利用Tn7介导的转座快速构建重组伪狂犬病毒
一种伪狂犬病毒的纯化方法[发明专利]
![一种伪狂犬病毒的纯化方法[发明专利]](https://img.taocdn.com/s3/m/17a0055626d3240c844769eae009581b6ad9bd58.png)
(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 201810676461.9(22)申请日 2018.06.27(71)申请人 苏州良辰生物医药科技有限公司地址 215613 江苏省苏州市张家港市华昌路沙洲湖科创园D-1栋12楼(良辰)(72)发明人 殷文静 (74)专利代理机构 苏州创元专利商标事务所有限公司 32103代理人 汪青 周敏(51)Int.Cl.C12N 7/02(2006.01)(54)发明名称一种伪狂犬病毒的纯化方法(57)摘要本发明涉及一种伪狂犬病毒的纯化方法,将伪狂犬病毒粗提液通入装填有肝素的亲和柱,然后经洗脱、浓缩得到纯化的伪狂犬病毒浓缩液。
本发明通过采用装填有肝素的亲和柱进行病毒的纯化,伪狂犬病毒能够被肝素吸附,其他物质则流出亲和柱,被吸附于肝素的伪狂犬病毒经洗脱从而能够实现伪狂犬病毒从伪狂犬病毒粗提液中分离出来,本发明的PRV病毒通过PRV基因编码的gC外膜糖蛋白与肝素具有特异性吸附,仅需要一步层析即可得到高滴度的伪狂犬病毒浓缩液,纯化方法简单,成本低,效果高,且无需采用复杂的分子筛、中空纤维过滤等步骤。
权利要求书1页 说明书4页CN 108660119 A 2018.10.16C N 108660119A1.一种伪狂犬病毒的纯化方法,其特征在于:将伪狂犬病毒粗提液通入装填有肝素亲和填料的亲和柱,然后经洗脱、浓缩得到纯化的伪狂犬病毒浓缩液。
2. 根据权利要求1所述的伪狂犬病毒的纯化方法,其特征在于:所述的肝素亲和填料为GE的Heparin Sepharose 6 Fast Flow或Heparin Sepharose CL -6B亲和填料或者HiTrap Heparin预装柱。
3. 根据权利要求1所述的伪狂犬病毒的纯化方法,其特征在于:控制所述的伪狂犬病毒粗提液通入所述的亲和柱的流速为0.8-1.2 cm/min,控制所述的伪狂犬病毒粗提液在所述的亲和柱中停留的时间为25-40 min。
表达犬瘟热H基因重组伪狂犬病毒的构建及生物学特性研究

表达犬瘟热H基因重组伪狂犬病毒的构建及生物学特性研究李业伟;孙程龙;韩乃君;王颖;扈荣良【期刊名称】《农业科学与技术(英文版)》【年(卷),期】2011(012)006【摘要】[目的]构建表达犬瘟热Onderstepoort株H蛋白的重组伪狂犬病毒,并研究其生物学特性。
[方法]通过RT-PCR方法获得Onderstepoort株H基因,插入pcDNA3.1(+)建立好完整的真核细胞表达盒并将此表达盒亚克隆到转移载体p8AA上。
在此基础上再将报告基因LacZ的表达盒插入转移载体,命名为p8AAZH。
将p8AAZH与伪狂犬病毒(PRV)Bartha-K61株基因组共转染至BHK-21细胞中进行基因重组包装出毒,待细胞病变后收集病毒液。
通过蓝色蚀斑筛选、PCR、电镜观察以及Weste%[Objective] The aim was to construct a recombinant pseudorabies virus expressing canine distemper virus H gene and investigate its biological characters.[Method] H gene of canine distemper virus(CDV)strain Onderstepoort was produced by RT-PCR,inserted into pcDNA3.1(+)vector to construct a expression cassette,which was then subcloned into transfer vector p8AA,prior to the insertion of LacZ expression cassette.The resulting new transfer vector was named as p8AAZH.Subsequently,p8AAZH was co-transfected with the genome of pseudorabies virus(PRV)Bartha-K61 into BHK-21 cells to enable gene recombination and virus package,and the virus solution was collected as cytopathic effect occurring.A series of procedures including blue plaque purification,PCR identification,observation under electronmicroscope and Western blot were carried out to screen the recombinant pseudorabies virus and identify the protein expression of targetgene.Meanwhile,growth curve of the recombinant virus was determined in BHK-21 cells.[Result] The H gene had been inserted into the genome of Bartha-K61 strain,and RPRV-H was the same as Bartha-K61 in the one-step growth curve and cytopathic effect in BHK-21 cells.[Conclusion] The recombinant pseudorabies virus was constructed,and the insertion of H gene did not influence proliferation of recombinant virus,which laid a foundation for development of recombinant canine distemper virus vaccine.【总页数】4页(P897-900)【作者】李业伟;孙程龙;韩乃君;王颖;扈荣良【作者单位】吉林大学畜牧兽医学院,吉林长春130062;吉林大学畜牧兽医学院,吉林长春130062;吉林大学畜牧兽医学院,吉林长春130062;军事医学科学院军事兽医研究所,吉林长春130122;军事医学科学院军事兽医研究所,吉林长春130122【正文语种】中文【中图分类】S因版权原因,仅展示原文概要,查看原文内容请购买。
表达多个外源基因的重组伪狂犬病病毒的构建及其细胞培养特性研究

表达多个外源基因的重组伪狂犬病病毒的构建及其细胞培养特性研究刘燕;田志军;周艳君;仇华吉;童光志【期刊名称】《中国预防兽医学报》【年(卷),期】2007(29)2【摘要】将SV40启动子控制下的LacZ报告基因表达盒与分别在CMV启动子控制下的含有猪瘟病毒(CSFV)E2基因及猪繁殖与呼吸综合征病毒(PRRSV)GP5基因的表达盒插入到伪狂犬病病毒(PRV)Bartha-K61株TK基因中,通过蓝斑筛选获得了一株插入CSFV E2、PRRSV GP5与LacZ基因的重组伪狂犬病病毒,命名为rPRV-E2-GP5.经Western blot、间接免疫荧光试验证实E2、GP5基因在重组病毒感染细胞中获得了表达.重组病毒感染Vero、Pk-15、IBRS2和CEF细胞后的增殖滴度和致细胞病变特征与亲本病毒比较,无显著差异.本试验结果表明在PRV基因组中可以插入多个外源基因,为进一步研究多价基因工程载体疫苗奠定了基础.【总页数】5页(P81-85)【作者】刘燕;田志军;周艳君;仇华吉;童光志【作者单位】中国农业科学院哈尔滨兽医研究所,兽医生物技术国家重点实验室,黑龙江,哈尔滨,150001;中国农业科学院哈尔滨兽医研究所,兽医生物技术国家重点实验室,黑龙江,哈尔滨,150001;中国农业科学院哈尔滨兽医研究所,兽医生物技术国家重点实验室,黑龙江,哈尔滨,150001;中国农业科学院哈尔滨兽医研究所,兽医生物技术国家重点实验室,黑龙江,哈尔滨,150001;中国农业科学院哈尔滨兽医研究所,兽医生物技术国家重点实验室,黑龙江,哈尔滨,150001【正文语种】中文【中图分类】Q784;S852.65【相关文献】1.表达高致病性猪蓝耳病病毒GP5重组伪狂犬病病毒的构建及鉴定 [J], 陈瑾;田志军;彭金美;王瑜;周艳君;安同庆;童光志2.表达非洲猪瘟病毒p54蛋白重组伪狂犬病病毒的构建及鉴定 [J], 何兴林;邹忠;龚文孝;张宇飞;李成飞;徐婷;陈焕春;金梅林3.表达Cre重组酶的真核细胞系的建立及在重组伪狂犬病病毒研究中的应用 [J], 苏鑫铭;徐亚林;于春梅;曹瑞兵;周斌;陈溥言4.宿主域扩大的重组救活昆虫杆状病毒表达载体的构建及外源基因的表达 [J], 易咏竹;陈寅;张志芳;何家禄;秦俭5.一种通用型重组2型腺伴随病毒载体的构建及外源基因表达的研究 [J], 张桐;王文亮;侯云德;杨新科;颜子颖;孙立连;王伯云因版权原因,仅展示原文概要,查看原文内容请购买。
狂犬病病毒G+N双基因重组腺病毒的构建

狂犬病病毒G+N双基因重组腺病毒的构建狂犬病病毒G+N双基因重组腺病毒的构建狂犬病是一种危害极大的病毒性传染病,它主要通过动物的唾液传播给人类。
狂犬病病毒(Rabies virus,RABV)是一种负链RNA病毒,它的基因组由五个基因组成:核酸酶基因(N)、磷酸转移酶基因(P)、糖苷酸转移酶基因(G)、大蛋白基因(L)以及非结构基因(NS)。
其中,G基因编码糖蛋白,是病毒进入宿主细胞的关键,N基因编码的核蛋白则起到保护病毒基因组完整性的作用。
近年来,利用基因重组技术构建双基因重组病毒已成为狂犬病疫苗研究的热点。
为了构建狂犬病病毒G+N双基因重组腺病毒,我们首先需要获取RABV的基因组序列,并且对病毒进行分离和扩增。
然后,利用基因重组技术将G基因和N基因分别插入到适当的载体中,形成两个重组载体。
对于G基因,我们选择了腺病毒载体Ad5作为载体,可以确保G基因在宿主细胞中高效表达,并且能够避免病毒基因组的多次重组。
接下来,我们将重组载体与病毒分离得到的基因组进行共转染。
通过转染,在宿主细胞中可以同时表达G基因和N基因,从而构建出G+N双基因重组腺病毒。
为了验证构建的重组病毒的功能性,我们需要进行一系列的实验。
首先,通过PCR、Western blot等技术手段验证病毒中G基因和N基因的存在。
通过PCR,在重组病毒基因组同一个特定位置引物扩增,可以检测到G基因和N基因的存在。
通过Western blot,我们可以进一步确定这些蛋白在细胞内的表达水平。
其次,我们需要检测构建的重组病毒是否具有相应的功能。
在体外实验中,我们可以通过对宿主细胞进行感染,并观察细胞对重组病毒的反应来判断重组病毒的活性。
在体内实验中,我们可以选择小鼠作为实验动物,注射重组病毒后观察小鼠的免疫反应和保护效果。
最后,我们需要对构建的重组病毒进行安全性评估。
通过体内外实验观察病毒对宿主细胞的毒性,以及对其他动物的传播性和致病性,可以评价构建的重组病毒的安全性。
LacZ基因重组伪狂犬病病毒(Bartha株)的构建

基 因 ,K g 基 因 的部 分 缺失 不仅 能 显 著降 低 重组 病 P /I 毒 的毒 力和减 少排 毒 , 而且 可 以在 一定 程度 上 降低潜 伏感 染 , 而且 P K基 因缺 失 后 不影 响 P V 的免 疫 力 , R
故 P / I 因成 为构 建基 因缺失 疫 苗的首选 靶 基 因。 K g基 B一半 乳 糖 苷酶 ( a Z 报告 基 因 的使 用 便 于后 Lc ) 续 病毒 筛 选 、 化 , 纯 因其 能 够 在 5一溴 一4一氯 一 3一 吲哚 半乳糖 苷 ( — a) X g1 存在 的情况 下产 生蓝 白斑 , 从 而可 以进 行噬斑 克 隆 。 试验 旨在 获得 部分 缺失 P / I 因的转 移载 体 , K g基 以便 构 建 含 有 L c a Z基 因 的重 组 P V, 而 为 研 制 R 近 P /I K g 缺失 的 P V活 载体重 组疫 苗奠 定基础 。 R
是 ,R P V是 一种 嗜神 经 病 毒 , 在体 内感 染 时优 先 感 染
神经 系 统 , 能 建 立 长 期 稳 定 的 隐 性 感 染 。 因此 , 并 P V是一 种极 具开 发潜 力 的疫苗 载体 。 R B r a 是 广泛使 用 的弱毒 疫 苗之 一 , 经过 鸡 at 株 h 是 胚 细胞 传 代 致弱 的疫 苗 株 。蛋 白激 酶 P / I 因是 Kg基 P V 的一 个 非 必 需 基 因 , 时 又是 一 个 重 要 的毒 力 R 同
血清 , 自 H c n 司 ; 白胨 及 酵 母 浸 出 物 , X 购 yl e公 o 蛋 O— O D公 司产 品 ; 制 性 内切 酶 、 l o 大 片 段 、 牛 I 限 Ke w n 小 碱性磷 酸酶 ( I ) C P 以及 T D A连 接 酶 , 为 N B公 N 均 E 司产 品 ; 熔 点 琼 脂 糖 ( MP 、 —gl 购 自 Sg 低 L A) X a, i ma
狂犬病病毒糖蛋白基因正向重组伪狂犬病病毒(疫苗株TK^-/gI^-)的构建

狂犬病病毒糖蛋白基因正向重组伪狂犬病病毒(疫苗株TK^-/gI^-)的构建袁子国;张秀香;李修明;王晓虎;高胜言;徐惠娟;张守峰;扈荣良【期刊名称】《中国兽医学报》【年(卷),期】2008(28)12【摘要】构建以伪狂犬病病毒(PRV)为载体表达狂犬病病毒糖蛋白的重组活载体疫苗。
采用AseⅠ/MluⅠ切下EG-FP-rgp的表达盒,将其克隆入p8-AA载体的酶切位点处,经酶切鉴定为正向连接,阳性重组子命名为p8-EGFP/rgp。
将该质粒与PRV TK-/gI-基因组在质脂体介导下共转染PK-15细胞,获得PRV-EGFP/rgp重组病毒;通过噬斑克隆对其进行筛选、纯化,并通过RT-PCR、Southern-blot、Western-blot和间接免疫荧光对其进行鉴定,并对重组病毒的滴度、外源基因的遗传稳定性及其与亲本病毒株生长特性的关系进行了测定。
结果表明:重组病毒的滴度(TCID50)为108.125/mL;外源基因在细胞内得到了有效的表达,并具有良好的免疫反应性和遗传稳定性;PRV-EGFP/rgp与亲本病毒PRV TK-/gI-生长趋势差异不显著。
通过构建表达狂犬病病毒糖蛋白正向重组PRV的活载体疫苗的研制,为狂犬病疫苗的研制提供了新的思路和方法。
【总页数】6页(P1398-1403)【关键词】伪狂犬病病毒;狂犬病病毒糖蛋白;同源重组;PK-15细胞【作者】袁子国;张秀香;李修明;王晓虎;高胜言;徐惠娟;张守峰;扈荣良【作者单位】吉林大学畜牧兽医学院,吉林长春130062;解放军军事医学科学院军事兽医研究所,吉林长春130062;黑龙江八一农垦大学动物科技学院,黑龙江大庆163319;吉林农业大学生命技术学院,吉林长春130118【正文语种】中文【中图分类】S852.65【相关文献】1.表达狂犬病病毒糖蛋白的重组伪狂犬病病毒gG-基因缺失转移载体的构建 [J], 王照;刘清河;刘晔;扈荣良2.伪狂犬病病毒鄂A株TK-/gE-/gI-基因缺失疫苗的安全性和保护力研究 [J], 刘正飞;陈焕春;吴斌;何启盖;秦永辉3.伪狂犬病病毒TK^-/gI^-株PK基因转移载体的构建及LacZ基因表达 [J], 袁子国;张秀香;刘全;高胜岩;徐慧娟;张守峰;刘晔;扈荣良4.反向表达狂犬病病毒糖蛋白的重组伪狂犬病病毒Bartha-K61株的构建 [J], 袁子国;张秀香;王晓虎;徐慧娟;张守峰;扈荣良5.基于CRISPR/Cas9介导的同源重组技术构建TK、gE和gI基因缺失的伪狂犬病病毒 [J], 张华伟;周明光;侯真真;朱娴静;郝根喜;金建云;徐高原因版权原因,仅展示原文概要,查看原文内容请购买。
表达猪细小病毒VP基因的重组伪狂犬病毒及疫苗与制备方法[发明专利]
![表达猪细小病毒VP基因的重组伪狂犬病毒及疫苗与制备方法[发明专利]](https://img.taocdn.com/s3/m/624126b6f01dc281e43af085.png)
专利名称:表达猪细小病毒VP基因的重组伪狂犬病毒及疫苗与制备方法
专利类型:发明专利
发明人:陈焕春,吕建强,赵俊龙,金梅林,何启盖,吴斌,方六荣申请号:CN02138947.0
申请日:20020819
公开号:CN1477192A
公开日:
20040225
专利内容由知识产权出版社提供
摘要:本发明涉及人工构建的伪狂犬病毒(pseudorabiesvirus,PrV)和猪细小病毒(porcine parvovirus,PPV)的主要结构基因VP。
在缺失了主要毒力基因(TK)和病毒增殖非必需基因(gG)的伪狂犬病毒基因组中,定位插入猪细小病毒的VP基因,使其位于伪狂犬病毒的强晚期启动子下游,插入的外源基因编码的蛋白具有良好的免疫原性,可以刺激猪产生抵抗猪细小病毒和猪伪狂犬病毒两种强毒攻击的保护性免疫反应。
本发明还包括重组的伪狂犬病毒Pseudorabies virus,HzauAVL-PRppvV-VP2;保藏在CGMCC,保藏日期:2002年8月16日,保藏编号:CGMCC:0788-2,用其制备的疫苗及其制备方法。
申请人:华中农业大学
地址:430070 湖北省武汉市洪山区狮子山街
国籍:CN
代理机构:北京路浩知识产权代理有限公司
代理人:张红兵
更多信息请下载全文后查看。
表达伪狂犬病毒gC糖蛋白基因重组腺病毒的构建及其免疫效果

-----------------------------------Docin Choose -----------------------------------豆 丁 推 荐↓精 品 文 档The Best Literature----------------------------------The Best Literature农业生物技术学报JournalofAgriculturalBiotechnology2007,15(2):192 ̄197*基金项目:国家高技术研究与发展(863)计划课题(No.2002AA24134)资助。
**通讯作者。
Authorforcorrespondence.教授,博士生导师,主要从事动物分子病毒学与免疫学研究。
Tel:86-10-62731296;E-mail:<yanghanchun1@cau.edu.cn>.收稿日期:2006-06-19接受日期:2006-08-28·研究论文·表达伪狂犬病毒gC糖蛋白基因重组腺病毒的构建及其免疫效果*陈振海,杨汉春**,郭鑫,陈艳红(中国农业大学农业部预防兽医学重点实验室,北京100094)摘要:通过双酶切将伪狂犬病毒(Pseudorabiesvirus,PRV)Fa株gC囊膜糖蛋白基因片段亚克隆到5型腺病毒AdMax系统穿梭质粒pDC316中,得到pDC316-gC。
用此质粒与腺病毒DNA辅助质粒pBHGloxΔE1,3Cre共转染293细胞,包装出重组腺病毒Adv-gC。
通过PCR鉴定和病毒空斑纯化,得到纯的高效价Adv-gC病毒液。
间接免疫荧光实验证明此重组病毒能表达PRVgC蛋白。
该病毒经肌注免疫Balb/c小鼠,能诱导小鼠产生特异的体液和细胞免疫反应。
攻毒试验表明,此重组病毒能提供100%的免疫保护。
关键词:伪狂犬病毒;gC糖蛋白;重组腺病毒;免疫中图分类号:S188文献标识码:A文章编号:1006-1304(2007)02-0192-06ConstructionoftheRecombinantAdenovirusExpressinggCGlycoproteinGeneforDevelopingVaccineagainstPseudorabiesvirusCHENZhen-hai,YANGHan-chun**,GUOXin,CHENYan-hong(KeyLaboratoryofPreventiveVeterinaryMedicine,MinistryofAgriculture,ChinaAgriculturalUniversity,Beijing100094,China)Abstract:ThePseudorabiesvirus(PRV)FastraingCgenewassubclonedintoAdenovirusshuttlevectorpDC316throughdoubleenzymaticdigestion.Afterco-transfectionoftheshuttlevectorpDC316-gCandAdenovirusDNAhelperplasmidpBHGloxΔE1,3Creinto293cells,therecombinantAdenovirusexpressinggCproteinwasobtainedthroughhomologousrecombinationandobservationofremarkablycytopathiceffect.Afterwards,hightitersofrecombinantAdenovirusdesignatedasAdv-gCwerepreparedafterPCRiden-tificationandvirusplaquepurification.GlycoproteingCgeneexpressionwasconfirmedinMarc145cellsbyimmunofluorescentstain-ingassay.IntramuscularimmunizationofAdv-gCcouldinducePRVspecifichumoralandcellularresponseinmice.Inthechallengeexperiment,thegroupimmunizedbyAdv-gCpresented100%protectionefficiencyascontrastto0%obtainedinthecontrolgroup.Totally,thepresentresultswillprovideagoodfoundationfordevelopinganovelPRVlivevectorvaccine.Keywords:Pseudorabiesvirus;gCglycoprotein;recombinantAdenovirus;immunization伪狂犬病是由伪狂犬病毒(Pseudorabiesvirus,PRV)引起的动物传染病。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
V IROLOGICA S INICA, August 2007, 22 (4):316-325Received: 2007-04-04, Accepted: 2007-05-18* Foundation item: Key technologies R&D program (2006BAD06A01) from the Ministry of Science and Technology of China. **Correspondingauthor.Tel:+86-27-87199239,E-mail:*************.cnZHUAN et al. Rapid Construction of Recombinant Viruses of PRV Genome 317functional domains within the proteins (9).Such studies often require establishment of large numbers of recombinant viruses which are usually created by homologous recombination in infected cells relying on the cellular recombination and repair machinery. However, this can be a laborious and sometimes impossible task, especially if the mutant has a severe growth disadvantage compared to the wild-type virus. Bacterial artificial chromosomes (BACs), single copy F-factor-based plasmid vectors of intermediate insert capacity (15), have now enabled the cloning of complete herpesvirus genomes and infectious virus genomes can be shuttled between Escherichia coli (E. coli) and eukaryotic cells. While herpesvirus BAC DNA engineering in E. coli requires neither restriction sites nor cloning steps and allows the introduction of a wide variety of DNA modif- cations, the large size of these bacmids precludes the use of rapid in vitro methods of manipulation commonly employed for construction of small plasmids.Tn7, a site-specific transposon, transposes almost exclusively to a distinct attachment site named attTn7 within the E. coli genome (1). By introducing this attTn7 sequence into a BAC, Tn7 can serve as an insertion vehicle (4). This is particularly useful if numerous genes and constructs need to be tested for their expression in the context of viral genome. Tn7-mediated transposition has been well exploited for research on functional genomics of baculoviruses (4). Recently, this technology has been applied to bacmid-cloned cytomegalovirus (CMV), a member of the Gammaherpesvirinae subfamily, for rapid recombinant virus construction (2).In this paper, we report the development of a technology employing Tn7-mediated transposition as a rapid and reliable method for recombinant PRV construction. A lacZα-mini-attTn7 region was inserted into the intergenic region between the gG and gD genes in an attempt to maintain every gene and element of the parental virus. Then green fluorescent protein (GFP) gene was introduced to test the utility of this transposition system and the stability of mini-Tn7 insertions in cell culture. The technology should greatly facilitate the detailed mutagenic studies of PRV.MATERIALS AND METHODS Plasmids, strains, and reagentsPlasmids pGS284 and pBecker3, strains GS500 and S17λπ were provided by Lynn W. Enquist, Princeton University, USA. The pGEM-T Easy was purchased from Promega Co. (Maddison, USA), and plasmid pEGFP-N1 from Clonetech Laboratories, Inc. (Mountain View, USA). DNA restriction enzymes, T4 DNA ligase, alkaline phosphatase, exTaq hot start DNA polymerase and 2×GC buffer I were the products of TaKaRa Biotechnology Co., Ltd. (Dalian, China). Plasmids pFBCMV-GFP and pZFBΔtk were constructed and stored in our lab. Strains DH5α and DH10B were stored in our lab. Lipofectin reagent and Delbecco’s Modified Essential Medium (DMEM) were purchased from Invitrogen Co. (Carlsbad, USA), and fetal bovine serum (FBS) from Hangzhou Sijiqing Biological Engineering Materials Co., Ltd. (Hangzhou, China).Virus and cellsThe wild-type PRV used was vBecker3, generated by transfection of pBecker3 into Vero cells (18). Mutant PRVs (vBeckerZF1 and vBeckerZF2) were318V IROLOGICA S INICA V ol.22, No 4constructed by manipulation of pBecker3 and transfection of mammalian cells (see below). All PRV strains were propagated in the PK15 (porcine kidney 15) cell line. Virus titers were determined in duplicate by infectivity end-point assay on PK15 cells in 96-well plates following infection with 100µL/well of 10-fold serially diluted stocks. The mammalian cells were grown in DMEM supplemented with 10% FBS. Viral infections were performed in DMEM sup- plemented with 2% FBS. Unless otherwise indicated, all media used contained 100U /mL penicillin and 100 µg /mL streptomycin.Construction of plasmids and BACs Constructions of plasmids and BACs are illustrated in Fig.1. Unless otherwise noted, all PCRs were performed with exTaq hot start polymerase and 2×GC buffer I. The 433 bp of the upstream homology region for allele exchange in E. coli was amplified by PCR from pBecker3 with the primers HRattTn7U-F (5’-GAGCTCCTGCTCCTGGGCTTCCTG-3’, with a Sac I site underlined) and HRattTn7U-R (5’-GAATTC CCCGTAAGCAAGGCCGTA-3’, with an Eco RI site underlined) and cloned into the Sac I and Eco RI sites of pEGFP-N1 to generate pZF1, while the 448 bp of the downstream homology region was amplified with the primers HRattTn7D-F (5’-GTCGACGTGCGATC CACGCCCAGC-3’, with Sal I site underlined) and HRattTn7D-R (5’-GGATCCATGCATGCGCCCAAA GATCTGCCTG-3’, with Bam H I site underlined and Nsi I site double underlined) and cloned into the Sal I and Bam H I sites of pZF1 to generate pZF2. PCR parameters for amplification of both homology regions were as follows: 96℃for 2 min to denature, followed by 30 cycles of 94℃for 30 s, 70℃ for 30s, with a final 10-min extension at 72℃. The 712 bp lacZα-mini-attTn7 region was released by Bbs I digestion of pZFBΔtk (unpublished) which contains an 8.6 kb Bsu36I fragment from pHZB10 (19), generating an Eco RI compatible end and a Sal I site. Plasmids pZF3 was produced by inserting the lacZα-mini-attTn7 region into the Eco RI and Sal I sites of pZF2. To construct the transfer vector for allele exchange in E. coli, a shuttle plasmid pGS284 (17) was used, which includes the π-protein-dependent R6K origin of replication (7), the RP4oriT origin for conjugative transfer (16), and the negative selection marker sacB (11). First, pZF3 was digested by Sac I and dephosphorized, and pGS284 was digested by Sac I. Then the two linearized plasmids were ligated and the product was transformed into DH5α to select for ampicillin (Amp) resistance. Since pGS284 was unable to grow in a strain that lacks π, only the Amp resistant strains containing the hybrid plasmid pZF4 grew. Plasmid pZF4 was digested by Nsi I to excise the origin of replication of pEGFP-N1 and self-ligated to generate the transfer vector pZF5. Shuttle plasmid pFBCMV-GFP, a derivative of pFastBac Dual (In- vitrogen), was generated by replacing the P10 and P H promoters with a P CMV promoter and a GFP gene cloned under the promoter.The pBeckerZF1 BAC was generated by the sugar suicide allele exchange system in E. coli as described previously (17). Briefly, conjugal transfer of the allele exchange vector occurred following cross-streaking of GS500 containing pBecker3 and S17λpir (7) containing pZF5 on a Luria broth (LB) plate without antibiotics and incubated overnight at 30℃. Each intersection from the crossed streaks was inoculated into 5 mL of LB plus 25 µg/mL Amp and 25 µg/mL chloramphenicol (Cm) and incubated overnight atZHUAN et al. Rapid Construction of Recombinant Viruses of PRV Genome 31937℃ with rotating to select for recombinants. To select for deletion of the allele exchange vector from pBecker3, 1 µL of overnight culture was inoculated into 5 mL of LB-Cm and incubated overnight at 37℃with rotation. The culture was serially diluted (10-3, 10-4, and 10-5), and 50 µL of each dilution was plated onto LB plates containing 5% sucrose, 25 µg/ml Cm, 40 µg/ml isopropyl-β-D-thiogalactopyranoside (IPTG) and 200 µg/mL 5-bromo-4-chloro-3-indolyl-β-D-galac- topyranoside (X-gal). A single blue colony was transferred into 5 mL of LB-Cm and incubated overnight at 37℃. Miniprep DNA from 1 mL overnight culture was diluted to low concentration (~ 100ng/mL). The diluted BAC was transformed into E. coli strain DH10B (Invitrogen Co., Carlsbad, USA), precluding co-transformation of more than one copy BAC DNA into a single cell. After one hour incubation at 37℃, transformed cells were spread on LB plates containing Cm, IPTG and X-gal. Blue colonies were further screened for Amp sensitivity then by PCR and sequencing (described below).The pBeckerZF2 BAC was generated by Tn7- mediated transposition as described in the instruction manual of the Bac-to-Bac TM system (Invitrogen Co., Carlsbad, USA). White colonies were picked and further screened by PCR (described below).PCR analysis of recombinant BACsVirus DNA was obtained from infected PK15 cells as described previously (14). The PCR reactions were set up containing 1×GC buffer I, 200 µmol/L dATP, 200 µmol/L dCTP, 200 µmol/L dGTP, 200 µmol/L dTTP, 0.5 µmol/L concentration of forward primer, 0.5 µmol/L concentration reverse primer and 1U of exTaq hot start polymerase with a total volume of 25µL. For analysis of pBeckerZF1 and vBeckerZF1, two primers flanking the homology regions pBeatt- Tn7-F (5’-GCCCTCTGACATCTTCGTGACCC-3’) and pBeattTn7-R (5’-CGAACTTGTACGTGCGGTG CTG-3’) were designed and cycling parameters were as follows: 96℃ for 2 min to denature, followed by 30 cycles of 94℃ for 30 s, 70℃ for 1min 50s, with a final 10-min extension at 72℃. For analysis of pBeckerZF2, M13 forward primer (5’-TGTAAAACG ACGGCCAGT-3’) and reverse primer (5’- TCACAC AGGAAACAGCTAT GAC -3’) were used with the parameters as follows: 96℃ for 2 min to denature, followed by 30 cycles of 94℃ for 30 s, 55℃ for 30 s, 72℃ for 3 min 45s, with a final 10-min extension at 72℃. The PCR products were detected by ethidium bromide staining after separation on 0.8 to 1.0% agarose gels. The PCR product, using pBeattTn7-F and pBeattTn7-R for test of pBeckerZF1, was cloned into pGEM-T Easy and further screened by sequencing.BAC DNA preparation and reconstitution of infectious virusesMinipreps of BAC DNA were prepared according to methods developed for the isolation of large plasmids (defined in the Instruction Manual of the Bac-to-Bac TM system/Life Technologies). BAC DNA isolated from 1mL of overnight cultures was used for transfection of 40-60% confluent PK15 cells in a 35-mm disk. Transfection was performed with Lipofectin TM reagent according to the manufacturer’s instructions.RESULTSConstruction of the pBeckerZF1 BACSite-specific transposition by transposon Tn7 has been developed to rapidly introduce genes or cis elements320V IROLOGICA S INICA V ol.22, No 4AFig. 1. Insertion of lacZα-mini-attTn7 region into pBecker3 and construction of recombinant bacmids by Tn7-mediated transposition are illustrated. A, Schematic diagram of the PRV-Becker genome depicting the unique long (UL), unique short (US), internal repeats (IR), and terminal repeats (TR) regions. A portion is expanded to show the gG and gD genes. For clarity, only this region of all subsequent viral bacmids is illustrated. B, Construction of pBeckerZF1 and pBeckerZF2. Viral genes are represented as rectangles with an arrowhead denoting the transcription direction. lacZα is represented as light gray boxes and attTn7 is represented as hatched boxes.into viral bacmids and has proved to be a powerful tool in studies on herpesvirus genetics (2). In this study, to test whether this technology works well in PRV, a recombinant BAC pBeckerZF1 including lacZα-mini-attTn7 was constructed using the E. coli recombination system, which was inserted into the intergenic sequence between the putative polyadeny- lation signal of the gG gene and the putative TATA signal of the gD gene (3) without loss of any viral genes (Fig.1 and Fig.3).Insertion of lacZα-mini-attTn7 into the target site in pBecker3 is shown in Fig.2, evidenced by the different sizes of PCR products with pBeckerZF1 or pBecker3 as template. For PCR analysis of pBeckerZF1, twoFig. 2. PCR analysis of pBeckerZF1. Two primers flanking the homology regions were used. M, DL3000 DNA marker; 1, pBecker3 as template; 2, pBeckerZF1 as template; 3, Double distilled H2O (ddH2O) as template.ZHUAN et al. Rapid Construction of Recombinant Viruses of PRV Genome 321primers flanking the homologous regions for allele exchange in E. coli were designed to exclude the possibility of contamination by transfer vector pZF5. The size of PCR product with the template pBec- kerZF1 is about 710 bp larger than that with pBecker3, which is corresponds exactly with the size of lacZ-mini-attTn7 region (Fig.2). Further sequencing of the PCR product with the template pBeckerZF1 established that the lacZ α-mini-attTn7 region was inserted 44bp downstream from the putative polya- denylation signal of gG and 23bp upstream from the putative TATA signal of gD (Fig.3.).Transfection of pBeckerZF1 and characterization of vBeckerZF1 in cell cultureTo test whether viruses vBeckerZF1 generated fromthe pBeckerZF1 transfection included the lacZ α- mini-attTn7 region, PCR was performed with the same primers used for establishing pBeckZF1 was constructed correctly (see above). The size of PCR product with the vBeckerZF1 genome DNA as the template is about 710 bp larger than that obtained with vBecker3 (data not shown). Therefore, transfection of pBeckerZF1 resulted in the production of virus containing the lacZ α-mini-attTn7 region, vBeckerZF1, without the need for further plaque purification. To examine the growth properties of vBeckerZF1, PK 15 cells were transfected in parallell, with pBeckerZF1 or pBecker3, respectively. Viral titers of the resulted vBeckerZF1 were typically in the order of 108 to 109 TCID 50/mL, which is comparable to thatFig. 3. Sequence analysis of lacZ-mini-attTn7 insertion into pBekcer3. lacZ-mini-attTn7 region is in bold and the attTn7 is framed. Homology regions for allele exchange are underlined with polyadenylation signal for gG and TATA signal for gD double underlined.TATA signalattTn7polyadenylation signalGCCCTCTGACATCTTCGTGACCCCCACCGGCAGCCCCGCCCTGCTCCTGGGCTTCCTGGGCAGCGCGCTCGCCTCGCGCCCCCTGCA CCTGACGGCCGGGGAGACGGCCCAGCACGTGCGCGAGGCCCAGCAGAAGAGCCGCCACATCCGCTCCCTCGGCGGCCTCCAGCTC TCGGTCGAGACCGAGACCACCAACACCACCACCACCCAGACGGGCCTGTCGGGCGACATCCGCACCTCGATCTACATCTGCGTCGC CCTCGCCGGCCTGGTCGTCGTGGGCATCGTCATCATGTGCCTCCATATGGCGATCATCAGGGCCCGGGCCCGGAACGACGGCTACCGCCACGTGGCCTCCGCCTGACCCGGCCCCGCCCGACTCCCCCGCGATTCCCCCCCTCTCTCACCGGGTGTCCATCTTCAATAAAGTAT GTCTCAAACACCTAATTTGCGTACGGCCTTGCTTACGGGG AATTAAGTCTTCGAACCAATACGCAAACCGCCTCTCCCCGCGCG TTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAG TTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATAACAAT TTCACACAGGAAACAGCTATGACCATGATTACGCCAAGCGCGCAATTAACCCTCACTAAAGGGAACAAAAGCTGGAGCTCC ACCGCGGTGGCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCACATAACAGGAAGAAAAATGCCCCGCTTACGCAGGGCATCCATTTATTACTCAACCGTAACCGATTTTGCCAGGTTACGCGGCTGTCGACCTCGAGGGGGGGCCCGGTA CCCAATTCGCCCTATAGTGAGTCGTATTACGCGCGCTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCG TTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTC CCAACAGTTGCGCAGCCTGAATGGCGAATGGGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCTTCGAAGACGCTCGA CGTGCGATCCACGCCCAGCGGTCCATAAAATTGGGTTGGCGCCCCAGGTTCCCATACACTCACCCGCC AGCGCCATGCTGCTCGCAGCGCTATTGGCGGCGCTGGTCGCCCGGACGACGCTCGGTGCGGACGTGGACGCCGTGCCCGCGCCGAC CTTCCCCCCGCCCGCGTACCCGTACACCGAGTCGTGGCAGCTGACGCTGACGACGGTCCCCTCGCCCTTCGTCGGCCCCGCGGACG TCTACCACACGCGCCCGCTGGAGGACCCGTGCGGGGTGGTGGCGCTGATCTCCGACCCGCAGGTGGACCGGCTGCTGAACGAGGC GGTGGCCCACCGGCGGCCCACGTACCGCGCCCACGTGGCCTGGTACCGCATCGCGGACGGGTGCGCGCACCTGCTGTACTTTATCG AGTACGCCGACTGCGACCCCAGGCAGATCTTTGGGCGCTGCCGGCGCCGCACCACGCCGATGTGGTGGACCCCGTCCGCGGACTAC ATGTTCCCCACGGAGGACGAGCTGGGGCTGCTCATGGTGGCTCCGGGGCGGTTCAACGAGGGCCAGTACCGGCGCCTGGTGTCCGT CGACGGCGTGAACATCCTCACCGACTTCATGGTGGCGCTCCCCGAGGGGCAAGAGTGCCCGTTCGCCCGCGTGGACCAGCACCGC322 V IROLOGICA S INICA V ol.22, No 4obtained for vBecker3. The CPE observed for vBeckerZF1 was also indistinguishable from that observed for vBecker3. Together, these data indicated that the insertion of lacZ α-mini-attTn7 in the intergenic region between the gG and gD genes did not visibly affect the viral growth at recorded levels of viral titers and CPE.Tn7-mediated transposition for introduction of sequences into PRV bacmidThree components are necessary for Tn7-mediated transposition: an attachment site, attTn7, a shuttle plasmid (pFastBac Dual or its derivatives) including both the right and left arms of Tn7, and a third plasmid (pMON7124) encoding the necessary trans -acting factors required in transposition (4). In this study the lacZ α-mini-attTn7 region containing an attTn7 site in lacZ α gene without disrupting its function was used (4). To evaluate the utility of Tn7-mediated transposition for rapid construction of the recombinant virus, a derivative shuttle vector pFastBacCMV-G containing the GFP gene under P CMV was transformed into DH10B harboring both pBec- kerZF1 and pMON7124. Transformants were selectedon a plate containing Cm, X-Gal and IPTG . White colonies were further screened by PCR with the two primers flanking the attTn7 site. Integration of mini-Tn7 is shown in Fig.4. The PCR product with pBeckerZF2 as a template was 3.5 kb (lane 2) in length as expected, while that with pBeckerZF1 carrying the intact attTn7 as template was about 300 bp in length (lane 3). Transfection of pBeckerZF2 resulted in production of infectious recombinant virusvBckerZF2 with GFP expression (Fig.5).Fig. 4. PCR analysis of pBeckerZF2. M13 primers flanking attTn7 were used. M 1, λDNA/Eco R I+Bam H I+Hin d III; 1, pBeckerZF2 as template; 2, pBeckerZF1 as template. 3, ddH 2O as template; M 2, DL2000 DNA marker.Fig. 5. Recovery of infectious vBeckerZF2 by transfection. Pictures were taken 48 hours post transfection. Recovery of vBeckerZF2 was monitored by CPE and GFP expression. A : PK15 cells transfected with pBeckerZF2 exposed to ultraviolet light; B : PK15 cells transfected with pBeckerZF2 exposed to visible light; C : Normal PK15 cells exposed to ultraviolet light; D : Normal PK15 Cells exposed to visible light.ZHUAN et al. Rapid Construction of Recombinant Viruses of PRV Genome 323To test whether the mini-Tn7 insertion impaired viral growth, a strategy for examining the growth above). Viral titers and CPE developed by vBecker- ZF2 were indistinguishable from that developed by vBecker3. So insertion of at least 3.5 kb mini-Tn7 region into the attTn7 site in vBeckerZF1 did not visibly affect the viral growth at levels of viral titers and CPE.Stability of mini-Tn7 insertions in vBeckerZF1For Tn7-mediated transposition to be useful in herpesvirus genetics, the insertions must be stable in the recombinant virus resulting from transfection. In this study, the stability of mini-Tn7 was tested in cell culture. vBeckerZF2 harvested from transfection of pBeckZF2 was serial passaged in PK15 cells for five rounds at a low motility of infection (MOI) (~0.01 TCID50/cell). The virus harvested was applied to a plaque assay for GFP expression. Of 200 plaques counted, 100% expressed the GFP. This indicates that a 3.5 kb mini-Tn7 insertion by Tn7-mesitad trans- position in vBeckerZF2 is stable in cell culture.DISCUSSIONMembers of the Herpesviridae family are characterized with large (130~230kb) double stranded DNA genomes capable of encoding as many as 200 potential genes (12). The genetic analysis of these complex viruses has been a challenge to herpes- virologists. Successful techniques for gene- ration of recombinant herpsviruses have been developed by homologous recombination between the viral genomes and the plasmids containing the desired mutations in infected cells (8, 10). However, these techniques are limited by the fact that wild-type virus is invariably present during the selection process, and, therefore, extensive purification is required to isolate the recombinant virus (5). Mutations which confer a growth disadv- antage to the recombinant virus may make purifi- cation very problematic (5). BAC technology has undoubtedly opened new avenues for mutagenesis of these large virus genomes and enabled the systematic mining of the information stored in virus genomes. The resultant mutant bacmids are clonal and free of contaminating wild type sequences, facilitating rapid production of pure recombinant viruses (2). While this represents a significant advance, mutant construction of these large size bacmids is still time consuming es- pecially when detailed mutagenesis are needed for structure-function studies of viral proteins.To address this problem, Gabriele Hahn et al adapted a technology employing Tn7-mediated site-specific transposition as a rapid and highly reliable method to create mutants of cytomegalovirus (2). In the present study, we engineered the lacZα-mini-attTn7 region into PRV BAC by homologous recombination in E. coli, and recombi- nant viruses could then be created by transposition of a mini-Tn7 region containing the desired DNA sequences into the attTn7 site. This technology should greatly facilitate detailed mutagenesis of PRV since most of the effort of recombinant virus production will now be located at the point of plasmid construction of the desired mutations.Since our primary interest lies in functional genomics of PRV, the emphasis of our design was to maintain every gene and element of the parental virus. Thus the lacZ-mini-attTn7 region should be positioned in the viral genome, so as not to interfere322V IROLOGICA S INICA V ol.22, No 4with expression of viral genes or function of cis elements. This is not necessarily a straightforward task since the herpesvirus genomes are very compact with few regions that are not transcribed (13). After consideration we therefore chose to place the lacZα- mini-attTn7 region in a relatively large intergenic space between the gG and the gD genes (3). After transfection, the recombinant virus vBeckerZF1 (carrying the lacZα-mini-attTn7 region) and the vBeckerZF2 virus (carrying the 3.5 kb mini-Tn7 insertion region) were recovered and their growth properties were found to be indistinguishable from that of the wild-type virus vBecker3 at the examined levels of viral titers and CPE. Never- theless, further studies are required to determine the growth properties of vBeckerZF1 and vBecker- ZF2 in tissue cultures and their virulence in animals.Stability of the insertions in recombinant viruses generated by BAC technology should be taken into consideration. In studies reported by Smith and Enquist, F-plasmid sequences inserted in the gG ORF of PRV were unstable following passage, however, the lacZ insertion at the same locus or the F-plasmid insertion at another locus showed no signs of instability (17, 18). More information is needed to understand these differences. We tested the stability of mini-Tn7 insertions in the intergenic region between the gG and gD genes and results showed that insertion of a 3.5 kb mini-Tn7 into vBecker1 by transposition was stable in cell culture. Future work is needed to make clear whether larger insertions or insertions of different sequences into vBeckerZF1 are still stable. The size of insertions should also be taken into consideration. It is yet unclear how many hetero- logous genes may be packaged into the BAC- derived viruses before size constraints become problematic. Although HSV can package up to 30 kb in excess of its genome, the packaging constraints of other herpesviruses are yet unknown. Initial studies with MCMV BACs did report stability problems once more than 5 kb of extra DNA was inserted into the viral genome (5). In this study, to minimize the size of insertion, the lacZα-mini-attTn7 region was inserted alone but not together with an antibiotic resistance gene (which is standard for homologous recombination in E. coli). Although more complicated procedures were needed to get the clonal recombinant bacmid, this did permit a capacity for accommodating larger insertions.In summary, a technology employing Tn7- mediated site-specific transposition as a rapid method to introduce novel sequences into bacmid- cloned PRV genome was developed and which allowed recombinant viruses to be rapidly and reliably created. This technology should accelerate greatly the pace at which recombinant viruses can be created and, thus, facilitate the use of recombinant viruses for detailed mutagenic studies.AcknowledgementsThe work is supported by key technologies R&D program (2006BAD06A01) from the Ministry of Science and Technology, People’s Republic of china. We are especially grateful to Prof. Lynn Enquist for providing pBecker3, pGS284, GS500 and S17λπ. Additionally, we are grateful to Dr. Marlies Eld- ridge (Princeton University, USA) and Dr. Greg Smith (Northwestern University, USA) for theirZHUAN et al. Rapid Construction of Recombinant Viruses of PRV Genome 323technical assistance.References1.Craig N L. 1996. Transposon Tn7 . Curr Top MicrobiolImmunol, 204 (1): 27-48.2.Hahn G, Jarosch M, Wang J B, et al. 2003. Tn7-mediatedintroduction of DNA sequences into bacmid-cloned cytomegalovirus genomes for rapid recombinant virus construction. J Virol Methods, 107: 185-194.3.Klupp B G, Hengartner C J, Mettenleiter T C, et al.2004. Complete, annotated sequence of the pseudorabies virus genome. J Virol, 78 (1): 424-440.4.Luckow V A, Lee S C, Barry, G F, et al. 1993. Efficientgeneration of infectious recombinant baculovirus genome propagate in Escherichia coli. J Virol, 67 (8): 4566-4579. 5.MacGregor A, Schleiss M R. 2001. Recent advances inherpesvirus genetics using bacterial artificial chrom- osomes . Mol Genet Metab, 72 (1): 8-14.6.Mettenleiter T C. 2000. Aujeszky’s disease (pseudorabies)virus: the virus and molecular pathogenesis-state of the art, June 1999. Vet Res, 31 (1): 99-115.ler V L, Mekalanos J J. 1988. A novel suicide vectorand its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol, 170 (6): 2575-2583.8.Mocarski E S, Post L E, Roizman B. 1980. Molecularengineering of the herpes simplex virus genome: insertion of a second L-S junction into the genome causes additional genome inversions. Cell, 22 (1): 243- 255.9.Pomeranz L E, Reynolds A E, Hengartner C J. 2005.Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol Mol Bio Rev, 69 (3): 462-500.10.Post L E, Roizman B. 1981. A generalized technique fordeletion of specific genes in large genomes: alpha gene 22of herpes simplex virus 1 is not essential for growth . Cell,25 (1): 227-232.11.Ried J L, Collmer A. 1987. An nptI-sacB-sacR cartridgefor constructing directed, unmarked mutations in gram- negative bacteria by marker exchange-eviction muta- genesis. Gene, 57 (2-3): 239-246.12.Roizman B. 1993. The herpesviridea, a brief introduction.In: Roizman B, Whitley R J, Lopez C. (eds), The human herpesviruses . Raven Press, New York, p 1-9.13.Roizman B, Sears E. 1996. In: Fields B N, Knipe D M,Howley PM. (eds), Fundamental virology. Lippincott- Raven, Philadelphia, pp. 1043-1107.14.Schwartz J A, Brittle E E, Reynolds A E, et al. 2006.UL54-null pseudorabies virus is attenuated in mice productively infects cells in culture . J Virol, 80 (2): 769-784.15.Shizuya H, Birren B, Kim U J, et al. 1992. Cloning andstable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci USA, 89 (18): 8794-8797.16.Simon R, Priefer U, Pühler A. 1983. A broad host rangemobilization system for in vivo genetics engineering: transposon mutagenesis in gram negative bacteria.Biotechnology 1, 784-791.17.Smith G A, Enquist L W. 1999. Construction andtransposon mutagenesis in Escherichia coli of a full-length infectious clone of pseudorabies virus, an alphaher- pesvirus . J Virol, 73(8): 6405-6414.18.Smith G A, Enquist L W. 2000. A self-recombiningbacterial artificial chromosome and its application for analysis of herpesvirus pathogenesis. Proc Natl Acad Sci USA, 97 (9): 4873-4878.19.Wang H Z, Deng F, Pijlman G P, et al. 2003. Cloning ofbiological active genomes from a Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus isolate by usinga bacterial artificial chromosome. Virus Res, 97: 57-63.。