运动的合成与分解的基本原理 )
运动的合成与分解笔记

运动的合成与分解笔记运动是人类生活中不可或缺的一部分,我们的身体随时随地都在运动着,而这些运动又可以分为合成和分解两种类型。
合成运动是指将多个动作组合在一起,形成一个连贯的动作,而分解运动则是将一个大的动作分解成多个小的动作,以便更好地进行训练。
在本篇文章中,我们将深入探讨运动的合成与分解,以及如何在训练中应用它们。
一、运动的合成1.1 什么是合成运动?合成运动是将多个动作组合在一起,形成一个连贯的动作。
这种运动形式通常需要多个肌肉群协同工作,以完成一个复杂的动作。
例如,引体向上就是一个典型的合成运动,它需要背部、肩部、臂部等多个肌肉群协同工作,以完成一个连续的动作。
1.2 合成运动的好处合成运动有很多好处,其中最主要的一点是它可以锻炼多个肌肉群,使身体得到全面的锻炼。
此外,合成运动也可以提高身体的协调性和平衡性,增强身体的核心力量。
最后,由于合成运动需要多个肌肉群协同工作,因此它可以帮助我们提高身体的耐力和爆发力。
1.3 如何进行合成运动?进行合成运动的关键是要找到合适的动作组合。
在选择动作时,我们需要考虑到每个动作的肌肉群和动作的难度。
通常情况下,我们可以将多个动作组合在一起,形成一个复杂的动作序列。
例如,我们可以将深蹲、俯卧撑和引体向上组合在一起,形成一个连贯的动作序列,以达到全面锻炼的效果。
二、运动的分解2.1 什么是分解运动?分解运动是将一个大的动作分解成多个小的动作,以便更好地进行训练。
这种运动形式通常需要集中训练某一个肌肉群,以达到强化训练的效果。
例如,引体向上可以分解成上拉和下放两个小动作,以便更好地锻炼背部和臂部。
2.2 分解运动的好处分解运动也有很多好处,其中最主要的一点是它可以更好地强化某一个肌肉群。
由于分解运动可以将一个大的动作分解成多个小的动作,因此我们可以更好地集中训练某一个肌肉群,以达到强化训练的效果。
此外,分解运动也可以帮助我们更好地掌握动作技巧,以达到更好的训练效果。
运动的合成与分解笔记

运动的合成与分解笔记运动是生命的基本特征之一,它是生命体与环境进行交互的重要方式。
运动可以分为两种类型:合成运动和分解运动。
合成运动是由多个小的动作组成,而分解运动则是将大的动作分解为多个小的动作。
在这篇文章中,我们将探讨运动的合成与分解的原理和应用。
一、合成运动合成运动是将多个小的动作组合成为一个大的动作。
这种运动的特点是需要多个肌肉协同工作,以产生一个复杂的动作。
例如,打篮球需要多个动作协调工作,包括跑步、跳跃、投球等等。
这些动作需要不同的肌肉组合来完成。
合成运动的原理是通过不同的肌肉组合来产生不同的动作。
这些肌肉组合需要在神经系统的控制下工作。
当我们执行一个动作时,神经系统会向肌肉发送信号,使得肌肉收缩或松弛。
这些信号可以通过大脑、脊髓和神经末梢来传递。
合成运动的应用非常广泛。
例如,运动员在进行训练时会使用合成运动来提高其技能水平。
此外,在康复治疗中,合成运动也可以帮助患者恢复肌肉功能。
二、分解运动分解运动是将一个大的动作分解为多个小的动作。
这种运动的特点是需要将一个复杂的动作拆分为多个简单的动作。
例如,打篮球时,将投球动作分解为抬手、弯腰、跳跃、投球等动作。
分解运动的原理是通过将一个大的动作分解为多个小的动作来减少运动的难度。
这些小的动作可以更容易地掌握和练习。
随着技能水平的提高,这些小的动作可以逐渐合成为一个大的动作。
分解运动的应用也非常广泛。
例如,在体育教学中,老师会将一个复杂的动作分解为多个小的动作,以帮助学生更好地掌握技能。
此外,在康复治疗中,分解运动也可以帮助患者逐步恢复肌肉功能。
三、结语运动是生命的基本特征之一,它对人类的身体健康和心理健康都有着重要的影响。
合成运动和分解运动是两种不同的运动类型,它们的原理和应用也不同。
了解这些原理和应用可以帮助我们更好地掌握和应用运动技能。
同时,也可以帮助我们更好地理解和利用运动对身体和心理健康的益处。
运动的合成与分解

运动的合成与分解1. 引言运动是物质存在的基本特征之一,在我们的日常生活中无处不在。
运动的合成与分解是物理学中一个重要的概念,它可以帮助我们更好地理解和描述物体的运动状态。
本文将介绍运动的合成与分解的概念、原理和应用。
2. 运动的合成运动的合成是指将两个或多个独立运动合成为一个总运动的过程。
在运动的合成过程中,我们需要考虑两个方面的因素:运动的方向和运动的速度。
2.1 运动的方向合成首先,我们来看运动的方向合成。
当两个运动的方向相同时,它们的合成就相对简单。
例如,当一个物体以向东方向匀速运动,同时另一个物体也以向东方向匀速运动,那么它们的合成运动也是向东方向匀速运动。
但是当运动的方向不同时,我们就需要考虑两个方向的夹角了。
为了方便计算,我们通常使用向北为正方向,向东为正方向。
当两个运动的方向夹角为90度时,它们的合成运动将形成一个直角三角形。
根据三角函数的定义,我们可以计算出合成运动的方向与两个运动方向的夹角,以及它相对向北和向东方向的夹角。
2.2 运动的速度合成除了考虑运动的方向合成外,我们还需要考虑运动的速度合成。
运动的速度合成可以通过向量的几何法进行分析。
具体而言,我们可以将两个运动的速度向量相加或相减,从而得到合成运动的速度向量。
在进行速度合成时,我们需要注意两个运动的速度单位要相同。
如果速度单位不同,我们需要首先进行单位转换。
例如,如果一个物体以每小时50千米的速度向东运动,另一个物体以每小时30千米的速度向北运动,那么我们可以将这两个速度向量进行合成。
使用向量的几何法,我们可以将速度向量按照合理的比例进行分解,从而得到合成运动的速度向量。
3. 运动的分解运动的分解是指将一个总运动分解为两个或多个独立运动的过程。
与运动的合成相反,运动的分解需要考虑合成物体的总运动在不同方向上的分解。
在进行运动的分解时,我们需要首先确定合成物体的总运动的方向和速度。
然后,根据需要我们可以选择将总运动分解为多个独立运动,或者将总运动分解为两个或多个运动的合成。
运动的合成和分解-

运动的合成和分解1. 引言运动是物质存在的一种最基本的状态之一,是自然界中普遍存在的现象。
在运动学中,我们对物体的运动进行描述和研究,其中一个重要的概念就是运动的合成和分解。
运动的合成是指将两个或多个运动合并在一起,形成一种新的运动;而运动的分解是指将一个运动分解为两个或多个单独的运动。
本文将对运动的合成和分解进行详细介绍,并通过示例来进一步说明其应用。
2. 运动的合成2.1 合成运动的概念在物体的运动中,如果一个物体同时具有两个或多个运动,这些运动叠加在一起就形成了合成运动。
合成运动中的每个分量运动都是原来各个运动独立进行的,互不干扰。
2.2 合成运动的特点合成运动具有以下几个重要特点:•合成运动的合成速度等于各个分量速度的矢量和。
即合成运动的速度等于各分量速度矢量相加所得矢量的矢量和。
•合成运动的合成位移等于各个分量位移的矢量和。
即合成运动的位移等于各分量位移矢量相加所得矢量的矢量和。
•合成运动的合成加速度等于各个分量加速度的矢量和。
即合成运动的加速度等于各分量加速度矢量相加所得矢量的矢量和。
2.3 合成运动的示例下面通过一个示例来具体说明合成运动的概念和特点。
示例:一辆汽车在东北方向以10 m/s的速度行驶,同时有一阵风以6 m/s的速度从东南方向吹向汽车。
请问汽车在实际行驶中的速度是多少?根据合成运动的概念和特点,我们可以将汽车的行驶速度和风的速度进行合成。
首先,我们可以用矢量的几何方法来计算合成速度。
假设汽车的行驶速度用向量A表示,风的速度用向量B表示,则合成速度用向量C表示。
根据矢量的几何方法,我们可以绘制向量A和向量B,然后将它们首尾相连,从起点到终点的向量就是合成速度的方向和大小。
根据题目中给出的数据,我们可以得到以下结果:合成运动示例合成运动示例根据图示,我们可以计算出合成速度的大小为14 m/s,并且合成速度与东北方向的夹角为37度。
因此,汽车在实际行驶中的速度是14 m/s,方向为东北方向。
运动的合成与分解(解析版)-高一物理同步精品讲义(人教版)

A.做曲线运动的物体,其加速度方向一定是变化的
B.物体做圆周运动,所受的合力一定是向心力
C.物体所受合力恒定,该物体速率随时间一定均匀变化
D.物体运动的速率在增加,所受合力一定做正功
A.第一次实验中,小钢球 运动是匀变速直线运动
B.第二次实验中,小钢球的运动类似平抛运动,其轨迹是一条抛物线
C.该实验说明做曲线运动物体的速度方向沿轨迹的切线方向
D.该实验说明物体做曲线运动的条件是物体受到的合外力的方向与速度方向不在同一直线上
【答案】D
【解析】
【分析】
速度方向是切线方向,合力方向是指向磁体的方向,两者不共线,球在做曲线运动,据此判断曲线运动的条件.
1.基本概念
名称
定义
说明
分运动
一个物体同时参与的几个运动,这几个运动都是分运动
合运动与分运动具有独立性、等时性、等效性和同体性
合运动
物体的实际运动就是合运动
运动的合成
已知分运动求合运动,叫做运动的合成
运动的合成与分解都遵循平行四边形定则
运动的分解
已知合运动求分运动,叫做运动的分解
2.合运动性质的判断
由物体做曲线运动的条件可知,当v与a共线时为匀变速直线运动,当v与a不共线时,为匀变速曲线动,所以可能是直线运动,也可能是曲线运动;
A.一定是直线运动,与上述分析结论不符,故A错误;
B.一定是曲线运动,与上述分析结论不符,故B错误;
C.可能是直线运动,也可能是曲线运动,与上述分析结论相符,故C正确;
答案0.41.2
解析设蜡块沿玻璃管匀速上升的速度为v1,位移为x1,蜡块随玻璃管水平向右匀速移动的速度为v2,位移为x2,如图所示,v2= = m/s=0.4 m/s.蜡块沿玻璃管匀速上升的时间t= = s=3 s.由于两分运动具有等时性,故玻璃管水平移动的时间为3 s,水平运动的位移x2=v2t=0.4×3 m=1.2 m.
运动的合成与分解

运动的合成与分解一、合运动与分运动1.合运动与分运动定义:如果物体同时参与了两种运动,那么物体实际发生的运动叫做那两种运动的合运动,那两种运动叫做这个实际运动的分运动。
2.在一个具体问题中判断哪个是合运动,哪个是分运动的关键是弄清物体实际发生的运动是哪个,则这个运动就是合运动。
物体实际发生的运动就是物体相对地面发生的运动,或者说是相对于地面上的观察者所发生的运动。
3.相互关系①运动的独立性:分运动之间是互不相干的,即各个分运动均按各自规律运动,彼此互不影响。
因此在研究某个分运动的时候,就可以不考虑其他的分运动,就像其他分运动不存在一样。
②运动的等时性:各个分运动及其合运动总是同时发生,同时结束,经历的时间相等;因此,若知道了某一分运动的时间,也就知道了其他分运动及合运动经历的时间;反之亦然。
③运动的等效性:各分运动叠加起来的效果与合运动相同。
④运动的相关性:分运动的性质决定合运动的性质和轨迹。
二、运动的合成和分解这是处理复杂运动的一种重要方法。
1.定义:已知分运动的情况求合运动的情况,叫做运动的合成。
已知合运动的情况求分运动的情况,叫做运动的分解。
2.实质(研究内容):运动是位置随时问的变化,通常用位移、速度、加速度等物理量描述。
所以,运动的合成与分解实质就是对描述运动的上述物理量的合成与分解。
3.定则:由于描述运动的位移、速度、加速度等物理量均是矢量,而矢量的合成与分解遵从“平行四边形定则”,所以运动的合成与分解也遵从“平行四边形定则”。
4.具体方法①作图法:选好标度,用一定长度的有向线段表示分运动或合运动的有关物理量,严格按照平行四边形定则画出平行四边形求解。
②计算法:先画出运动合成或分解的示意图,然后应用直角三角形等数学知识求解。
三、两个直线运动的合运动的性质和轨迹的判断方法1.根据平行四边形定则,求出合运动的初速度v0和加速度a后进行判断:①若a=0(分运动的加速度都为零),物体沿合初速度v0的方向做匀速直线运动。
物理运动的合成与分解笔记

物理运动的合成与分解
一、什么是合成与分解
合成(Synthesis)是指将多个运动合并为一个运动,而分解(Decomposition)则是指将一个运动分解为多个运动。
二、合成与分解的原理
1. 合成原理
合成原理是指将多个运动合并为一个运动,其原理是将多个运动的结果相加,从而得到一个新的运动结果。
2. 分解原理
分解原理是指将一个运动分解为多个运动,其原理是将一个运动的结果拆分为多个运动的结果,从而得到多个运动的结果。
三、合成与分解的应用
1. 合成的应用
合成的应用主要是将多个运动合并为一个运动,从而更好地掌握运动的规律,提高运动的效率。
例如,在体育运动中,将跑步、跳跃、投掷等多个运动合并为一个运动,从而更好地发挥自身的能力。
2. 分解的应用
分解的应用主要是将一个运动分解为多个运动,从而更加清晰地分析运动的规律,提高运动的效率。
例如,在体育运动中,将跑步、跳跃、投掷等运动分解为跑步的步幅、跳跃的距离、投掷的力度等,从而更好地发挥自身的能力。
四、合成与分解的优缺点
1. 合成的优点
(1)可以更好地掌握运动的规律,提高运动的效率;
(2)可以更加全面地分析运动,提高运动的效率;
(3)可以更好地发挥自身的能力。
2. 分解的优点
(1)可以更加清晰地分析运动的规律,提高运动的效率;
(2)可以更加细致地分析运动,提高运动的效率;
(3)可以更好地发挥自身的能力。
五、结论
物理运动的合成与分解是一种有效的运动方法,它可以更好地掌握运动的规律,提高运动的效率,并可以更好地发挥自身的能力。
因此,在运动中应当积极运用合成与分解原理,以达到更好的运动效果。
运动的合成与分解打印版

运动的合成与分解徐建烽基本思想与难点解析:1.一个物体同时参与两个(或更多)运动,这些运动如果都具有独立性,即其中一个运动并不因为有另一个运动的存在而有所改变,合运动就是这些互相独立的运动的叠加,这就是运动的独立性原理或运动的叠加原理。
因此,各分运动与合运动具有等时性.运动的合成和分解是运动学的重要研究方法,根据独立性原理,往往在研究一个复杂运动的规律时,我们可以将它先分解为两个基本运动——即两个分运动来讨论,然后再叠加成原来的运动。
2.合成规律两个匀速直线运动的合运动是匀速直线运动.一个是匀速直线运动,一个是匀变速直线运动,合运动是匀变速运动;二者共线时,运动轨迹是直线,非共线时,为曲线运动.两个匀变速直线运动的合运动是匀变速运动,合初速度方向与合加速度方向共线时,为直线运动,非共线时,运动轨迹为曲线.在用运动的合成和分解这种方法研究一个物体的运动时,涉及到的合位移与分位移,合速度与分速度、合加速度与分加速度等矢量的关系都分别满足平行四边形定则。
难点分析:A.小船过河的问题,有几句话是必须牢记的1.一般情况下,小船的船头垂直于相互平行的两岸,将以最短时间过河。
2.小船的船头方向与垂直两岸的航线成某一角度指向上游,将有可能以最短最矩离,即垂直方向渡河。
3.如果小船的静水速度小于水速,将无法以垂直的最短距离达到对岸,一般情况下将到达下游某处,建议同学们分析其求法。
B.运动的相关性,一般指两个研究对象,分别参与两个以上的运动时,相互间的空间和时间关系的研究,等时性往往是解决这类问题的关键步骤和入手点,相对运动的研究方法有时也能简化这类问题。
C.平抛实验初速度的求法并不唯一,具体问题具体分析(见例题)D.平抛运动的速度角和位移角是高考中的重中之重.二、例题解析 例1.如图1-11,河宽AB =16m,河水向右匀速流动,速度大小为v 1=1.5m/s.有只小机动船,在静水中的行驶速度v 2=2.0m/s.现此船从A 点开始渡河。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运动的合成与分解的基本原理1、运动的独立性原理任何一个分运动不会因其它运动而受到影响.如:蜡烛在竖直方向上的速度不会因其水平速度的改变而改变,即只要竖直方向分速度v y不变,蜡块从底端到顶端的时间只由竖直速度决定.如:小船渡河小船驶向对岸所用时间与水流速度大小无关,只由小船垂直流水方向驶向对岸的速度和河宽决定.2、等时性原理:合运动与分运动同时发生,同时消失,合运动与分运动具有效时性.3、等效性原理:分运动与合运动具有等效性.四、两个直线运动的合成①两个匀速直线运动的合运动仍是匀速直线运动.②一个匀速直线运动与一个匀变速直线运动.③两个初速为0的匀变速直线运动:.④两个初速不为0的匀变速直线运动运动的合成分解的应用一、绳拉物体模型例1、在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?命题意图:考查分析综合及推理能力,B级要求.错解分析:弄不清合运动与分运动概念,将绳子收缩的速度按图所示分解,从而得出错解v物=v1=vcosθ.解法一:应用合运动与分运动的关系绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v 物是合速度,将v 物按如图所示进行分解.其中:v=v 物cos θ,使绳子收缩.v ⊥=v 物sin θ,使绳子绕定滑轮上的A 点转动.所以v 物=解法二:应用微元法设经过时间Δt ,物体前进的位移Δs 1=BC ,如图所示.过C 点作CD ⊥AB ,当Δt →0时,∠BAC 极小,在△ACD 中,可以认为AC=AD ,在Δt 时间内,人拉绳子的长度为Δs 2=BD ,即为在Δt 时间内绳子收缩的长度.由图可知:BC=①由速度的定义:物体移动的速度为v 物=②人拉绳子的速度v= ③由①②③解之:v=物例2、A、B质量均为m,且分别用轻绳连接跨过定滑轮,不计一切摩擦力.当用水平力F拉物体B沿水平方向向右做匀速直线运动过程中()A.物体A也做匀速直线运动B.绳子拉力始终大于物体A所受重力C.物体A的速度小于物体B的速度D.地面对物体B的支持力逐渐增大分析:设物体B匀速速度为v,物体B的运动使绳子参与两种分运动:绳子沿定滑轮为圆心垂直于绳子转动,另一分运动是沿绳伸长的分运动,合运动就是物体以速度v向右匀速直线运动.v1=vsinθθ↓sinθ↓v1↓v A=v2=vcosθθ↓cosθ↑v2↑物体A作变加速运动对B:T y+N=mg开始时N<mg,当B运动至无穷远处时T y∝0,N=mg∴地面对物体B的支持力逐渐增大.例3、两光滑环AB用不可伸长的轻绳相连,当线与竖直方向夹角为时,此时v A=4m/s, 求B沿杆方向的速度.v B cos37°=v A cos53°二、小船渡河模型一条宽为d的河流,河水流速为v1,船在静水中速度为v2.(1)要使船划到对岸时间最短,船头应指向什么方向?最短时间为多少?(2)要使船划对对岸的航程最短,船头指向什么方向?最短航程是多少?解:①设船头斜向上游与河岸成θ角,这时船速v船在y方向的分量为v2′=v船sinθ=v2sinθ,渡河时间为.可见,在河宽d和船速v2一定情况下,渡河驶向对岸的时间t随sinθ的增大而减小.当θ=90°时,sinθ=1(最大),即船头与河岸垂直时,渡河时间最短,且t min=.②求航程最短问题应根据v1和v2的大小关系分成以下三种情况讨论:(i)当v2>v1时,即船头斜向上游与岸夹角为θ,船的合速度可垂直于河岸,航程最短为d,此时沿水流方向合速度为零.v2cosθ=v1即船头斜指向上游,与河岸夹角,船航线就是位移d.渡河时间(ii)当v2<v1时,由于船在静水中的速度v2小于水流速度v1,则无论船头驶向何方,总被水流冲向下游,怎样使船所走航线的位移最短呢?虽然位移不可能垂直河岸,但当位移越靠近垂直河岸的方向,位移越短,,船头与水平方向上游夹角,最短航程,所花时间.例1、如图所示,排球场地长为18m,设球网高度为2m,运动员站在离网3m的线上(图中用虚线表示)正对网前跳起将球水平击出(空气阻力不计).(1)设击球点在3m线正上方2.5m处,试问击球的速度在什么范围内才能使球既不能触网也不越界?(2)若击球点在3m线正上方小于某一个值,那么无论以多大速度击球,球不是触网就是越界.试求这个高度.解:若击球水平速度过小,球可能触网;若击球水平速度过大,球可能越界.(1)若刚好不触网,设击球速度为v1,则水平位移为3m的过程中,水平方向:x=v1t v1t=3①竖直方向:②由①②得:同理刚好不越界,设击球速度为v2,则则球既不能触网也不越界的速度满足(2)设击球高度为H时,击出的球刚好触网或落在边界线上.刚好不触网时:v0t1=3③④此时也刚好到达边界:v0t2=12⑤⑥由③④⑤⑥得:H=2.13m即当击球高度小于2.13时,无论水平速度多大,球不是触网就是越界.例2、从高为H的A点平抛一物体,其水平射程为2s,在A点正上方距地面高为2H的B点,向同一方向平抛另一物体,其水平射程为s.两物体轨迹在同一竖直平面内且都恰好从同一屏的顶端擦过,求屏的高度.例3、如图示,AB为斜面,倾角为30°,小球从A点以初速度v0水平抛出,恰好落到B点.求:(1)AB间的距离;(2)物体在空中飞行的时间;(3)从抛出开始经多少时间小球与斜面间距离最大?解:(1)水平位移:(2)物体在空中飞行时间(3)当小球作平抛运动轨迹上某一点速度与斜面平行时,该点离斜面距离最远.方法①:方法②:由分运动的独立性,把平抛运动分解成垂直斜面方向的分运动和平行于斜面方向的分运动的合运动.v=v0sin30°=⊥a=gcos30°=⊥垂直斜面作初速为,加速度为的匀减速直线运动平行于斜面作v11=v0cos30°=,a11=gcos60°=的匀加速直线运动当在垂直斜面方向速度减为0时距斜面最远:例5、如图所示,一根轻弹簧下端固定,竖立在水平面上。
其正上方A位置有一只小球。
小球从静止开始下落,在B位置接触弹簧的上端,在C位置小球所受弹力大小等于重力,在D位置小球速度减小到零。
小球下降阶段下列说法中正确的是()A.在B位置小球动能最大B.在C位置小球动能最大C.从A→C位置小球重力势能的减少大于小球动能的增加D.从A→D位置小球重力势能的减少等于弹簧弹性势能的增加解析:小球动能的增加用合外力做功来量度,A→C小球受的合力一直向下,对小球做正功,使动能增加;C→D小球受的合力一直向上,对小球做负功,使动能减小,所以B 正确。
从A→C小球重力势能的减少等于小球动能的增加和弹性势能之和,所以C正确。
A、D两位置动能均为零,重力做的正例7、如图所示,总长为l的光滑匀质铁链跨过一个光滑的轻质小定滑轮,开始时底端相平,当略有扰动时铁链一端下落,则铁链脱离滑轮的瞬间,其速度为多大?图1 图2解析:应用第一种表达式,取初态时铁链重心(即两段铁链中点)所在平面为零势能面。
由机械能守恒定律知应用第二种表达式,铁链重心下降,减少的重力势能,而铁链增加的动能由机械能守恒定律得例3、如图物块和斜面都是光滑的,物块从静止沿斜面下滑过程中,物块机械能是否守恒?系统机械能是否守恒?解析:以物块和斜面系统为研究对象,很明显物块下滑过程中系统不受摩擦和介质阻力,故系统机械能守恒。
又由水平方向系统动量守恒可以得知:斜面将向左运动,即斜面的机械能将增大,故物块的机械能一定将减少。
注意:由于这里说的是光滑斜面,所以容易错认为物块本身机械能就守恒。
这里要注意:(1)由于斜面本身要向左滑动,所以斜面对物块的弹力N和物块的实际位移s的方向已经不再垂直,弹力要对物块做负功,对物块来说已经不再满足“只有重力做功”的条件。
(2)由于水平方向系统动量守恒,斜面一定会向右运动,其动能也只能是由物块的机械能转移而来,所以物块的机械能必然减少。
运动的合成和分解里面的典型问题(一)绳子拉船的问题例5、如图所示,纤绳以恒定的速率v,沿水平方向通过定滑轮牵引小船向岸边运动,则船向岸边运动的瞬时速度v0与v的大小关系是( )A.v0>v B.v0<vC.v0=v D.以上答案都不对分析:首先要分析小船的运动与纤绳的运动之间有什么样的关系,即哪个是合运动,哪个是分运动.解:设某一时刻船的瞬时速率v0与纤绳的夹角为θ,根据小船的实际运动方向就是合速度的方向可知,v0就是合速度,所以小船的运动可以看作两个分运动的合成:一是沿绳的方向被牵引,绳长缩短,绳长缩短的速度即等于v;二是垂直于绳以定滑轮为圆心的摆动,它不改变绳长,只改变角度θ的值.这样就可以将v0按如图所示方向进行分解,得:。
可见,小船向岸行驶的瞬时速度为,所以答案应选A。
答案:A(二)船过河问题例6、一条宽度为L的河流,水流速度为Vs,已知船在静水中的速度为Vc,那么:(1)怎样渡河时间最短?(2)若Vc>Vs,怎样渡河位移最小?(3)若Vc<Vs,怎样注河船漂下的距离最短?分析与解:(1)如图甲所示,设船上头斜向上游与河岸成任意角θ,这时船速在垂直于河岸方向的速度分量V1=Vcsinθ,渡河所需时间为:.可以看出:L、Vc一定时,t随sinθ增大而减小;当θ=90 °时,sinθ=1,所以,当船头与河岸垂直时,渡河时间最短,.(2)如图乙所示,渡河的最小位移即河的宽度。
为了使渡河位移等于L,必须使船的合速度V的方向与河岸垂直。
这是船头应指向河的上游,并与河岸成一定的角度θ。
根据三角函数关系有:Vccosθ─Vs=0.所以θ=arccosVs/Vc,因为0≤cosθ≤1,所以只有在Vc>Vs时,船才有可能垂直于河岸横渡。
(3)如果水流速度大于船上在静水中的航行速度,则不论船的航向如何,总是被水冲向下游。
怎样才能使漂下的距离最短呢?如图丙所示,设船头Vc与河岸成θ角,合速度V 与河岸成α角。
可以看出:α角越大,船漂下的距离x越短,那么,在什么条件下α角最大呢?以Vs的矢尖为圆心,以Vc为半径画圆,当V与圆相切时,α角最大,根据cosθ=Vc/Vs,船头与河岸的夹角应为:θ=arccosVc/Vs.船漂的最短距离为:.此时渡河的最短位移为:.(三)求解绳联物体的关联速度问题对于绳联问题,由于绳的弹力总是沿着绳的方向,所以当绳不可伸长时,绳联物体的速度在绳的方向上的投影相等。
求绳联物体的速度关联问题时,首先要明确绳联物体的速度,然后将两物体的速度分别沿绳的方向和垂直于绳的方向进行分解,令两物体沿绳方向的速度相等即可求出。