.各管盖上超滤膜,用放置于等温区的膜分离设备应用压力将溶剂透
过膜向下渗透;
3. 在2个应用微滤的实验管中各加入1ml含蛋白酶胰酶的液体;
4.各管盖上微滤膜,用放置于等温区的膜分离设备应用压力将溶剂透
过膜向下渗透;
5.通过分析分离前和分离后的溶液,比较超滤和微滤分离效果的差异。

结果:
在超滤实验中,分离后的液体中含有蛋白质,而微滤实验中的分离后
液体中则不含蛋白质。

结论:
超滤和微滤都是膜分离技术,其差异在于应用的膜的孔径大小。

超滤
和微滤的分离效果也不同,具体应根据需要选择不同的技术应用于不同的
场合。

超滤适用于分离分子量较大的物质,例如蛋白质、多糖等,而微滤适用于分离颜料、细菌等较小分子量的物质。

此外,超滤和微滤还有一定的应用限制,例如超滤膜容易被堵塞,需要定期清洗换膜,而微滤膜则较容易损坏,需要小心使用。

总之,超滤和微滤均具有其独特的分离效果和应用范围,在实际应用中应当注重选择合适的技术,以达到最佳的分离效果。

微滤超滤纳滤反渗透等膜分离技术介绍.

微滤超滤纳滤反渗透等膜分离技术介绍.

微滤超滤纳滤反渗透等膜分离技术一、微滤超滤纳滤反渗透等膜分离技术发展史微滤超滤纳滤反渗透等膜分离是在20世纪初出现,20世纪60年代后迅速崛起的一门分离新技术。

膜分离技术由于兼有分离、浓缩、纯化和精制的功能,又有高效、节能、环保、分子级过滤及过滤过程简单、易于控制等特征,因此,目前已广泛应用于食品、医药、生物、环保、化工、冶金、能源、石油、水处理、电子、仿生等领域,产生了巨大的经济效益和社会效益,已成为当今分离科学中最重要的手段之一。

膜可以是固相、液相、甚至是气相的。

用各种天然或人工材料制造出来的膜品种繁多,在物理、化学、生物性质上呈现出各种各样的特性。

大多数人会认为,膜离我们的生活非常遥远。

其实不然,膜分离技术非常贴近我们的日常生活。

如水、果汁、牛奶、保健品、中药、茶食品、饮料、调味品等我们随时可能接触到的,都会用到膜分离技术。

二、微滤超滤纳滤反渗透等膜分离原理膜分离过程是以选择性透过膜为分离介质,当膜两侧存在某种推动力(如压力差、浓度差、电位差、温度差等时,原料侧组分选择性地透过膜,以达到分离、提纯的目的。

不同的膜过程使用不同的膜,推动力也不同。

目前已经工业化应用的膜分离过程有微滤(MF、超滤(UF、反渗透(RO、渗析(D、电渗析(ED、气体分离(GS、渗透汽化(PV、乳化液膜(ELM等。

三、微滤超滤纳滤反渗透等分离技术反渗透、超滤、微滤、电渗析这四大过程在技术上已经相当成熟,已有大规模的工业应用,形成了相当规模的产业,有许多商品化的产品可供不同用途使用。

这里主要以反渗透膜和超滤膜为代表介绍一下。

3.1 反渗透膜(RO反渗透膜使用的材料,最初是醋酸纤维素(CA,1966年开发出聚酰胺膜,后来又开发出各种各样的合成复合膜。

CA 膜耐氯性强,但抗菌性较差。

合成复合膜具有较高的透水性和有机物截留性能,但对次氯酸等酸性物质抗性较弱。

这两种材料耐热性较差,最高温度约是60℃左右,这使其在食品加工领域的应用中受到限制。

超滤技术的应用及发展趋势

超滤技术的应用及发展趋势

超滤技术的应用及发展趋势超滤技术是一种通过使用过滤膜分隔物质的方法。

它通常用于从溶液中分离固体或高分子物质。

该技术在水处理、食品加工、制药和生物技术等领域有广泛的应用。

下面将重点讨论超滤技术的应用及发展趋势。

一、应用1.水处理:超滤技术在水处理中用于去除悬浮颗粒、有机物、微生物和溶解质等。

它被广泛应用于饮用水和工业废水处理中。

超滤技术可以有效去除水中的微生物,如病毒、细菌和寄生虫卵等,提供清洁的饮用水。

此外,超滤技术还可以用于去除水中的重金属、有机物和悬浮固体,使废水符合排放标准。

2.食品加工:超滤技术用于乳制品、果汁、啤酒和酒精等液体的澄清和浓缩。

它可以去除悬浮固体、细菌和酵母等。

超滤技术还可以用于提取果汁中的胶体和可溶性物质,以改善产品的质量和口感。

3.制药:超滤技术在制药中用于分离和浓缩药物、细胞颗粒、蛋白质和多肽等。

它可以去除细菌、病毒和微粒等杂质,提高产品的纯度和活性。

此外,超滤技术还用于药物的包装和控释系统的制备。

4.生物技术:超滤技术在生物技术中常用于生物大分子如蛋白质、核酸和多肽的纯化和分离。

它可以去除杂质,提高产品的纯度和活性。

超滤技术还可以用于细胞培养和微生物发酵的浓缩和分离。

二、发展趋势1.提高膜材料的选择和开发:超滤膜的材料决定了其分离性能和稳定性。

目前,研究人员正在开发新型的膜材料,以提高超滤膜的通量、抗污染性和耐温性。

2.提高超滤系统的运行效率:提高超滤系统的运行效率是当今的研究热点之一、研究人员正在研究新的超滤系统设计和操作策略,以提高系统的分离效果和减少能耗。

3.开发先进的超滤设备和技术:随着超滤技术的不断发展,越来越多的先进设备和技术被应用于实际生产中。

如膜模块的改进、膜元件的自动化控制和在线监测技术等。

4.结合其他分离技术:超滤技术常常与其他分离技术如微滤、蒸发浓缩和冷冻干燥等结合使用,以提高产品的纯度和浓缩度。

5.向综合化和智能化方向发展:超滤技术正朝着综合化和智能化方向发展。

纳米通净水:微滤、超滤、纳滤、反渗透技术介绍

纳米通净水:微滤、超滤、纳滤、反渗透技术介绍

一、微滤的定义Microfiltration,MF,又称微孔过滤,它属于精密过滤,一般精度范围为0.1微米以上,能够过滤微米(micron)级的微粒和细菌,能够截留溶液中的沙砾、淤泥、黏土等颗粒和贾第虫、隐孢子虫、藻类和一些细菌等,而大量溶剂、小分子及大分子溶质都能透过的膜的分离过程。

二、微滤膜过滤原理微滤过滤是一种筛分过程,操作压力一般在0.07~0.7MPa(0.7~7个大气压)。

原料液在静压差作用下,透过一种过滤材料,过滤材料包括:折叠滤芯、熔喷滤芯、布袋式除尘器等。

透过纤维素或高分子材料制成的微孔滤膜(微孔膜的规格目前有十多种,孔径范围为0.1~100 μm,膜厚120~150 μm),利用其均一孔径,来截留水中的微粒、细菌等,使其不能通过滤膜从而被去除。

决定膜的分离效果的是膜的物理结构、孔的形状和大小。

三、微滤技术的优势* 占地面积小,膜面积大,有效过滤面积高;* 制作工艺成熟,精度高,0.1~100 μm范围内,微滤膜都能满足处理要求;* 抗性高,纳污能力强,部分材质膜抗酸碱、抗氧化能力强,能适用各种恶劣水质,如PVDF(聚偏氟乙烯)性能稳定,寿命长,抗酸碱、高温等;* 成本低,部分无机膜清洗方便,可重复使用。

四、微滤技术的缺点收制备工艺及本身结构的限制,微滤对于水中离子、有机物、病毒等小分子物质几乎没有去除效果。

五、微滤技术的应用领域* 海水淡化工程:作为工业反渗透进水的预处理工艺* 工业污水处理:微滤主要应用处理污水中大颗粒杂质* 制药行业:液体-固体分离* 饮料行业:液体-固体分离六、微滤技术在纳米通产品中的应用纳米通几乎所有家用净水设备中均采用了微滤作为初步过滤手段,有效除去水中泥沙、铁锈、大型藻类植物等,保护进一步处理中使用的各种膜材及设备,使系统精度更高、使用寿命更长。

一、超滤概念超滤是切向流过滤(据滤膜的截留孔径分类)中的一种,也称切向流超滤,能截留0.002~0.1微米之间的大分子物质和蛋白质,允许小分子物质和溶解性固体(无机盐)等通过,同时将截留下胶体、蛋白质、微生物和大分子有机物,用于表示超滤膜孔径大小的切割分子量范围一般在1000-500000之间。

高效微滤机工作原理

高效微滤机工作原理

高效微滤机工作原理
高效微滤机的工作原理主要是基于微孔滤芯的过滤作用。

首先,水源通过进水管道进入高效微滤机,经过预处理后进入微滤芯。

微滤芯通常采用陶瓷、石英、聚酯薄膜等材料制成,具有微细的孔隙结构。

微滤芯的孔径一般在0.1-10微米之间,可以有效地过滤掉水中的悬浮颗粒、泥沙、微生物、细菌等固体颗粒和微生物。

当水通过微滤芯时,由于芯片上的孔隙非常小,大多数固体颗粒和微生物会被阻挡在滤芯表面,而干净的水则能够通过滤芯的孔隙,进入滤芯内部。

微滤芯内部通常还设有一种纳米级表面处理技术,能够增强滤芯的吸附能力,进一步过滤掉微小的颗粒和微生物,提高过滤效果。

此外,微滤芯还能够有效去除水中的浑浊度、异色、异味等,使水质变得清澈透明。

在实际使用中,高效微滤机还会配备自动冲洗装置,定期对滤芯进行冲洗,以清除滤芯表面的杂质,保证其过滤效果。

同时,高效微滤机还设有出水管道,将过滤后的干净水输出给用户。

总之,高效微滤机借助微滤芯的微孔过滤作用,能够有效地去除水中的固体颗粒和微生物,提供干净、清澈的水质供给。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
业化应用; 5. 我国从20世纪70年代开始研究,随后进
入快速发展阶段。
3
三、超滤的用途
超滤主要用于从液相物质中分离大分子化合 物(蛋白质、核酸聚合物、淀粉、天然胶、酶 等)、胶体分散液(粘土、颜料、矿物料、乳 液粒子、微生物)以及乳液(润滑脂、洗涤剂、 油水乳液)。采用先与适合的大分子结合的方 法也可以从水溶液中分离金属离子、可溶性溶 质和高分子物质(如蛋白质、酶、病毒),以 达到净化、浓缩的目的。
34
THE END!
THANK YOU!
35
1. 微滤膜的污染与 过滤阻力主要是 来自于被截留的溶质或颗粒在膜 的表面形成的浓差极化和滤饼层 的阻力及颗粒在膜微孔中的吸附 和堵塞。
2. 减少膜污染的措施——
31
2.减少膜污染的措施——
1. 料液的预处理:絮凝沉淀、多介质机械过滤、热处 理、调pH值、加配位剂(EDTA等)、氯化、活性 炭吸附、化学处理、精密过滤等。
膜技术应用
——超 滤
1
一、超滤的定义
超滤是在压差推动力作用下进行的筛 孔分离过程,它介于纳滤和微滤之间,膜 孔范围在1nm-0.05um.
2
二、超滤的发展进程
1. 1861年Schmidt首次公布了牛心胞薄膜 截留可溶性阿拉伯胶的实验结果;
2. 1867年,Traube制成第一次人工膜; 3. 1907年开始使用“超滤”这一术语; 4. 20世纪70年代,超滤从实验规模进入工
19
二、微滤的发展进程
1. 19世纪中叶开始出现微滤膜技术; 2. 20世纪初开始对该技术进行系统研究; 3. 20世纪60年代开始进入飞跃发展阶段; 4. 我国对该项技术的研究始于20世纪五、
六十年代,80年代初期开始起步并得到 快速发展。
20
三、微滤的应用领域
微滤主要从气相和液相物质中截留微 米及亚微米级的细小悬浮物、微生物、 微粒、细菌、酵母、红血球、污染物等 以达到分离、净化和浓缩的目的。
1.影响膜清洗的因素:膜的化学特性和污染物特性 2.膜的清洗方法
物理方法:水力方法和气液脉冲法 化学方法:物理清洗——清洗剂扩散到污垢表层——渗 透扩散进污垢层——清洗反应——清洗反应产物转移至 清洗剂体系
15
七、超滤膜的清洗
3.常见的化学清洗剂 ① 酸碱液 ② 表面活性剂 ③ 氧化剂 ④酶 4.清洗效果评价
2. 浓差极化
超滤时,由于筛分作用,料液中的部分大分子溶质会被膜截留, 溶剂及小分子溶质则能自由地透过膜,从而表现出超滤膜的选择 性。被截留的溶质在膜表面处积聚,其浓度会逐渐升高,在浓度 梯度的作用下,及近膜面的溶质又以相反方向向料液主体扩散, 平衡状态时膜表面形成一溶质浓度分布边界层,对溶剂等小分子 物质的运动起阻碍作用。这种现象称为膜的浓差极化,是一个可 逆过程。
③ 溶液pH值:一般把它调至远离等电点,可减 少污染;
④ 盐:自身沉积或改变蛋白质性质而产生膜污染; ⑤ 温度:适宜的料液温度会减少膜的污染。
13
4.控制措施
B.膜的压差较高时,浓差极化产生的阻力 占主导地位,此时应着重减少浓差极化 阻力,其措施主要是:
① 增大料液流速; ② 升高料液温度; ③ 选择合适的膜组件结构
21
四、微滤的分离机理
▪ 微滤的分离机理是筛分机理,膜的物理 结构起决定性作用。此外,吸附和电性 能对截留也有影响。
▪ 微滤膜的截留分表面层截留和内部截留 两种:
1. 表面层截留:机械截留作用、物理作用或吸附 截留作用、架桥作用
2. 膜内部截留:膜的网络内部截留作用,是指将 微粒截留在内部而不是在膜的表面
5
6
7
8
9
五、超滤膜的特性
1. 超滤膜按形态结构可分两类:对称膜和非对称 膜
2. 超滤膜的分离特性:透过通量(速度)和截留 率(分离效果)
3. 超滤膜的材料:1)有机高分子材料(纤维素衍 生物、聚砜类、乙烯类聚合物、含氟类聚合物) 2)无机材料(多孔金属、多孔陶瓷、分子筛)
10
4.超滤膜的制备——
22
五、微滤的操作模式
1. 无流动操作(静态过滤或死端过滤) 2. 错流操作(动态过滤)
23
24
25
26
六、微滤膜的特性
1. 微滤膜的分类: 按形态结构可分两类对称膜和非对称膜 按材料可分两类有机膜和无机膜
2. 微滤膜的结构: 具有毛细管状孔结构的筛网型微孔滤膜 具有曲孔的深度型微孔滤膜
27
通常用纯水透水率恢复系数r来表示清洗效果: r=J/J0 *100%
J为清洗后膜的通量,J0为膜清洗前的初始通量
16
七、超滤的应用
1. 工业废水处理 2. 食品工业中的应用 3. 高纯水制备中的应用 4. 生物制药领域的应用
17
膜技术应用
——微 滤
18
一、微滤的定义
微滤是在压差 推动力作用下进行的 筛孔分离过程,膜孔 范围在0.05um20um.
32
八、微滤膜的清洗
1. 物理清洗 包括水力学反冲洗和气体反冲洗
2. 化学清洗 包括酸碱液、表面活性剂、氧化剂、酶、 配合剂等。清洗剂既可单独使用,也可 以组合形式使用。
33
九、微滤的应用
1. 电子工业应用 2. 医药卫生行业应用 3. 水处理及海水淡化 4. 食品饮料行业 5. 油田采出水处理
① 有机高分子超滤膜采用相转化法、 拉伸法、复合膜法、烧结法、核 径迹法等
② 无机超滤膜采用固体粒子烧结法、 溶胶凝胶法、阳极氧化法、动态 膜法、薄膜沉积法、水热法等;
11
六、超滤膜的污染及控制
1. 膜污染的定义:
指处理物料中的微粒,胶体粒子或溶质大分子,由于与膜存 在物理化学相互作用或机械作用而引起的在膜表面或膜孔内吸附, 沉积造成膜孔径变小或堵塞,使膜产生透过流量与分离特性的不 可逆变化。
使用寿命。
28
4.微滤膜材料
对于微滤膜,选择膜材料时材料的加工要求、 耐污染能力和其化学及热稳定性等是主要的考虑因 素
用于微滤膜制备的材料包括有机高分子材料和 无机材料(见表)
29
5.微滤膜的制备技术
▪ 微滤膜的制备包括烧结法、拉 伸法、相转化法、径迹蚀刻法 和溶胶凝胶法等
30
七、微滤膜的污染及控制
2. 膜的运行方式:死端过滤膜通量减小快,一般应选 用错流过滤的运行方式。
3. 膜组件和系统的设计:通过提高传质系数(如高流 速等)和使用较低通量的膜可以减少浓差极化,采 用端流强化器也可以减少膜的污染。
4. 电场作用:通过电场作用促进膜表面聚集的带电微
粒向料流主体迁移,从而增加其传质系数,也可减
少膜的污染。
3.微滤膜的特点
① 微滤主要以筛分机理,其他深层过滤介质 达不到绝对截留的要求
② 孔径分部均匀,过滤精度高,可靠性强 ③ 孔隙率高,过滤速度快 ④ 微滤膜整体性强,不脱落,不对物料产生二次
污染,且膜层薄,对物料吸附少,减少损失 ⑤ 与其它深层过滤方法结合使用,可延长微滤膜
3.
造成膜污染的主要原因: a.
料液性质
b. 膜及膜组件性质
c. 操作条件
12
4.控制措施
A. 膜的压差较低时,膜自身的机械阻力和膜 污染阻力占主导地位,应尽量减少膜污染 阻力来提高膜的运行水平
① 膜材料:与溶质电荷相同的强亲水和强疏水性 膜较耐污染;
② 膜孔径:一般选孔径比被截留粒子尺寸小一个 数量级的膜;
4
四、超滤的基本原理
▪ 超滤的分离机理是“筛分”分子级的物质, 即它可截留溶液中溶解的大分子物质,而 透过小分子物质。
▪ 理想的超滤膜分离是筛分过程,在压力推 动下,进料液中的溶剂和小分子溶质透过 膜进入滤液侧,溶液中的大分子物质、胶 体、蛋白质等被超滤膜截留浓缩。
▪ “筛分膜”和“深层膜”的比较——
C.膜压差很高时,凝胶层阻力占主导地位, 凝胶层是由浓差极化造成的,所以防止 凝胶层的形成应尽量控制浓差极化。
14
七、超滤膜的清洗
▪ 在实际膜分离技术应用中,尽管选择了较合适的膜和适宜 的操作条件下,在长期运行中,过滤通量随运行时间的增 加必然产生下降现象,即膜污染问题必然发生,此时需要 采取一定的清洗方法,使膜面或膜孔内污染物去除,从而 达到过滤通量恢复,延长膜寿命的目的。
相关文档
最新文档