苏教版八年级数学下册知识点(详细精华版)
初二知识点总结苏教版

初二知识点总结苏教版
轴对称图形:这一章主要介绍了轴对称图形的定义和性质,包括轴对称、中心对称等概念,以及对称轴和对称中心的判定方法。
勾股定理与平方根:
勾股定理:直角三角形两直角边的平方和等于斜边的平方。
同时,也介绍了勾股定理的逆定理,即如果一个三角形的三边满足勾股定理的条件,那么这个三角形是直角三角形。
平方根与实数:学习了平方根的概念和性质,包括算术平方根和负数的平方根(即虚数单位i)。
同时,也涉及了实数的大小比较和实数的运算。
三角形全等:
全等三角形的定义与性质:能够完全重合的两个三角形称为全等三角形。
全等三角形的对应边和对应角相等,周长和面积也相等。
全等三角形的判定条件:如SAS、ASA、AAS、SSS等,这些是证明两个三角形全等的重要依据。
分式:
分式的定义:如果A和B表示两个整式,并且B中含有字母,那么代数式A/B称为分式。
分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
分式的约分与最简分式:与分数的约分类似,根据整式的性质将分式的分子和分母分别除以它们的公因式,得到最简分式。
此外,初二数学还可能涉及其他内容,如一次函数、二元一次方程组等知识点。
请注意,这只是一个大致的总结,具体的教材内容可能会因版本和地区而有所不同。
因
此,建议学生以实际使用的教材为准,结合老师的讲解和课后练习来全面理解和掌握这些知识点。
除了数学,初二还涉及其他学科如语文、英语、物理、化学、生物、历史、地理和政治等,每个学科都有其独特的知识点和学习方法。
学生应该根据自己的学习情况和兴趣,合理安排学习计划,全面提升自己的学科素养。
苏教版八年级数学下册知识点总结

苏教版八年级数学下册知识点总结苏教版数学八年级下册知识点数据的收集、整理与描述数据的收集可以通过全面调查和抽样调查两种方式进行。
全面调查是指考察全体对象的调查方式,而抽样调查则是调查部分数据,根据部分来估计总体的调查方式。
总体是要考察的全体对象,而组成总体的每一个考察对象称为个体。
被抽取的所有个体组成一个样本,样本中个体的数目称为样本容量。
频率分布频率分布是对一组数据进行整理,以便得到它的频率分布,即样本中数据在各个小范围所占的比例的大小。
研究频率分布的一般步骤包括计算极差、决定组距与组数、决定分点、列频率分布表和画频率分布直方图。
频率分布的有关概念包括极差、频数和频率。
确定事件和随机事件确定事件是在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。
不可能发生的事件则是在每次试验中都不会发生的事件。
随机事件是在一定条件下,可能发生也可能不发生的事件。
随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
概率的意义与表示方法概率是指在大量重复试验中,事件发生的频率会稳定在某个常数p附近,这个常数p就叫做事件的概率。
事件用英文大写字母A、B、C等表示,而事件A的概率p可记为P(A)。
确定事件的概率是1,而不可能发生的事件概率是0.确定事件和随机事件之间的概率关系是重要的数学概念。
不可能事件、随机事件和必然事件是其中的三种形式。
在古典概型中,试验具有有限多个可能的结果,并且每个结果发生的概率相等。
这种情况下,可以用公式 P(A) = m/n 计算事件 A 发生的概率。
列表法和树状图法是求解概率的两种常用方法,它们适用于不同的试验设计。
另一种估计概率的方法是利用频率,通过大量重复试验来估算事件的概率。
分式是另一个重要的数学概念,其中 A 和 B 是整式,且 B 包含字母。
分式的值取决于分子和分母的值,分式的约分和通分是常见的操作。
最简公分母是各分式分母因式的最高次幂的积。
整式和分式统称为有理式。
苏科版数学八年级知识点整理

苏科版数学八年级知识点整理苏科版数学八年级知识点整理第一章三角形全等 1 全等三角形的对应边、对应角相等2边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 5 边边边公理(SSS) 有三边对应相等的两个三角形全等 6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等定义:能够完全重合的两个三角形叫做全等三角形。
理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。
性质:(1)全等三角形的对应边相等、对应角相等。
理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。
(2)全等三角形的周长相等、面积相等。
(3)全等三角形的对应边上的对应中线、角平分线、高线1/ 25分别相等。
判定:边边边:三边对应相等的两个三角形全等(可简写成“SSS”) 边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”) 角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”) 角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”) 斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”) 证明两个三角形全等的基本思路:(1)、已知两边:①找第三边(SSS);②找夹角(SAS);③找是否有直角(HL). 、已知一边一角:①找夹角(AAS);②找夹角(SAS);③找是否有直角(HL). 、已知两边:①找第三边(SSS);②找夹角(SAS);③找是否有直角(HL). 第二章轴对称把一个图形沿着某一条直线折叠,如果它能够与另一个图形完全重合,那么这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫对称轴,两个图形中对应点叫做对称点轴对称图形把一个图形沿某条直线折叠,如果直线两旁的部分能够完全重合,那么成这个图形是轴对称图形,这条直线式对称轴垂直平分线垂2/ 25直并且平分一条线段的直线,叫做这条线段的垂直平分线轴对称性质:1、成轴对称的两个图形全等2、如果两个图形成轴对称,那么对称轴是对应点连线的垂直平分线3、成轴对称的两个图形的任何对应部分成轴对称4、成轴对称的两条线段平行或所在直线的交点在对称轴上线段的对称性:1、线段是轴对称图形,线段的垂直平分线是对称轴2、线段的垂直平分线上的点到线段两端距离相等3、到线段两端距离相等的点在垂直平分线上角的对称性:1、角是轴对称图形,角平分线所在的直线是对称轴2、角平分线上的点到角的两边距离相等3、到角的两边距离相等的点在角平分线上等腰三角形的性质:1、等腰三角形是轴对称图形,顶角平分线所在直线是对称轴2、等边对等角3、三线合一等腰三角形判定:1、两边相等的三角形是等边三角形2、等边对等角直角三角形的推论:直角三角形斜边上中线等于斜边一半30°角所对的边是斜边的一半等边三角形判定及性质:1、三条边相等的三角形是等边三角形2、等边三角形是轴对称图形,有3条对称轴3、等边三角形每个角都等于60°判定:三条边都相等、三个角都是60°、有一个角是60°的等腰3/ 25三角形是等边三角形等腰梯形:两腰相等的梯形是等腰梯形等腰梯形性质:1、等腰梯形是轴对称图形,过两底中点的直线是对称轴2、等腰梯形在同一底上的两个角相等3、等腰梯形对角线相等等腰梯形判定:1.、两腰相等的梯形是等腰梯形2、在同一底上两个角相等的梯形是等腰梯形第三章勾股定理直角三角形两直角边的平方和等于斜边的平方a²+b²=c² 勾股定理逆定理:如果一个三角形三边a、b、c满足a²+b²=c²,那么这个三角形是直角三角形勾股数:满足a²+b²=c²的三个正整数a、b、c称为勾股数第四章实数平方根:如果一个数的平方等于a,那么这个数叫做a 的平方根,也称二次方根如果x²=a,那么x叫做a的平方根平方根的性质:1、一个正数有两个平方根,它们互为相反数2、0只有一个平方根,是03、负数没有平方根算术平方根:正数a的正的平方根叫a的算术平方根0的算术平方根是0 开平方:求一个数a的平方根的运算,叫做开平方立方根:如果一个数的立方等于a,那么这个数叫做a的立方根,也称三次方根如果x³=a,那么a是x的立方根立方根的性质:1、正数的立方根是正数2、负数的立方根是负数3、04/ 25的立方根是0 开立方:求一个数的立方根的运算,叫做开立方有效数字:对于一个近似数,从左边第一个不是0的数字起,到末尾数字止,所有的数字都称为这个近似数的有效数字补充:平方根和立方根1、算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。
(完整版)苏教版八年级数学全册知识点总结,推荐文档

八年级数学全册知识点总结上册 第一章 轴对称图形1. 什么叫轴对称:如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。
2. 什么叫轴对称图形:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
3. 轴对称与轴对称图形的区别与联系: 区别:①轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分沿某直线对折能完全重合。
②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性。
联系:①两部分都完全重合,都有对称轴,都有对称点。
②如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;如果把一个轴对称图形的两旁的部分看成两个图形,这两个部分图形就成轴对称。
常见的轴对称图形有:圆、正方形、长方形、菱形、等腰梯形、等腰三角形、等边三角形、角、线段、相交的两条直线等。
4. 线段的垂直平分线:l垂直并且平分一条线段的直线,叫做这条线段的垂直平分线。
(也称线段的中垂线) 5. 轴对称的性质:⑴成轴对称的两个图形全等。
AB⑵如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。
6. 怎样画轴对称图形:画轴对称图形时,应先确定对称轴,再找出对称点。
1轴 对称的性 质轴对称的应用等腰梯形轴对称等腰三角形角 轴对称图形线段 设计轴对称图案------线段、角的轴对称性① 线段是轴对称图形,对称轴有两条;一条是线段所在的直线,另一条是这条线段的垂直平分线。
②线段的垂直平分线上的点到线段两端的距离相等。
③到线段两端距离相等的点,在这条线段的垂直平分线上。
结论:线段的垂直平分线是到线段两端距离相等的点的集合2.角的轴对称性:①角是轴对称图形,对称轴是角平分线所在的直线。
②角平分线上的点到角的两边距离相等。
③到角的两边距离相等的点,在这个角的平分线上。
苏教版八年级数学知识点总结

苏教版八年级数学知识点总结八年级数学是初中数学中的一项重要内容,对于学生的数学思维能力的培养和数学基础的奠定有着至关重要的作用。
而苏教版八年级数学则是较为常见并被广泛使用的一套教材。
本文将对苏教版八年级数学的知识点进行综述和总结。
一、代数代数是八年级数学的核心内容之一,主要包括:一元一次方程与等式,二元一次方程组,根式与分式,整式,一次函数及其应用等知识点。
1. 一元一次方程与等式一元一次方程指一个未知数为一次的方程,可以表示为ax+b=0 (a≠0),如2x+3=7。
对于一元一次方程,我们需要掌握基本的方程变形、用加减乘除消元、移项变号、去分母等方法来解方程。
同时,还需要理解为什么一元一次方程只有一个解或没有解。
在实际应用中,我们可以将问题转化为一元一次方程,进而解决问题。
比如有一道题目:“一堆苹果,分给a,b,c三人,分完后c 多得a,b两人分的各一半,若原来有21个苹果,则c得到多少个苹果?” 我们根据题意可以写出方程。
设a,b,c三人分别得到x,y,z个苹果,则有:x+y+z = 21;z = (x+y)/2;整理得:x + y - 2z = 0;插入第一个公式可得:x+y = 2z;代入第一个公式得:3z = 21,解得z=7。
所以c得到的苹果数是7个。
2. 二元一次方程组二元一次方程组由两个未知数的一次方程组成,一般写成:ax+by=c;dx+ey=f;我们需要掌握用消元法和代入法解二元一次方程组的基本方法和步骤。
同时还需要理解解出的解集的含义,如有唯一解、无解、无穷解等情况。
在实际应用中,二元一次方程组也有广泛的应用,如数学建模、物理力学等。
例如有一道题目:“使用8个10W和4个20W的灯泡,排成两排,第一排4个,第二排8个,第一排亮的灯泡功率大于等于第二排。
求每只灯有几瓦?” 我们根据题意可以写出方程组。
设第一排4个灯泡中有x个10W的和y个20W的,第二排8个灯泡中有m个10W的和n个20W的,则有:x+y = 4;m+n = 8;10x+20y >= 10m+20n;代入第三个方程可以得到: y>=n;n>=x;m>=y;插入第一个公式可得:n+m = 8-x;插入第二个公式可得:x+2y <= 4;整理可得:5y-2n >=2,解得y=2,n=1。
(word完整版)苏教版八年级下数学知识点总结,文档

第七章一元一次不等式1 不等式: 用不等号表示不等关系的式子叫做不等式2 不等式的解: 能使不等式成立的未知数的值叫做不等式的解。
不等式的解集:一个含有未知数的不等式的解的全体叫做这个不等式的解集。
3 不等式的性质: ○1 不等式的两边都加上〔或减去〕同一个整式,不等号的方向不变。
○2不等式的两边都乘〔或除以〕一个正数,不等号的方向不变。
不等式的两边都乘〔或除以〕一个负数,不等号的方向改变。
4 解一元一次不等式的步骤与解一元一次方程近似。
但是,在不等式两边都乘〔或除以〕同一个不等于0 的数时,必定依照这个数是正数,还是负数,正确地运用不等式的性质 2,特别要注意在不等式两边都乘〔或除以〕同一个负数时,要改变不等号的方向。
5 用一元一次不等式解决问题步骤: 〔 1〕审:认真审题,分清量、未知量的及其关系,找出题中不等关系,要抓住题设中的要点字“眼〞 ,如“大于〞 、“小于〞、“不小于〞 、“不大于〞等的含义。
( 2〕设:设出合适的未知数。
( 3〕列:依照题中的不等关系,列出不等式。
( 4〕解:解出所列不等式的解集。
( 5〕答:写出答案,并检验答案可否吻合题意。
6 一元一次不等式组:由几个含有同一个未知数的一次不等式组成的不等式组叫做一元一次不等式组。
不等式组中所有不等式的解集的公共局部叫做这个不等式组的解集,求不等式组解集的过程叫解不等式 组。
一元一次不等式组解决实责问题的步骤:与一元一次不等式解决实责问题近似,不相同之处在与列出不等式组,并解出不等式组。
7 一元一次不等式与一元一次方程、一次函数当一次函数中的一个变量的值确准时,能够用一元一次方程确定另一个变量的值;当一次函数中的一个变量范围时,能够用一元一次不等式〔组〕确定另一个变量取值的范围。
第八章分式1 分式定义: 一般地,若是 A 、B 表示两个整式,而且B 中含有字母,那么代数式A叫做分式,其中A 是分B式的分子, B 是分式的分母。
苏教版八上八下数学定理 全面 必背

八上定理
一、轴对称的性质
1.成轴对称的两个图形中,对应点的连线被对称轴垂直平分
二、线段的垂直平分线:
①性质定理:线段的垂直平分线上的点到线段的两个端点的距离相等;
②判定定理:到一条线段两个端点的距离相等的点在这条线段的垂直平分线上。
拓展:三角形三条边的垂直平分线的交点到三个顶点
....的距离相等
三、角的角平分线:
①性质定理:角平分线上的点到这个角的两边的距离相等;
②判定定理:到角的两边的距离相等的点在这个角的角平分线上。
拓展:三角形三个角的角平分线的交点到三条边
...的距离相等。
四、等腰三角形:
1、性质定理:
①等边对等角
②三线合一
2、判定定理:等角对等边。
五、等边三角形:
1、性质定理:
①三边相等
②三个角都是60°
拓展:等边三角形每条边都能运用三线合一
....这性质。
2、判定定理:
①三条边都相等的三角形是等边三角形;
②三个角都相等的三角形是等边三角形;有两个角是60°的三角形是等边三角形;
③有一个角是60°的等腰三角形是等边三角形。
六、直角三角形推论:
1、直角三角形中,如果有一个锐角是30°,那么它所对的直角边等于斜边的一半。
2、直角三角形中,斜边上的中线等于斜边的一半。
拓展:直角三角形常用面积法
...求斜边上的高。
苏教版八年级下册数学[三角形中位线定理 知识点整理及重点题型梳理]
![苏教版八年级下册数学[三角形中位线定理 知识点整理及重点题型梳理]](https://img.taocdn.com/s3/m/9c586fc4aef8941ea76e059e.png)
苏教版八年级下册数学重难点突破知识点梳理及重点题型巩固练习三角形中位线定理【学习目标】1. 理解三角形的中位线的概念,掌握三角形的中位线定理.2. 掌握中点四边形的形成规律.【要点梳理】要点一、三角形的中位线1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于第三边,并且等于第三边的一半.要点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系.(2)三角形的三条中位线把原三角形分成可全等的4个小三角形.因而每个小三角形的周长为原三角形周长的12,每个小三角形的面积为原三角形面积的14.(3)三角形的中位线不同于三角形的中线.要点二、顺次连接特殊的平行四边形各边中点得到的四边形的形状(1)顺次连接平行四边形各边中点得到的四边形是平行四边形.(2)顺次连接矩形各边中点得到的四边形是菱形.(3)顺次连接菱形各边中点得到的四边形是矩形.(4)顺次连接正方形各边中点得到的四边形是正方形.要点诠释:新四边形由原四边形各边中点顺次连接而成.(1)若原四边形的对角线互相垂直,则新四边形是矩形.(2)若原四边形的对角线相等,则新四边形是菱形.(3)若原四边形的对角线垂直且相等,则新四边形是正方形.【典型例题】类型一、三角形的中位线1、(2016•北京)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.【思路点拨】(1)根据三角形中位线定理得MN=AD,根据直角三角形斜边中线定理得BM=AC,由此即可证明.(2)首先证明∠BMN=90°,根据BN2=BM2+MN2即可解决问题.【答案与解析】(1)证明:在△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,MN=AD,在RT△ABC中,∵M是AC中点,∴BM=AC,∵AC=AD,∴MN=BM.(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)可知,BM=AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°,∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴BN2=BM2+MN2,由(1)可知MN=BM=AC=1,∴BN=【总结升华】本题考查三角形中位线定理、直角三角形斜边中线定理、勾股定理等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.举一反三:【变式】如图,矩形OABC的顶点A、C分别在x轴、y轴正半轴上,B点坐标为(3,2),OB与AC交于点P,D、E、F、G分别是线段OP、AP、BP、CP的中点,则四边形DEFG的周长为_____.【答案】5;解:∵四边形OABC是矩形,∴OA=BC,AB=OC;BA⊥OA,BC⊥OC.∵B点坐标为(3,2),∴OA=3,AB=2.∵D、E、F、G分别是线段OP、AP、BP、CP的中点,∴DE=GF=1.5; EF=DG=1.∴四边形DEFG的周长为(1.5+1)×2=5.2、如图,在△ABC中,已知点D、E、F分别是AB、BC、CA的中点,AH是高.(1)若BC=10,AH=8,则四边形ADEF的面积为.(2)求证:∠DHF=∠DEF.HF EDCBA【思路点拨】(1)由三角形面积公式可知:△BDE、△EFC的面积都等于△ABC面积的四分之一,进而可求出四边形ADEF的面积.(2)首先证明四边形ADEF是平行四边形,进而可得∠DEF=∠DAF,再利用直角三角形的中线性质得线段相等,从而得角等,最终可得到∠DAF=∠DEF,即可证出∠DHF=∠DEF.【答案解析】(1)解:∵BC=10,AH=8,∴S△ABC=×8×10=40,∵点D、E、F分别是AB、BC、CA的中点,∴△BDE、△EFC的面积都等于△ABC面积的,∴四边形ADEF的面积=40﹣20=20,故答案为:20;(2)证明:∵D 、E 、F 分别是△ABC 各边中点,∴DE ∥AC ,EF ∥AB ,∴四边形ADEF 是平行四边形,∴∠DEF=∠DAF ,∵AH 是△ABC 的高∴△ABH 、△ACH 是直角三角形,∵点D 、点F 是斜边AB 、AC 中点,∴DH=DA ,HF=AF ,∴∠DAH=∠DHA ,∠FAH=∠FHA ,∴∠DAH+∠FAH=∠FHA+∠DHA ,即∠DAF=∠DHF ,∴∠DEF=∠DHF .【总结升华】此题主要考查了平行四边形的性质与判定,三角形的中位线定理,直角三角形的性质,解决题目的关键是证明∠DHF=∠DAF 与∠DAF=∠DEF .3、如图所示,在△ABC 中,M 为BC 的中点,AD 为∠BAC 的平分线,BD ⊥AD 于D ,AB =12,AC =18,求MD 的长.【思路点拨】本题中所求线段MD 与已知线段AB 、AC 之间没有什么联系,但由M 为BC 的中点联想到中位线,另有AD 为角平分线和垂线,根据等腰三角形“三线合一”构造等腰三角形ABN ,D 为BN 的中点,DM 即为中位线,不难求出MD 的长度.【答案与解析】解:延长BD 交AC 于点N .∵ AD 为∠BAC 的角平分线,且AD ⊥BN ,∴ ∠BAD =∠NAD ,∠ADB =∠ADN =90°,在△ABD 和△AND 中,BAD NAD AD =ADADB ADN ∠∠⎧⎪⎨⎪∠∠⎩== ∴ △ABD ≌△AND(ASA)∴ AN =AB =12,BD =DN .∵ AC =18,∴ NC =AC -AN =18-12=6,∵ D 、M 分别为BN 、BC 的中点,∴ DM =12CN =162⨯=3. 【总结升华】当条件中含有中点的时候,可以将它与等腰三角形的“三线合一”、三角形的中线、中位线等联系起来,进行联想,必要时添加辅助线,构造中位线等图形.举一反三:【变式】如图所示,四边形ABCD中,Q是CD上的一定点,P是BC上的一动点,E、F分别是PA、PQ两边的中点;当点P在BC边上移动的过程中,线段EF的长度将( ).A.先变大,后变小 B.保持不变 C.先变小,后变大 D.无法确定【答案】B;解:连接AQ.∵ E、F分别是PA、PQ两边的中点,∴ EF是△PAQ的中位线,即AQ=2EF.∵ Q是CD上的一定点,则AQ的长度保持不变,∴线段EF的长度将保持不变.4、我们给出如下定义:有一组相邻内角相等的四边形叫做等邻角四边形.请解答下列问题:(1)如图1,在△ABC中,AB=AC,点D在BC上,且CD=CA,点E、F分别为BC、AD的中点,连接EF并延长交AB于点G.求证:四边形AGEC是等邻角四边形;(2)如图2,若点D在△ABC的内部,(2)中的其他条件不变,EF与CD交于点H,图中是否存在等邻角四边形,若存在,指出是哪个四边形,不必证明;若不存在,请说明理由.【思路点拨】(1)运用中位线的性质,找出对应相等的角;(2)根据题意易知满足条件的四边形即为第一题的四边形.【答案与解析】解:(1)取AC的中点H,连接HE、HF∵点E为BC中点∴EH为△ABC的中位线∴EH∥AB,且EH=12AB同理FH∥DC,且FH=12DC∵AB=AC,DC=AC∴AB=DC,EH=FH∴∠1=∠2∵EH∥AB,FH∥DC∴∠2=∠4,∠1=∠3∴∠4=∠3∵∠AGE+∠4=180°,∠GEC+∠3=180°∴∠AGE=∠GEC∴四边形AGEC是邻角四边形(2)存在等邻角四边形,为四边形AGHC.【总结升华】本题考查了三角形的中位线以及等腰三角形的性质的综合运用.本题较灵活,要求学生能够把题中的条件转化成角,从而找出相等的角来解题.举一反三:【变式】如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是()A.4 B.3 C.2 D.1【答案】D;解:连接DE并延长交AB于H,∵CD∥AB,∴∠C=∠A,∠CDE=∠AHE,∵E是AC中点,∴AE=CE,∴△DCE≌△HAE,∴DE=HE,DC=AH,∵F是BD中点,∴EF是△DHB的中位线,∴EF=12 BH,∴BH=AB-AH=AB-DC=2,∴EF=1.类型二、中点四边形5、如图,在梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD交于点O,AC⊥BD,E、F、G、H分别是AB、BC、CD、DA的中点.(1)求证:四边形EFGH 是正方形;(2)若AD =2,BC =4,求四边形EFGH 的面积.【思路点拨】(1)先由三角形的中位线定理求出四边相等,然后由AC⊥BD 入手,进行正方形的判断.(2)连接EG ,利用梯形的中位线定理求出EG 的长,然后结合(1)的结论求出2EH =92,也即得出了正方形EHGF 的面积. 【答案与解析】证明:(1)在△ABC 中,E 、F 分别是AB 、BC 的中点,故可得:EF =12AC ,同理FG =12BD ,GH =12AC ,HE =12BD , 在梯形ABCD 中,AB =DC ,故AC =BD ,∴EF=FG =GH =HE ,∴四边形EFGH 是菱形.设AC 与EH 交于点M ,在△ABD 中,E 、H 分别是AB 、AD 的中点,则EH∥BD,同理GH∥AC,又∵AC⊥BD,∴EH⊥HG,∴四边形EFGH 是正方形.(2)连接EG .在梯形ABCD 中,∵E、G 分别是AB 、DC 的中点,∴EG=12(AD +BC )=3. 在Rt△EHG 中, ∵222EH GH EG +=,EH =GH ,∴2EH =92,即四边形EFGH 的面积为92. 【总结升华】此题考查了等腰梯形的性质及三角形、梯形的中位线定理,解答本题的关键是根据三角形的中位线定理得出EH =HG =GF =FE ,这是本题的突破口.举一反三:【变式】如图,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点.(1)判断四边形EFGH 的形状,并说明你的理由;(2)连接BD和AC,当BD、AC满足何条件时,四边形EFGH是正方形.【答案】解:(1)四边形EFGH是平行四边形.理由:连接AC,∵E、F分别是AB、BC的中点,∴EF∥AC,且EF=12 AC,同理,HG∥AC,且HG=12 AC,∴EF∥HG,且EF=HG,∴四边形EFGH是平行四边形;(2)当BD=AC,且BD⊥AC时,EFGH是正方形.理由:连接AC,BD,∵E、F、G、H分别是边AB、BC、CD、DA的中点,∴EF=GH=12AC,EH=FG=12BD,EH∥BD,GH∥AC,∵BD=AC,BD⊥AC,∴EH=EF=FG=GH,EH⊥GH,∴四边形ABCD是菱形,∠EHG=90°,∴四边形EFGH是正方形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏教版八年级数学下册知识点(详细精华版)一、数据处理一般包括收集数据、整理数据、描述数据和分析数据等过程。
1、通过调查收集数据的一般步骤:①明确调查问题②确定调查对象③选择调查方法④展开调查⑤记录结果⑥得出结论2、收集数据常用的方法:①民意调查:如投票选举②实地调查:如现场进行观察、收集、统计数据③媒体调查:报纸、电视、电话、网络等调查都是媒体调查。
二、数据的表示方法:(1)统计表:直观地反映数据的分布规律。
(2)折线图:反映数据的变化趋势。
(3)条形图:反映每个项目的具体数据。
(4)扇形图:反映各部分在总体中所占的百分比。
(5)频数分布直方图:直观形象地反映频数分布情况。
6)频数分布折线图:在频数分布直方图的基础上,取每一个长方形上边的中点,和左右频数为零与直方图相距半个组距的两个点。
三、统计调查1、全面调查(普查):考察全体对象的调查,就是全面调查。
例如我国进行的第六次人口普查。
2、抽样调查:采用调查部分对象的方式来收集数据, 根据部分来估计整体的情况, 叫做抽样调查。
统计中常用样本特性来估计总体特性。
需要注意的是,在抽样调查中,如果抽取样本的方法得当,一半样本能客观的反映总体的情况,抽样调查的结果会比较接近总体的情况,否则抽样调查的结果往往会偏离总体的情况,所以,在抽样调查要求抽取的样本要具有代表性。
⑴总体:所要考察对象的全体叫做总体。
⑵个体:总体中每一个考察对象叫做个体。
⑶样本:从总体中所抽取的一部分个体叫做总体的一个样本。
⑷样本容量:样本中个体的数目(不含单位)。
3、简单随机抽样:为了使样本能较好地反映总体情况,除了有合适的样本容量外,抽取时还要尽量使每一个个体有相等的机会被抽到。
抽取样本的过程中,总体中每一个个体都有相等的机会被抽到,像这样的抽样方法叫做简单随机抽样。
4、【总结】全面调查与抽样调查的比较:⑴全面调查:是通过调查总体的方式来收集数据,因而得到的调查结果比较精确;但可能要投入数倍甚至更多的人力、物力和时间、⑵抽样调查:是通过调查样本的方式来收集数据,因而调查结果与总体的结果可能的一些误差,但投入少、操作方便,而且有时只能用抽样的方式去调查,比如要研究一批炮弹的杀伤半径,不可能把所有的炮弹都发射出去,可见合理的抽样调查不失为一种很好的选择。
5、调查方法的选择:(1)当调查的对象个数较少,调查容易进行时,我们一般采用全面调查的方式进行。
(2)当调查的结果对调查对象具有破坏性时,或者会产生一定的危害性时,我们通常采用抽样调查的方式进行调查。
(3)当调查对象的个数较多,调查不易进行时,我们常采用抽样调查的方式进行调查。
(4)当调查的结果有特别要求时,或调查的结果有特殊意义时,如国家的人口普查,我们仍须采用全面调查的方式进行。
二、统计图1、三种统计图:条形统计图、扇形统计图、折线统计图2、三种统计图的特点:统计表是表现数字资料整理结果的最常用的一种表格、统计表是由纵横交叉线条所绘制的表格来表现统计资料的一种形式、A、扇形统计图:(1)扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数、通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系、用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数、(2)扇形图的特点:从扇形图上可以清楚地看出各部分数量和总数量之间的关系、(3)制作扇形图的步骤:①根据有关数据先算出各部分在总体中所占的百分数,再算出各部分圆心角的度数,公式是各部分扇形圆心角的度数=部分占总体的百分比360、②按比例取适当半径画一个圆;按扇形圆心角的度数用量角器在圆内量出各个扇形的圆心角的度数;③在各扇形内写上相应的名称及百分数,并用不同的标记把各扇形区分开来、B、条形统计图:1)定义:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来、2)特点:从条形图可以很容易看出数据的大小,便于比较、3)制作条形图的一般步骤:①根据图纸的大小,画出两条互相垂直的射线、②在水平射线上,适当分配条形的位置,确定直条的宽度和间隔、③在与水平射线垂直的射线上,根据数据大小的具体情况,确定单位长度表示多少、④按照数据大小,画出长短不同的直条,并注明数量C、折线统计图(1)定义:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来、以折线的上升或下降来表示统计数量增减变化、(2)特点:折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况、(3)绘制折线图的步骤:①根据统计资料整理数据、②先画纵轴,后画横轴,纵、横都要有单位,按纸面的大小来确定用一定单位表示一定的数量、③根据数量的多少,在纵、横轴的恰当位置描出各点,然后把各点用线段顺序连接起来、D、统计图的选择统计图的选择:即根据常用的几种统计图反映数据的不同特征结合实际来选择、(1)扇形统计图的特点:①用扇形的面积表示部分在总体中所占的百分比、②易于显示每组数据相对于总数的大小、(2)条形统计图的特点:①条形统计图能清楚地表示出每个项目中的具体数目、②易于比较数据之间的差别、(3)折线统计图的特点:①能清楚地反映事物的变化情况、②显示数据变化趋势、根据具体问题选择合适的统计图,可以使数据变得清晰直观、不恰当的图不仅难以达到期望的效果,有时还会给人们以误导、因此要想准确地反映数据的不同特征,就要选择合适的统计图、三、直方图1、频数与频率:(1)频数是指每个对象出现的次数、(2)频率是指每个对象出现的次数与总次数的比值(或者百分比)、即频率=频数/数据总数一般称落在不同小组中的数据个数为该组的频数,频数与数据总数的比值为频率、频率反映了各组频数的大小在总数中所占的分量、2、频数(率)分布表1)组数和组距:在统计数据时,经常把数据按照不同的范围分成几个组,分成的组的个数称为组数,每一组两个端点的差称为组距,称这样画出的统计图表为频数分布表、2)列频率分布表的步骤:(1)计算极差,即计算最大值与最小值的差、(2)决定组距与组数(组数与样本容量有关,一般来说样本容量越大,分组就越多,样本容量不超过100时,按数据的多少,常分成5~12组)、(3)将数据分组、(4)列频率分布表、3、频数(率)分布直方图画频率分布直方图的步骤:(1)计算极差,即计算最大值与最小值的差、(2)决定组距与组数。
先根据数据个数确定组距,再计算组数,注意无论整除与否,组数总是比商的整数位数多1;(3)确定分点,将数据分组、(4)列频率分布表、(5)绘制频率分布直方图、注:①频率分布表列出的是在各个不同区间内取值的频率,频率分布直方图是用小长方形面积的大小来表示在各个区间内取值的频率、直角坐标系中的纵轴表示频率与组距的比值,即小长方形面积=组距频数组距=频率、②各组频率的和等于1,即所有长方形面积的和等于1、③频率分布表在数量表示上比较确切,但不够直观、形象,不利于分析数据分布的总体态势、④从频率分布直方图可以清楚地看出数据分布的总体态势,但是从直方图本身得不出原始的数据内容、4、频数(率)分布折线图一般利用直方图画频数分布折线图,在频数分布直方图中,把每个小长方形上面的一条边的中点顺次连接起来,得到频数折线图、注意:折线图要与横轴相交,方法是在直方图的左右两边各延伸一个假想组,并将频数折线两端连接到假想组中点,它主要显示数据的变化趋势、5、条形图与直方图的区别:⑴条形图各矩形间有空隙,直方图各矩形间无空隙、⑵直方图可以显示各组频数分布情况,而条形图不能反映这一点、6、频数分布直方图的作图画一组数据的频率分布直方图,可以按以下的步骤进行:(1)计算最大值与最小值的差(2)决定组距和组数把所有的数据分为若干组,每个小组的两个端点之间的距离(组内数据的取值范围)称为组距。
根据问题的需要,各组的组距可以相同或不同。
将一批数据分组,一般数据越多分得组数也越多,当数据在100个以内时,常分成5~12组。
(3)列频数分布表对落在各个小组内的数据进行累计,得到各个小组内的数据的个数,叫做频数,整理即可得到频数分布表。
(4)画频数分布直方图例、下列是30名学生的数学竞赛成绩:根据数据做出频数分布直方图(1)计算最大值与最小值的差在上面的数据中,最小值是56,最大值是88,它们的差是32,说明数学竞赛成绩的变化范围是32、(2)决定组距与组数从最低分数起,每隔5分作为一组,则所以我们要将数据分成7组,组数和组距分别为7和5、(3)列频数分布表(4)画频数分布直方图(如右上图)第八章认识概率要点一、确定事件与随机事件1、确定事件1)不可能事件在一定条件下,有些事情我们事先能肯定它一定不会发生,这样的事情是不可能事件、2)必然事件在一定条件下,有些事情我们事先能肯定它一定会发生,这样的事情是必然事件、必然事件和不可能事件都是确定事件、2、随机事件在一定条件下,很多事情我们事先无法确定它会不会发生,这样的事情是随机事件、3、可能性的大小(1)一般地,要知道事件发生的可能性大小首先要确定事件是什么类型、(2)必然发生的事件发生的可能性最大,不可能发生的事件发生的可能性最小,随机事件发生的可能性有大有小,不同的随机事件发生的可能性的大小可能不同、要点二、频率与概率1、概率随机事件发生的可能性有大有小、一个事件发生的可能性大小的数值,称为这个事件的概率(probability)、如果用字母A表示一个事件,那么P(A)表示事件A发生的概率、事件A的概率是一个大于等于0,且小于等于1的数,即,其中P(必然事件)=1,P(不可能事件)=0,0<P(随机事件)<1、所以有:P(不可能事件)<P(随机事件)<P(必然事件)、一个随机事件发生的概率是由这个随机事件自身决定的,并且是客观存在的、概率是随机事件自身的属性,它反映这个随机事件发生的可能性大小、2、频率通常,在多次重复实验中,一个随机事件发生的频率会在某一个常数附近摆动,并且随着试验次数增多,摆动的幅度会减小,这个性质称为频率的稳定性、一般地,在一定条件下大量重复进行同一试验时,随机事件发生的频率会在某一个常数附近摆动、在实际生活中,人们常把试验次数很大时,事件发生的频率作为其概率的估计值、要点诠释:①概率是频率的稳定值,而频率是概率的近似值;②频率和概率在试验中可以非常接近,但不一定相等;③概率是事件在大量重复实验中频率逐渐稳定到的值,即可以用大量重复实验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同,两者存在一定的偏差是正常的,也是经常的、【典型例题】类型一、确定事件与随机事件1、(1)指出下列事件中,哪些是不可能事件?哪些是必然事件?哪些是随机事件?① 若 a、b、c都是实数,则a(bc)=(ab)c;②没有空气,动物也能生存下去;③在标准大气压下,水在90℃时沸腾;④直线 y=k(x+1)过定点(-1,0);⑤某一天内电话收到的呼叫次数为 0;⑥一个袋内装有形状大小完全相同的一个白球和一个黑球,从中任意摸出1个球则为白球、【思路点拨】结合生活经验和所学知识进行判断、【答案与解析】①④是必然事件;②③是不可能事件;⑤⑥是随机事件、【总结升华】要准确掌握不可能事件、必然事件、随机事件的定义、举一反三(xx•南岗区一模)同时抛掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,下列事件中的不可能事件是()A、点数之和小于4B、点数之和为10C、点数之和为14D、点数之和大于5且小于9【答案】C、解:因为同时抛掷两枚质地均匀的正方体骰子,正方体骰子的点数和应大于或等于2,而小于或等于12、显然,是不可能事件的是点数之和是14、故选C、2、在一个不透明的口袋中,装有10个除颜色外其它完全相同的球,其中5个红球,3个蓝球,2个白球,它们已经在口袋中搅匀了、下列事件中,哪些是必然发生的?哪些是不可能发生的?哪些是可能发生的?(1)从口袋中任取出一个球,它恰是红球; (2)从口袋中一次性任意取出2个球,它们恰好全是白球; (3)从口袋中一次性任意取出5个球,它们恰好是1个红球,1个蓝球,3个白球、【答案与解析】(1)可能发生,因为袋中有红球;(2)可能发生,因为袋中刚好有2个白球;(3)不可能发生,因为袋中只有2个白球,取不出3个白球、【总结升华】要了解并掌握三种事件的区别和联系、类型二、频率与概率3、关于频率和概率的关系,下列说法正确的是()A、频率等于概率B、当实验次数很大时,频率稳定在概率附近C、当实验次数很大时,概率稳定在频率附近D、实验得到的频率与概率不可能相等【思路点拨】对于某个确定的事件来说,其发生的概率是固定不变的,而频率是随着试验次数的变化而变化的、【答案】B、【解析】事件的概率是一个确定的常数,而频率是不确定的,当试验次数较少时,频率的大小摇摆不定,当试验次数增大时,频率的大小波动变小,并逐渐稳定在概率附近、【总结升华】概率是频率的稳定值,而频率是概率的近似值、4、如图所示,转盘停止后,指针落在哪个颜色区域的可能性大?为什么?【思路点拨】可以采用面积法计算各颜色所占的比例,比例大的,指针落在该区域的可能性也大、【答案与解析】落在黄色区域的可能性大、理由如下:由图可知:黄色占整个转盘面积的;红色占整个转盘面积的;蓝色占整个转盘面积的、由于黄色所占比例最大,所以,指针落在黄色区域的可能性较大、【总结升华】计算随机事件的可能性的大小,根据不同题目的条件来确定解法,如面积法、数值法等、类型三、利用频率估计概率5、(xx春•江都市期末)“xx扬州鉴真国际半程马拉松”的赛事共有三项:A、“半程马拉松”、B、“10公里”、C、“迷你马拉松”、小明参加了该项赛事的志愿者服务工作,组委会随机将志愿者分配到三个项目组、(1)小明被分配到“迷你马拉松”项目组的概率为、(2)为估算本次赛事参加“迷你马拉松”的人数,小明对部分参赛选手作如下调查:调查总人数50100xx001000参加“迷你马拉松”人数214579200401参加“迷你马拉松”频率0、3600、4500、3950、4000、401①请估算本次赛事参加“迷你马拉松”人数的概率为、(精确到0、1)②若本次参赛选手大约有30000人,请你估计参加“迷你马拉松”的人数是多少?【思路点拨】(1)利用概率公式直接得出答案;(2)①利用表格中数据进而估计出参加“迷你马拉松”人数的概率;②利用①中所求,进而得出参加“迷你马拉松”的人数、【答案与解析】解:(1)∵小明参加了该项赛事的志愿者服务工作,组委会随机将志愿者分配到三个项目组,∴小明被分配到“迷你马拉松”项目组的概率为:;故答案为:;(2)①由表格中数据可得:本次赛事参加“迷你马拉松”人数的概率为:0、4;故答案为:0、4;②参加“迷你马拉松”的人数是:300000、4=12000(人)、【总结升华】此题主要考查了利用频率估计概率:当大量重复试验时,频率会稳定在概率附近、正确理解频率与概率之间的关系是解题关键、第九章中心对称图形----平行四边形9、1 图形的旋转1、旋转的定义在平面内,把一个平面图形绕着平面内某一点O转动一个角度,就叫做图形的旋转,点O叫做旋转中心,转动的角叫做旋转角。