行列式的计算及应用毕业论文

合集下载

行列式的计算与技巧 毕业论文

行列式的计算与技巧  毕业论文

江西师范大学数学与信息科学学院学士学位论文行列式的计算与技巧The calculation of determinantand the skill姓名:* ***学号:090*0*0**2学院:数学与信息科学学院专业:数学与应用数学指导老师:*完成时间:2013-3-11行列式的计算与技巧【摘要】行列式是代数的一个重要的内容,也是讨论线性方程组的一个非常有力的工具,在数学的许多分支上有着极其广泛的应用。

同时,行列式的计算非常的灵活多变,有很强的技巧和规律性。

本文则主要讨论行列式的一些常用的方法,并坚持从实例出发,在以上几种常用方法的基础上,探讨并给出行列式的其他几种计算方法。

如:三角形法、升阶法、数学归纳法、递推法、提取因子法、范德蒙行列式法、拆行法等等,通过以上这些方法基本可以解决一般的n阶行列式的计算问题。

【关键词】行列式递推法范德蒙行列式降阶法The calculation of determinant and the skill【Abstract】Determinant is an important content of algebra, and discussthe system of linear equations is a very powerful tool, many branches of mathematics has the extremely widespread application. At the same time, the determinant calculation is very flexible, strong skills and regularity. This article mainly discuss some commonly used methods of the determinant, and proceed from the instance and on the basis of the above several kinds of commonly used method, and gives several calculation methods of the determinant are discussed. Such as: the triangle method, order method, mathematical induction, recursive method, extraction factor method, vandermonde determinant method, the split line method, and so on, through the above these methods can solve the general basic n-th-order determinant calculation problem.【Key words】:The determinant, Recursive method, Vandermonde determinant,Order reduction method目录1 引言 (1)2行列式的定义 (1)2.1 用定义法计算行列式 (1)3 行列式的相关性质 (3)3.1利用相关性质得到几种特殊解法 (3)3.1.1对角线法则计算行列式 (3)3.1.2 三角形法计算行列式 (3)3.1.2.1箭形(或爪形)行列式 (4)3.1.3加边法(升阶法)计算行列式 (5)3.1.4 分解行列法(又称拆项法)计算行列式 (6)3.1.5降阶法计算行列式 (7)4递推法计算行列式 (9)5 特征值法计算行列式 (10)6 数学归纳法计算行列式 (10)7 提取因子法计算行列式 (11)8 利用范德蒙行列式计算行列式 (12)9 利用拉普拉斯展开定理计算行列式 (14)10 因式分解法计算行列式 (15)11 乘法定理法(行列式乘积法)计算行列式 (16)12 小结 (17)参考文献 (18)1 引言行列式是一个基本的数学工具,是线性代数的重要研究对象,无论是在高精尖端科学领域,还是在日常工业生产、工程施工或经济管理中都有着广泛的应用。

行列式的计算技巧及其应用毕业论文【范本模板】

行列式的计算技巧及其应用毕业论文【范本模板】

本科生毕业论文(设计)题目: 行列式的计算技巧及应用学生姓名:谢芳学号: 201210010133专业班级:数学与应用数学12101班指导教师:颜亮完成时间: 2016 年 5 月目录摘要.。

.。

....。

.。

....。

.。

.。

.。

.。

.。

.。

.。

...。

..。

....。

.。

.。

..。

.。

.。

1 关键词.。

....。

.。

..。

.。

..。

..。

.。

.。

...。

....。

..。

..。

...。

..。

...。

1 0、前言。

..。

.。

.。

.。

....。

...。

.。

....。

.。

.。

..。

.。

....。

..。

.。

..。

1 1、基础知识及预备引理.。

....。

..。

.。

.。

.....。

....。

..。

..。

.。

.。

.。

.。

.。

2 1.1行列式的由来及定义。

..。

..。

...。

.。

..。

...。

.。

...。

....。

..。

....。

....。

..2 1.2行列式的性质。

.。

..。

.。

...。

..。

..。

...。

..。

.。

.。

....。

.。

.。

...。

.。

.。

.。

3 1。

3拉普拉斯定理及范德蒙德行列式的定义....。

.。

.。

..。

.。

.....。

.。

..。

4 2、行列式的计算方法。

.。

.。

...。

..。

...。

.。

..。

.。

...。

..。

..。

.....。

..。

.。

..。

.4 2。

1定义法。

.。

.。

...。

.。

...。

.。

...。

........。

.。

...。

.。

.。

.。

..。

..。

..4 2.2利用行列式的性质(化三角型)计算.。

.。

..。

..。

.。

.。

.。

.。

.。

..。

..。

..。

5 2.3拆行(列)法...。

..。

.。

..。

..。

.。

....。

.。

.。

...。

..。

.。

.。

..。

6 2。

4加边法(升阶法)。

..。

.。

....。

.。

..。

..。

...。

.。

.。

.。

..。

..。

..。

..。

.6 2。

5范德蒙德行列式的应用。

..。

...。

.。

.。

..。

.。

.。

.。

.。

.。

...。

.。

.。

..。

...。

.。

.7 3、n阶行列式的计算。

行列式的计算方法及其在线性方程组中的应用毕业论文

行列式的计算方法及其在线性方程组中的应用毕业论文

ANAMtm tJhi・I TV本科生毕业论文题目:姓名:学号:系别:年级:专业:指导教师:指导教师:行列式的计算方法及其在线性方程组中的应用2008020230462008 级数学职称:副教授职称:讲师2012年4月20日安顺学院毕业论文任务书数学与计算机科学系数学与应用数学专业2008年级学生姓名韦诚毕业论文题目:行列式的计算方法及其在线性方程组中的应用任务下达日期:2011年9月5日毕业论文写作日期:20H年9月5日至2012年4月20指导老师签字:学生签字:《高等代数》是数学专业学生的一门必修基础课程。

行列式的计算是高等代数中的重点、难点,特别是n阶行列式的计算,学生在学习过程中,普遍存在很多困难,难于掌握。

讣算n阶行列式的方法很多,但具体到一个题,要针对其特征,选取适当的方法求解。

当看到一个貌似非常复朵的n阶行列式时,仔细观察, 会发现其实它们的元素在行或列的排列方式上都有某些规律。

掌握住这些规律, 选择合适的il•算方法,能使我们在极短的时间内达到事半功倍的效果!本文首先介绍n阶行列式的定义、性质,再归纳总结行列式的各种汁算方法、技巧及其在线性方程组中的初步应用。

行列式是线性方程组理论的一个组成部分,是中学数学有关内容的提高和推广。

它不仅是解线性方程组的重要工具,而且在其它一些学科分支中也有广泛的应用。

关键词:n阶行列式计算方法归纳线性方程组ABST RACTAlgebra is a courses of mathematics specialized coinpulsory of the basic mathematic- The determinant's calculation is the most difficulty in higher algebra, especially, the n order determinant's calculation , alway is student's difficulty in the learning process, so ,it is difficult to master for ours • There are a lot of calculations of n order determinant in method , but when we say a problem of the calculation of n order determinant, according to its characteristics, selecting the appropriate method to solving is a very good idea. When you see a seemingly so complex n order determinant, we should observe them carefully,“nd we will find that their elements are arranged in row s or columns have some regularity. Grasping of these laws, finding a appropriate calculation method can help us to achieve a multiplier effect in a very short time! This paper mainly introduces the definition of n order determinant, nature, and calculation methods, the skills of calculation of n order determinant and application in linear equation group. Determinant is an importanf theory in linear equations and it is an indis pensable part of linear equations, determinant is also the middle school mathematics' content raise and proinotion. It is not only the solution of linear equations of the important took but also in some other branch has a wide range of app lications.Key words: n order determinant calculation method induce linear equations引言1屛介行列式的定义 2屛介行列式的性质 3计算屛介行列式的具体方法与技巧利用行列式定义直接计算 利用行列式的性质计算 化为三角形行列式逆推公式法拆开法3.4 降阶法 3.6 利用范德蒙德行列式 3.7 加边法(升阶法) 3.8数学归纳法 10 4行列式在线性方程组中的初步应用 11 4.1克拉默(Gramer )法则 12 4.2克拉默(Gramer )法则的应用1211421用克拉默(Gramer)法则解线性方程组13 422克拉默法则及其推论在几何上的应用14 结论16 参考文献17 致谢1817解方程是代数中一个基本问题,特别是在中学中所学的代数中,解方程占有重要的地位•因此这个问题是读者所熟悉的.比如说,如果我们知道了一段导线的电阻r它的两端的电位差y,那么通过这段导线的电流强度八就可以有关系式ir = V求出来•这就是所谓解一元一次方程的问题•在中学所学代数中,我们解过一元、二元、三元以至四元一次方程组.线性方程组的理论在数学中是基本的也是®要的内容.对于二元线性方程组当4心22-如佝*0时,次方程组有惟一解,即”•…“ _ “山一如勺Aj — * ---------------- —^*11^22 -如切如“处-0皿21我们称5如-mSl为二级行列式,用符号表示为于是上述解可以用二级行列式叙述为:当二级行列式时,该方程组有惟一解,即对于三元线性方程组有相仿的结论•设有三元线性方程组«21(»2 2«11 %“21 ©2勺心22你如一竹S I =«21如5內+如兀2+"/3=久+"22X2 +^23^3 =®, «3 內 +432大2 +"33X3 =%利'彳弋 工弋 1^22^^33 + ^12^23^^31 + ^13^21^^321^23^32 ^12^^21^^33 ^^13^^22^31 丿7^5行列式,用符号表示为:"H "22"33 +“12°23"刃 +«)3«21^32 "^^11^23^32 "如①心彳 _'WWsi =我们有:当三级行列式«11 «12 "|3«21 «22 «23“31 ^32 “33时,上述三元线性方程组有惟一解,解为4厶X 严+,尤2=〒,a a其中S «12 勺3«H 勺"|3£ =■■■«23,J,="21 勺 “23,〃3 =5 U" b 、妇"32 “33«31 % "33如]“32 S在本论文中我们将把这个结果推广到畀元线性方程组4内+4胪2+…+你忑=勺 “2 內+"22兀2+…+ “2届=2弘内+0小:2+…+ 4汁為="/<的情形•为此,我们首先要给出〃阶行列式的定义并讨论它的性质,这就是 本论文的主要内容.«11 ®2 ®3"21 ^22 "23 "31 “32 “33cl =1 n阶行列式的定义“21 “22.... -^211"川...... 弘"等于所有取自不同行不同列的个元素的乘积仙几(1)的代数和,这里jj2…h是12…,”的一个排列,每一项(5)都按下列规则带有符号:当j|j2…人是偶排列时,(1)带正号,当是奇排列时,(1)带有负号•这一定义可以写成二2(_严"5畑..%恥…人这里X表示对所有阶排列求和・丿"2・・・人定义表明,为了计算《阶行列式,首先作所有有可能山位于不同行不同列元素构成的乘积。

行列式的性质及应用论文

行列式的性质及应用论文

行列式的性质及应用论文行列式是线性代数中的重要概念,它具有许多重要的性质和广泛的应用。

本文将从性质和应用两个方面来探讨行列式的相关内容。

首先,我们来讨论行列式的性质。

行列式是一个标量,它可以表示矩阵所围成的平行四边形的面积或者体积。

行列式的计算可以通过拉普拉斯展开定理、三角矩阵法和克拉默法则等方法来进行。

下面是行列式的一些重要性质:1. 行列式的性质一:行列式的值与行列式的转置值相等。

即,对于一个n阶方阵A,有det(A) = det(A^T)。

2. 行列式的性质二:行列式的值等于它的任意两行(或两列)互换后的值的相反数。

即,如果将矩阵A的第i行和第j行进行互换,那么有det(A) = -det(A'),其中A'是矩阵A进行行互换后的矩阵。

3. 行列式的性质三:如果矩阵A的某一行(或某一列)的元素全为零,则行列式的值为零。

即,如果A的某一行(或某一列)所有元素都为零,则有det(A) = 0。

4. 行列式的性质四:行列式的某一行(某一列)的元素都乘以一个常数k,等于用该行(该列)的元素乘以k的行列式的值。

即,如果将矩阵A的第i行的所有元素都乘以k,那么有det(A) = k * det(A'),其中A'是矩阵A进行行数乘k后的矩阵。

行列式的这些性质使得我们可以通过简单的操作来计算复杂矩阵的行列式,从而简化线性代数的运算。

接下来,我们来探讨行列式的应用。

行列式在数学和工程中有广泛的应用,下面举几个例子:1. 线性方程组的解:行列式可以用来求解线性方程组的解。

对于一个n阶方阵A和一个n维向量b,如果det(A)≠0,那么方程组有唯一解;如果det(A) = 0,那么方程组无解或有无穷多解。

2. 矩阵的逆:行列式可以用来判断一个矩阵是否可逆。

对于一个n阶方阵A,如果det(A)≠0,那么A是可逆的,且其逆矩阵的行列式为1/det(A)。

3. 平面和体积的计算:行列式可以用来计算平面和体积的面积或体积。

行列式的计算技巧——毕业论文.doc

行列式的计算技巧——毕业论文.doc

2016届本科毕业论文行列式的计算方法姓名:____ *** ____________ 院别:____数学与信息科学学院________ 专业:____数学与应用数学____________ 学号:___ 0000000000______________ 指导教师:__ __ *** ___ ____ 2016年 5月 1日2016届本科生毕业论文目录摘要.................................................... 错误!未定义书签。

关键词....................................................... 错误!未定义书签。

Abstract ..................................................... 错误!未定义书签。

Key words .................................................... 错误!未定义书签。

0 引言....................................................... 错误!未定义书签。

1 基本理论................................................... 错误!未定义书签。

2 行列式的计算技巧........................................... 错误!未定义书签。

2.1 化三角形法........................................... 错误!未定义书签。

2.2 递推法............................................... 错误!未定义书签。

2.3降阶法............................................... 错误!未定义书签。

行列式的计算方法研究毕业论文

行列式的计算方法研究毕业论文

昆明学院2010 届毕业设计(论文)设计(论文)题目行列式的计算方法研究姓名学号 S006054127所属系数学系专业年级数学与应用数学2006级数学<1>班指导教师2010年 5 月摘要在线性代数中,行列式是个函数。

在本质上,行列式描述的是在n维空间中一个线性变换所形成的“平行多面体”的“体积”。

行列式的概念出现的根源是解线性方程组。

本论文首先,对行列式的计算方法进行总结,并对计算方法进行举例。

其次,n阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法。

最后,值得注意的是,在同一个行列式有时会有不同的求解方法,这就要根据行列式的特点选择适当的方法了。

关健词:行列式计算方法方法举例AbstractIn linear algebra, the determinant is a function.In essence, the determinant dimensional space described in a linear transformation.The formation of "parallel polyhedron" and "volume".The concept of the root of the determinant there is solution of linear equations.The paper on the summary of the calculation of the determinant and the calculation method for example.n-order determinant have many the calculation methods,Fewer non-zero elements Can be calculated using the definition(1.In accordance with the start of a column or a row. 2.Full expansion.). More determinant of the nature of the calculation is to use.In particular, observe the characteristics of the subject request,Flexible Selection Method.It is to be noted that In the same determinant sometimes will have different methods for solving. Here are some commonly used methods and illustrate with examples.Keywords:Determinant Calculation motheds illustrate with examples目录前言 (1)第一章普遍法求行列式1.1利用行列式的定义直接计算 (2)1.2利用行列式的性质计算 (2)1.3化为三角形行列式 (3)1.3.1直接化为阶梯型 (3)1.3.2相同去项化上三角形 (4)第二章特殊法求行列式2.1降阶法(按行(列)展开法) (5)2.1.1先简后展 (5)2.1.2 按第一行(列)展开 (6)2.2 递(逆)推公式法 (7)2.2.1等差数列递推 (7)2.2.2“一路直推” (9)2.2.3对角递推 (9)2.3利用德蒙行列式 (11)2.3.1变形德蒙行列式 (11)2.3.2 系数德蒙行列式 (12)2.3.3利用行列式性质凑德蒙行列式 (13)第三章其他方法求行列式3.1加边法(升阶法) (14)3.1.1“0”和“字母”加边 (14)3.1.2“0”和“1”加边 (14)3.2 数学归纳法 (16)3.2.1第一数学归纳法 (16)3.2.2第二数学归纳法 (17)3.2.3猜测归纳法 (17)3.3拆开法 (19)3.3.1对角拆开 (19)3.3.2按行(列)拆 (19)参考文献.............................................................................................21. 辞. (22)前言在线性代数中,行列式是一个函数,其定义域为的矩阵A,值域为一个标量,写作)det(A。

行列式的计算方法总结 毕业论文

行列式的计算方法总结  毕业论文

1 行列式的概念及性质1.1 行列式的概念n 级行列式nnn n nn a a a a a a a a a212222111211等于所有取自不同行不同列的个元素的乘积n nj j j a a a 2121的代数和,这里的n j j j 21是1,2,…,n 的一个排列,每一项都按下列规则带有符号:当n j j j 21是偶排列时,带有正号;当n j j j 21是奇排列时,带有负号。

这一定义可写成,这里∑nj j j 21表示对所有n 级排列的求和。

1.2 行列式的性质[1]性质1 行列互换,行列式值不变,即=nn n n n na a a a a a a a a212222111211nnn n n n a a a a a a a a a 212221212111性质2 行列式中某一行(列)元素有公因子k ,则k 可以提到行列式记号之外,即=nnn n in i i na a a ka ka ka a a a212111211nnn n in i i na a a a a a a a a k 212111211 这就是说,一行的公因子可以提出去,或者说以一数乘以行列式的一行就相当于用这个nn nnj j j j j j r j j j nnn n nn a a a a a a a a a a a a 21212121)(212222111211)1(∑-=数乘以此行列式。

事实上,nnn n in i i n a a a ka ka ka a a a212111211=11i i A ka +22i i A ka +in in A ka + =21(i i A a k +22i i A a +)in in A a +nnn n in i i n a a a a a a a a a k212111211= , 令k =0,如果行列式中任一行为零,那么行列式值为零。

性质3 如果行列式中某列(或行)中各元素均为两项之和,即),,2,1(n i c b a ij ij ij =+=,则这个行列式等于另两个行列式之和。

行列式的计算方法 毕业论文 (2)

行列式的计算方法  毕业论文 (2)

行列式的计算方法摘要行列式最早是由解线性方程而引进的,时至今日,行列式已不止如此,在许多方面都有广泛的应用。

本文,我们学习行列式的定义、性质,化为“三角形”行列式,利用行列式的性质,使行列式化简或化为“三角形”行列式计算。

利用拉普拉斯展开定理,按某一行(列)或某几行(列)展开,使行列式降级,利用范德蒙行列式的计算公式,利用递推关系等,在计算行列式中最常用的是利用行列式的性质,和按某行(列)展开行列式,而某些方法是针对于某些特殊类型的行列代而言,对一般的n级行列式的计算,往往要利用行列式的性质和拉普拉斯展开定理,导出一个递推公式,化为2级或3级行列式,以及化为“三角形”行列式来计算。

关键词计算方法线性方程组行列式引言解方程是代数中一个基本问题,特别是在中学代数中,解方程占有重要地位。

因此这个问题是读者所熟悉的。

譬如说,如果我们知道了一段导线的电阴r,它的两端的电位差v,那么通过这段导线的电流强度i,就可以由关系式vir ,求出来。

这就是通常所谓解一元一次方程的问题。

在中学所学代数中,我们解过一元、二元、三元以至四元一次方程组。

而n 元一次方程组,即线性方程组的理论,在数学中是基本的也是重要的内容。

在中学代数课中学过,对于二元线性方程组:⎩⎨⎧=+=+22221211212111b x a x a b x a x a 当二级行列式022211211≠a a a a 时,该方程组有唯一解,即222112112221211a a a a ab a b x =,222112112211112a a a a b a b a x =,对于三元线性方程组有相仿的结论。

为了把此结果推广到n 元线性方程组⎪⎪⎩⎪⎪⎨⎧=++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212*********的情形。

我们首先要掌握n 级行列式的相关知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行列式的计算及应用毕业论文目录1. 行列式的定义及性质 (1)1.1 行列式的定义 (1)1.1.1 排列 (1)1.1.2 定义 (1)1.2 行列式的相关性质 (1)2. 行列式的计算方法 (5)2.1 几种特殊行列式的结果 (5)2.1.1 三角行列式 (5)2.1.2 对角行列式 (5)2.2 定义法 (5)2.3 利用行列式的性质计算 (5)2.4 降阶法 (6)2.5 归纳法 (7)2.6 递推法 (8)2.7 拆项法 (9)2.8 用德蒙德行列式计算 (10)2.9 化三角形法 (10)2.10 加边法 (11)2.11 拉普拉斯定理的运用 (12)2.12 行列式计算的Matlab实验 (13)3. 行列式的应用 (15)3.1 行列式应用在解析几何中 (15)3.2 用行列式表示的三角形面积 (16)3.3 应用行列式分解因式 (16)3.4 利用行列式解代数不等式 (17)3.5 利用行列式来证明拉格朗日中值定理 (18)3.6 行列式在实际中的应用 (18)总结 (21)参考文献 (22)附录1 (22)附录2 (23)附录3 (24)谢辞 (24)1. 行列式的定义及性质 1.1 行列式的定义1.1.1 排列[1]在任意一个排列中,若前面的数大于后面的数,则它们就叫做一个逆序,在任意一个排列中,逆序的总数就叫做这个排列的逆序数.1.1.2 定义[1]n 阶行列式nnn n n na a a a a a a a a D212222111211=就相当于全部不同行、列的n 个元素的乘积nnj j j a a a 2121 (1-1-1)的代数和,这里n j j j 21是n ,,2,1 的一个排列,每一项(1-1-1)都按下列规则带有符号:当n j j j 21是偶排列时,(1-1-1)是正值,当n j j j 21是奇排列时,(1-1-1)是负值.这一定义可以表述为n nn nj j j j j j j j j nnn n nna a a a a a a a a a a a D21212121)(212222111211)1(∑-==τ, (1-1-2)这里∑nj j j 21表示对所有n 级排列求和.由于行列指标的地位是对称的,所以为了决定每一项的符号,我们也可以把每一项按照列指标排起来,所以定义又可以表述为n i i i i i i i i i nn n n nnn n a a a a a a a a a a a a D21)(212222111211212121)1(∑-==τ.(1-1-3) 1.2 行列式的相关性质记 nnn n n na a a a a a a a a D 212222111211=,nnn nn n a a a a a aa a a D 212221212111'=,则行列式'D 叫做行列式D 的转置行列式.性质1 行列式和它的转置行列式是相等的[2]. 即D D ='. 证明:记D 中的一般项n 个元素的乘积是,2121n nj j j a a a它处于D 的不同行和不同列,所以它也处于'D 的不同行和不同列,在'D 中应是,2121n j j j n a a a所以它也是'D 中的一项.反之, 'D 的每一项也是D 的一项,即D 和'D 有相同的项.再由上面(1-2)和(1-3)可知这两项的符号也相同,所以D D ='.性质2 nnn n in i i nnn n n in i i n a a a a a a a a a k a a a ka ka ka a a a212111211212111211=. 证明:inin i i i i nnn n in i i n A ka A ka A ka a a a ka ka ka a a a +++=2211212111211.)(2121112112211nnn n in i i nin in i i i i a a a a a a a a a k A a A a A a k =+++=性质3 如果行列式的某行(列)的元素都为两个数之和[2],如nnn n nn n a a a c b c b c b a a a D 21221111211+++=,那么行列式D 就等于下列两个行列式的和:.212111211212111211nnn n n n nn n n n n a a a c c c a a a a a a b b b a a a D +=可以参照性质2的证明得出结论.性质4 对换行列式中任意两行的位置,行列式值相反.即若设,21212111211nnn n kn k k in i i na a a a a a a a a a a a D=,212121112111nnn n in i i kn k k na a a a a a a a a a a a D =则.1D D -=证明:记D 中的一般项中的n 个元素的乘积是.2121n k i nj kj ij j j a a a a a它在D 中处于不同行、不同列,因而在1D 中也处于不同行、不同的列,所以它也是1D 的一项.反之,1D 中的每一项也是D 中的一项,所以D 和1D 有相同的项,且对应的项绝对值相同.现在看该项的符号:它在D 中的符号为.)1()(21n k i j j j j j τ-由于1D 是由交换D 的i 、k 两行而得到的,所以行标的n 级排列n k i 12变为n 级排列n k i 12,而列标的n 级排列并没有发生变化.因此D 和1D 中每一对相应的项绝对值相等,符号相反,即.1D D -=性质5 如果行列式中任有两行元素完全相同,那么行列式为零.证明:设该行列式为D ,交换D 相同的那两行,由性质4可得D D -=,故.0=D性质 6 如若行列式中任有两行或者两列元素相互对应成比例,则行列式为零.证明:设n 阶行列式中第i 行的各个元素为第j 行的对应元素的k 倍,由性质2,可以把k 提到行列式外,然后相乘.则剩下的行列式的第i 行与第j 行两行相同,再由性质5,最后得到行列式为零.性质7 把任意一行的倍数加到另一行,行列式的值不改变.nnn n knk k knin k i k i na a a a a a ca a ca a ca a a a a2121221111211+++nnn n kn k k kn k k nnnn n kn k k in i i n a a a a a a ca ca ca a a a a a a a a a a a a a a a2121211121121212111211+=nnn n kn k k in i i n a a a a a a a a a a a a 21212111211=.2. 行列式的计算方法2.1 几种特殊行列式的结果2.1.1 三角行列式nn nn nna a a a a a a a a 221122*********=(上三角行列式).nn nnn n a a a a a a a a a2211212221110=(下三角行列式). 2.1.2 对角行列式nn nna a a a a a22112211000=. 2.2 定义法例1 用定义法证明.000000002121215432154321=e e d d c c b b b b b a a a a a 证明:行列式的一般项可表成.5432154321j j j j j a a a a a 列标543,,j j j 只能在5,4,3,2,1中取不同的值,故543,,j j j 三个下标中至少有一个要取5,4,3中的一个数,则任意一项里至少有一个0为因子,故任一项必为零,即原行列式的值为零.2.3 利用行列式的性质计算例2 一个n 阶行列式ij n a D =的元素都满足n j i a a ji ij ,,2,1,, =-=, 那么n D 叫做反对称行列式,证明:奇数阶的反对称行列式的值等于0.证明:由ji ij a a -=知ii ii a a -=,即n i a ii ,,2,1,0 ==所以行列式n D 可写为0000321323132231211312 n n nn n nn a a a a a a a a a a a a D ------=,再由行列式的性质2,'A A =得到0000000321323132231211312321323132231211312nnnnn n n nnn nn n a a a a a a a a a a a a a a a a a a a a a a a a D ------=------=n n nn n n nn n D a a a a a a a a a a a a )1(0000)1(321323132231211312-=-------= ,当n 为奇数时,得n n D D -=,因而得到0=n D .2.4 降阶法例3 计算)2(≥n n 级行列式xy y x y x y xd 000000000000=. 解:按第一列展开得到原式阶阶)1(1)1(000000000)1(0000000000000-+--⨯+=n n n y xy y x y y x yx y x y x x1)1(1)1(-+-⨯⨯-+⨯=n n n y y x x)2()1()1(≥-+=+n y x n n n .2.5 归纳法形如行列式113121122322213211111----=n nn n n n n n a a a a a a a a a a a a D叫做n 阶德蒙(Vandermonde )行列式.下面证明,对每一个)2(≥n n ,n 阶德蒙行列式就等于n a a a ,,,21 这n 个数的所有可能的差)1(n i j a a j i ≤<≤-的乘积.用数学归纳法证明德蒙德行列式 我们对错误!未找到引用源。

作归纳法. (1)当2=n 时,122111a a a a -=错误!未找到引用源。

,结果是对的. (2)设对于1-n 错误!未找到引用源。

级的德蒙行列式,结论是成立的,先来看n 级的情况.在113121122322213211111----=n nn n n n n n a a a a a a a a a a a a D中,第n 行减第错误!未找到引用源。

行的1a 倍,第错误!未找到引用源。

行减第错误!未找到引用源。

行的1a 倍,即由下而上逐次地从每一行减它上一行的1a 倍,得到n D 21123113221121231232122113120001111---------------=n nn n n n n n n n n a a a a a a a a a a a a a a a a a a a a a a a a2112311322112123123212211312---------------=n nn n n n n n nn n a a a a a a a a a a a a a a a a a a a a a a a a22322223223211312111)())((------=n nn n n n n a a a a a a a a a a a a a a a. 最后面这个行列式是1-n 级德蒙德行列式,再由归纳法假设,它的值就是)1(n i j a a j i ≤<≤-;而所有带有1a 的差即为上式最后等式行列式的前面.所以,结论对错误!未找到引用源。

相关文档
最新文档