昆明理工大学概率论与数理统计2018--2019年考博真题博士入学试卷

合集下载

概率论与数理统计习题(含解答,答案)

概率论与数理统计习题(含解答,答案)

概率论与数理统计习题(含解答,答案)概率论与数理统计复习题(1)⼀.填空.1.3.0)(,4.0)(==B P A P 。

若A 与B 独⽴,则=-)(B A P ;若已知B A ,中⾄少有⼀个事件发⽣的概率为6.0,则=-)(B A P 。

2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。

3.设),(~2σµN X ,且3.0}42{ },2{}2{=<<≥==>}0{X P 。

4.1)()(==X D X E 。

若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。

5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。

7.)16,1(~),9,0(~N Y N X ,且X 与Y 独⽴,则=-<-<-}12{Y X P (⽤Φ表⽰),=XY ρ。

8.已知X 的期望为5,⽽均⽅差为2,估计≥<<}82{X P 。

9.设1?θ和2?θ均是未知参数θ的⽆偏估计量,且)?()?(2221θθE E >,则其中的统计量更有效。

10.在实际问题中求某参数的置信区间时,总是希望置信⽔平愈愈好,⽽置信区间的长度愈愈好。

但当增⼤置信⽔平时,则相应的置信区间长度总是。

⼆.假设某地区位于甲、⼄两河流的汇合处,当任⼀河流泛滥时,该地区即遭受⽔灾。

设某时期内甲河流泛滥的概率为0.1;⼄河流泛滥的概率为0.2;当甲河流泛滥时,⼄河流泛滥的概率为0.3,试求:(1)该时期内这个地区遭受⽔灾的概率;(2)当⼄河流泛滥时,甲河流泛滥的概率。

三.⾼射炮向敌机发射三发炮弹(每弹击中与否相互独⽴),每发炮弹击中敌机的概率均为0.3,⼜知若敌机中⼀弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。

昆明理工大学考研试题高等代数(2015-2016年)

昆明理工大学考研试题高等代数(2015-2016年)

1. (10 分) 设 p 是一个奇素数, 多项式 f (x) x p px 1. 证明: f (x) 在有理数域上不可约.
2. (10 分) 计算 n 阶行列式
a1 a2 a1 a2
an an .
a1
a2 an
3. (15 分) 若向量组1,2 ,,s s 2 线性无关, 讨论
1 1 1
5、 (15 分)求 A 2 1 0 的逆矩阵。
1
1
0
6、 (20 分)设V 是数域 F 上全体 n 阶方阵构成的空间,V1 是V 中全体对称方阵构成的子 空间,V2 是V 中全体反对称方阵构成的子空间。证明:V V1 V2 。
7、 (15 分)设1, 2 , , n 是线性空间V 中一组向量,T 是V 的一个线性变换。证明: T (L(1, 2 , ,n )) L(T1, T2 , , Tn ) 。
利用维数公式证明:W1 W2 .
10. (10 分) 设 (x1, x2 ,, xn ), ( y1, y2 ,, yn ) 为实空间 Rn 中任意两个向量, A (aij ) 为
n 阶实矩阵. 证明: Rn 对于内积 A T 做成欧氏空间的充要条件是 A 为正定矩阵.
第2页共2页
昆明理工大学 2015 年硕士研究生招生入学考试试题(A 卷)
8.
设矩阵
A
2 3
x 1
2 1

B
0 0
2 0
0 y

似,

x=
,y
=

1 1 1
9.
欧氏空间
R3
中一组基
0
,
1
,
1
的度量矩阵是

概率论与数理统计(经管类)2018年10月真题及答案

概率论与数理统计(经管类)2018年10月真题及答案

概率论与数理统计(经管类)2018年10月真题及答案一、单选题(共10题,共40分)1.设随机事件A与B互不相容,且P(A)&gt;0,P(B)&gt;0,则()A.P(B|A)=0B.P(A|B)&gt;0C..P(A|B)=P(A)D.P(AB)=P(A)P(B)2.设随机变量X~N(1,4),F(x)为X的分布函数,Φ(x)为标准正态分布函数,则F(3)=()A.Φ(0.5)B..Φ(0.75)C.Φ(1)D.Φ(3)3.设随机变量X的概率密度为f(x)=则P{0≤X≤}=()A.1/4B.1/3C.1/2D.3/44.设随机变量 X的概率密度为 f(x)=则常数c=()B.-1C.-1/2D.15.设下列函数的定义域均为(-∞,+∞),则其中可作为概率密度的是()A.B.C.D.6.设二维随机变量( X,Y)~ N(μ1, μ2,),则 Y ~()A.B.C.D.7.已知随机变量 X的概率密度为f(x)=则E(X)=()A.6B.3C.18.设随机变量X与Y相互独立,且X~B(16,0.5),Y服从参数为9的泊松分布,则D(X-2Y+3)=()A.-14B.-11C..40D..439.设随机变量Zn~B(n,p),n=1,2,其中0&lt;p&lt;1,=()A.B.C.D.10.设 x1,x2,x3,x4 为来自总体X的样本,=()A.B.C.D.二、填空题(共15题,共60分)11.设随机事件A与B相互独立,且P(A)=P(B)=1/3,则=_______.12.设袋内有5个红球、3个白球和2个黑球,从袋中任取3个球,则恰好取到1个红球、1个白球和1个黑球的概率为_________.13.设A为随机事件,P(A)=0.3,则_________.14.设X是连续型随机变量,则P{X=5}=_________.15.设随机变量 X的分布律为. 记 Y=X2,则 P{ Y=4} =_________.16.设随机变量X的分布函数为F(x),已知F(2)=0.5,F(-3)=0.1,则P{-3&lt;X≤2} = _________.17.设随机变量 X的分布函数为 F(x)=则当 x>0 时,X的概率密度 f (x)=_________.18.若随机变量 X~B(4,1/3),则P{ X≥1} = _________.19.设二维随机变量(X,Y)的概率密度为 f (x,y)=则 P{ X +Y≤1} = _________.20.设随机变量X的分布律为21.设随机变量X~N(0,4),则E(X2)=_________.22.设随机变量X~N(0,1),Y~N(0,1),Cov(X,Y)=0.5,则D(X+Y)=_________.23.设X1,X2,,,Xn,,是独立同分布的随机变量序列,E(Xn)=μ,D(Xn)=σ2,n=1,2,,,则=_________.24.设 x1,x2,, , xn为来自总体X的样本,且 X~N( 0,1 ),则统计量_________.25.设 x1,x2,xn为样本观测值,经计算知nx 2 =64,1、正确答案: A2、正确答案: C3、正确答案: A4、正确答案: B5、正确答案: C6、正确答案: D7、正确答案: B8、正确答案: C9、正确答案: B10、正确答案: D11、正确答案:7/912、正确答案:1/413、正确答案:14、正确答案:015、正确答案:0.516、正确答案:0.417、正确答案:18、正确答案:65/8119、正确答案:1/420、正确答案:021、正确答案:422、正确答案:323、正确答案:0.524、正确答案:25、正确答案:36。

整理后的概率论与数理统计考试试卷与答案

整理后的概率论与数理统计考试试卷与答案

概率论与数理统计试题练习一.填空题(每空题2分,共计60分)1、A 、B 是两个随机事件,已知0.3)B (p ,5.0)(,4.0)A (p ===A B P ,则=)B A (p ,=)B -A (p ,)(B A P ⋅= , =)B A (p 。

2、一个袋子中有大小相同的红球6只、黑球4只。

(1)从中不放回地任取2只,则第一次、第二次取红色球的概率为: 。

(2)若有放回地任取2只,则第一次、第二次取红色球的概率为: 。

(3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为: 。

3、设随机变量X 服从B (2,0.5)的二项分布,则{}=≥1X p , Y 服从二项分布B(98, 0.5), X 与Y 相互独立, 则X+Y 服从 ,E(X+Y)= ,方差D(X+Y)= 。

4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1、0.15.现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取一件。

(1)抽到次品的概率为: 。

(2)若发现该件是次品,则该次品为甲厂生产的概率为: . 5、设二维随机向量),(Y X 的分布律如右,则=a,=)(X E ,Y X 与的协方差为: ,2Y X Z +=的分布律为:6、若随机变量X ~)4 ,2(N 且8413.0)1(=Φ,9772.0)2(=Φ,则=<<-}42{X P 0.815 ,(~,12N Y X Y 则+= , )。

7、随机变量X 、Y 的数学期望E(X)= -1,E(Y)=2, 方差D(X)=1,D(Y)=2, 且X 、Y 相互独立,则:=-)2(Y X E ,=-)2(Y X D 。

8、设2),(125===Y X Cov Y D X D ,)(,)(,则=+)(Y X D9、设261,,X X 是总体)16,8(N 的容量为26的样本,X 为样本均值,2S 为样本方差。

《概率论与数理统计》最全题库

《概率论与数理统计》最全题库

《概率论与数理统计》最全题库班级: 姓名: 号数 第一部分 基本题一、选择题(共6小题,每小题5分,满分30分。

在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项前的字母填在题后的括号内)(每道选择题选对满分,选错0分)1. 事件表达式A B 的意思是 ( ) (A) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 (C) 事件B 发生但事件A 不发生 (D) 事件A 与事件B 至少有一件发生 答:选D ,根据A B 的定义可知。

2. 假设事件A 与事件B 互为对立,则事件A B ( ) (A) 是不可能事件 (B) 是可能事件 (C) 发生的概率为1 (D) 是必然事件 答:选A ,这是因为对立事件的积事件是不可能事件。

3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( )(A) 自由度为1的2分布 (B) 自由度为2的2分布 (C) 自由度为1的F 分布 (D) 自由度为2的F 分布答:选B ,因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为n 的2分布。

4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (2,1), 则( ) (A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3)答:选C ,因为相互独立的正态变量相加仍然服从正态分布,而E (X +Y )=E (X )+E (Y )=2-2=0, D (X +Y )=D (X )+D (Y )=4+1=5, 所以有X +Y ~N (0,5)。

5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=, D (X )=2, 则有( ) (A) X 1+X 2+X 3是的无偏估计(B)1233X X X ++是的无偏估计(C)22X 是2的无偏估计(D) 21233X X X ++⎛⎫⎪⎝⎭是2的无偏估计答:选B ,因为样本均值是总体期望的无偏估计,其它三项都不成立。

昆明理工大学试卷(概率统计B-历年试题)

昆明理工大学试卷(概率统计B-历年试题)

昆明理工大学试卷(历年试题)考试科目: 概率统计B(48学时) 考试日期: 命题教师:2013年概率统计试题一、填空题(每小题4分,共40分)1.设A,B,C 为三个事件,则A,B,C 中至少有两个发生可表示为 。

2.已知1()4p A =,1(|)2p A B =,1(|)3p B A =,则()p A B ⋃= 。

3.设事件A,B 互不相容,且1()2p A =,1()3p B =,则()p AB = 。

4.进行独立重复实验,设每次成功的概率为p ,失败的概率为1p -,将实验进行到出现一次成功为止,以X 表示实验次数,则()p X k == 。

5.已知随机变量X 服从参数2λ=的泊松分布,即(2)X P :,则(0)p X == 。

6.已知随机变量(2,1)X N -:,(2,1)Y N :且,X Y 相互独立,则2X Y -服从的分布是 。

7.若随机变量X 满足()1,()2,E X D X =-=则2(31)E X -= 。

8.设12,X X 是来自于总体X 的样本,1121233X X μ=+),2121122X X μ=+)为总体均值μ的无偏估计,则12,μμ))中较有效的是 。

9.设12,,n X X X L 为来自总体2(,)N μσ的一个样本,2σ已知,则212()nii XX σ=-∑服从的分布是 ,212()nii Xμσ=-∑服从的分布是 。

10.设12,,n X X X L 为来自总体2(,)N μσ的一个样本,2σ未知,则μ的1α-的置信区间是为 。

一、 填空题(每小题4分,共40分)1.AB BC AC U U 2. 13 3.124. ()p X k ==1(1)k p p -- 1,2,k =L5. 2e -6.(6,5)N -7. 88. 2μ)9. 22(1),()n n χχ-10. 2(_(1),(1))x n x n αα-- 二、(10分)某保险公司把被保险人分为三类:谨慎的、一般的、冒失的,统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30。

概率论与数理统计试题库及答案

概率论与数理统计试题库及答案

2103最新概率论与数理统计试题库及答案<数理统计>试题一、填空题1.设1621,,,X X X 是来自总体),4(~2σN 的简单随机样本,已知,令∑==161161i i X X ,则统计量σ-164X 服从分布为(必须写出分布的参数)。

2.设),(~2σμN X ,而1.70,1.75,1.70,1.65,1.75是从总体中抽取的样本,则的矩估计值为。

3.设]1,[~a U X ,n X X ,,1 是从总体中抽取的样本,求的矩估计为。

4.已知2)20,8(1.0=F ,则=)8,20(9.0F 。

5.和都是参数a 的无偏估计,如果有 成立 ,则称是比有效的估计。

6.设样本的频数分布为X 0 1 2 3 4频数 1 3 2 1 2则样本方差=_____________________。

7.设总体X~N (μ,σ²),X 1,X 2,…,X n 为来自总体X 的样本,为样本均值,则D ()=________________________。

8.设总体X 服从正态分布N (μ,σ²),其中μ未知,X 1,X 2,…,X n 为其样本。

若假设检验问题为1H 1H 2120≠↔σσ:=:,则采用的检验统计量应________________。

9.设某个假设检验问题的拒绝域为W ,且当原假设H 0成立时,样本值(x 1,x 2,…,x n )落入W 的概率为0.15,则犯第一类错误的概率为_____________________。

10.设样本X 1,X 2,…,X n 来自正态总体N (μ,1),假设检验问题为:,:=:0H 0H 10≠↔μμ 则在H 0成立的条件下,对显著水平α,拒绝域W 应为______________________。

11.设总体服从正态分布(,1)N μ,且未知,设1,,n X X 为来自该总体的一个样本,记11nii X X n ==∑,则的置信水平为1α-的置信区间公式是;若已知10.95α-=,则要使上面这个置信区间长度小于等于0.2,则样本容量n 至少要取____。

概率论与数理统计试卷和答案

概率论与数理统计试卷和答案
3、某仪器装有3只独立工作的同型号电子元件,其寿命(单位:小时)都服从同一指数分布,
概率密度函数为: ,试求在仪器使用的最初200小时内,至
少有一只电子元件损坏的概率。
4、设某种清漆的9个样品,其干燥时间(以小时计)分别为6.0,5.7,5.8,6.5,7.0,6.3,5.6,6.1,5.0。设干燥时间总体服从正态分布 ,若由以往经验知 =0.6,求 的置信度为0.95的置信区间。
5、已知随机变量X~ (二项分布),Y~ ,且X与Y相互独立,则X+Y服从_________________________分布。
二、单项选择题:(每题4分,共20分)
得分
评阅人
1、 是某随机变量的分布律,则C=()。
(A)2.(B)0.5.(C)1.(D)1.5
2、设随机变量 在 上服从均匀分布,则方程 有实根的概率为()。
一、填空题:(每空4分,共20分)
得 分
评阅人
1、设事件 是互不相容的,P(A)=0.4,P(B)=0.3,则 =。
2、已知随机变量X的分布函数为 则 =_______。
3、设随机变量X~N(2, 9),则数学期望 =。
4、设随机变量X1,X2,…,Xn,…相互独立,服从同一分布,且具有有限的数学期望和方差, ,则随机变量 的极限分布是_____________。
(A)0.2(B)0.4(C)0.8(D)0.6
3、在每次试验中事件A发生的概率为0.5,如果作100次独立试验,记事件A发生的次数为随机变量X,根据切比雪夫不等式估计P(40<X<60)≥()。
(A)0.5(B)0.75 (C) 0.25 (D) 1
4、若随机变量X与Y不相关,则下列结论不正确的是()。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

昆明理工大学2018年博士研究生招生考试试题
考试科目代码:2021 考试科目名称:概率论与数理统计
考生答题须知
1.所有题目(包括填空、选择、图表等类型题目)答题答案必须做在考点发给的答题纸上,做在本试题册上无效。

请考生务必在答题纸上写清题号。

2.评卷时不评阅本试题册,答题如有做在本试题册上而影响成绩的,后果由考生自己负责。

3.答题时一律使用蓝、黑色墨水笔或圆珠笔作答(画图可用铅笔),用其它笔答题不给分。

4.答题时不准使用涂改液等具有明显标记的涂改用品。

第 1 页共4 页。

相关文档
最新文档