九年级数学确定圆的条件1PPT课件
合集下载
初中数学教材解读人教九年级上册第二十四章圆圆的有关性质PPT

)
A.弦的垂线平分弦所对的弧;
B.平分弦的直径垂直于这条弦;
C.过弦的中点的直线必过圆心;
D.弦所对的两条弧的中点连线垂直平分弦 且过圆心;
双基训练
5. 如图,将半径为2cm的圆形纸片折叠后,圆弧 恰好经过圆心,则折痕AB的长为( C )
A.2cm B. 3 cm C. 2 3cm D. 2 5 cm
12.已知直径AB被弦CD分成AE=4,
EB=8,CD和AB成300角,则弦CD
的弦心距OF=___1_;CD=_2__3_5_.
D
F
A
B
C
EO
13.已知:如图,直径CD⊥AB,垂足为E .
⑴若半径R = 2 ,AB = 2 3 , 求OE、DE 的长.
⑵若半径R = 2 ,OE = 1 ,求AB、DE 的长.
(C )
A.1.5cm
B.10.5cm;
C.1.5cm或10.5cm D.都不对;
随堂训练
8.已知P为⊙o内一点,且OP=2cm,如果⊙o
的半径是3 c m ,则过P点的最长的弦等于 .
最短的弦等于_________。
M
O
P
A
B
N
9.P为⊙O内一点,且OP=2cm,若⊙O的半径为3cm,
则过P点的最短弦长等于( A.1cm B.2cm C. 5 cm
点.
连M和N并反向延长交圆于P和Q两点.
求证: PM=NQ.
A
PM HN Q
B
O
C
•例1 如图,一条公路的转变处是一段圆弧(即 图中弧CD,点O是弧CD的圆心),其中CD=600m,E
为弧CD上的一点,且OE⊥CD垂足为F,EF=90m.求
九年级数学《圆的基本性质-反证法》课件

什么是反证法?
一般地,假设原命题不成立,经过正确的推理, 最后得出矛盾,因此说明假设错误,从而证明了原命
题成立,这样的证明方法叫做反证法(归谬法).
反证法证明命题的一般步骤如下:
1.假设结论的反面成立; 反设
2.由这个假.设.出发,经过正确的推理, 归谬
导出矛盾;
推理过程中一定要用到才行
显而易见的矛盾(如和已知条件矛盾).
巩固练习
1、三角形的最小角不大于60度,最大角不小于60度. 2、A、B、C三个人,A说B撒谎,B说C撒谎,C说A、B 都撒谎, 则C必定是在撒谎,为什么?
分析:
假设C没有撒谎, 则C真.
--
那么A假且B假;由A假, 知B真.
这与B假矛盾.
那么假设C没有撒谎不成立,
则C必定是在撒谎.
本节课学习了什么内容?
即过点P有两条直线与OP都垂直,这与 垂线性质矛盾。
所以,弦AB、CD不被P平分。
例2、用反证法证明: 如果a>b>0,那么 a > b 证:假设 a > b不成立,则 a ≤ b
若 a = b,则a = b,与已知a > b矛盾,
若 a < b,则a < b, 与已知a > b矛盾, 故假设不成立,结论 a > b成立。
25.3 反证法
导入复习
请阅读课本25业道旁李苦的故事
当我们直接从正面去解决问题比较困难时,于是就 要改变思维方向,从结论入手,反面思考。这就是今天介 绍的证明方法——反证法。
学习目标:
1反证法的概念 2 、知道反证法证明问题的步骤。 3能利用反证法证明一些简单的问题。
自学课本23页和24页,完成下列思考题 (1)如何对命题的
北师大版九年级数学下册《圆》PPT课件

2. 圆心为 O 的两个同心圆,半径分别为 1 和 2,
若OP= 3 ,则点 P 在( D )
A.大圆内
B.小圆内
o
C.小圆外
D.大圆内,小圆外
要点归纳
P d O
r
Od P
r
P
dO r
P O
Rr
点 P 在⊙O 内 d<r 点 P 在⊙O上 d=r
点 P 在 ⊙O 外 d>r 点 P 在圆环内 r<d<R
劣弧:AF, AD,AC,AE.
F
O
E
(
( (( ((
(
((
优弧:AFE, AFC,AED,AEF. (2) 请写出以点 A 为端点的弦及直径. A
C
弦 AF,AB,AC.其中弦 AB 又是直径. (3) 请任选一条弦,写出这条弦所对的弧.
答案不唯一,如:弦 AF,它所对的弧是 AF.
知识要点
1. 根据圆的定义,“圆”指的是“圆周”,而不是“圆面”.
r rO· r
A
有点组成的图形.定点就是圆心,定长就是 C r r E
半径,以点 O 为圆心的圆记作 ⊙O,读作
“圆 O ”.
有关概念
固定的端点 O 叫做圆心,线段 OA 叫做半径,一
般用 r 表示.
确定一个圆的要素 一是圆心,确定其位置;二是半径,确定其大小.
同心圆 圆心相同,半径不同
等圆
能够重合 的两个圆 叫做等圆.
系?
P
d O
r
Od
r
P
Pd O r
点 P 在 ⊙O 内 点 P 在⊙O上
d< r d =r
点 P 在⊙O 外
d >r
练一练:
《确定圆的条件》圆PPT教学课件-北师大版九年级数学下册

作图: 三角形三条边的垂直平分线的交点.
性质: 三角形的外心到三角形三个顶点的距离相等.
判一判:
下列说法是否正确
(1)任意的一个三角形一定有一个外接圆( √ ) (2)任意一个圆有且只有一个内接三角形( × ) (3)经过三点一定可以确定一个圆( × )
√
(4)三角形的外心到三角形各顶点的距离相等( )
第三章 圆
确定圆的条件
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.复习并巩固圆中的基本概念. 2.理解并掌握三点确定圆的条件并会应用. (重点) 3.理解并掌握三角形的外接圆及外心的概念.(难点)
导入新课
情境引入
假如旋转木马真如短片所说, 是中国发明的, 你能将旋转木马破碎的圆 形底座还原, 以帮助考古学家画进行深入的研究吗?
7.如图, 在平面直角坐标系xOy中, △ABC外接 圆的圆心坐标(是5,___2_)_____, 半径2 是5 ______.
8.已知正△ABC的边长为6, 那么能够完全覆盖这
个正△ABC的最小圆的半径是_2__3_____.
解析:如图, 能够完全覆盖这个正△ABC的最小圆的半径就是△ABC外接
过一点可以作无数个圆 过两点可以作无数个圆
注意:同一直线 上的三个点不能 作圆
不在同一直线上的三个点确定一个圆
概念 外心
经过三角形的三个顶点的圆叫做三 角形的外接圆
解:(1)∵∠ADO=∠ABO=60°, ∠DOA=90°, ∴∠DAO=30°;
(2)求点A的坐标和△AOB外接圆的面积. (2)∵点D的坐标是(0, 3), ∴OD=3. 在直角△AOD中, OA=OD·tan∠ADO=3 3, AD=2OD=6, ∴点A的坐标是(3 3 , 0). ∵∠AOD=90°, ∴AD是圆的直径, ∴△AOB外接圆的面积是9π. 方法总结:图形中求三角形外接圆的面积时, 圆的直径(或半径)长度.
人教版九年级数学上册直线和圆的位置关系精品ppt课件

人教版( 九2年01级2)数九学年上级册数直学线上和册圆的位24置.2关.2系直线精和品圆pp的t 课位件置关系(2) 课件(25张ppt)
归纳分析
例1与例2的辅助线、证法有何不同?
〖例1〗已知:直线AB经过 ⊙O上的点C,并且OA=OB,CA=CB。 求证:直线AB是⊙O的切线。
O
A
C
B
〖例2〗已知:O为∠BAC平分上
人教版九年级数学上册直线和圆的位 置关系 精品ppt 课件
判 断×
×
1. 过半径的外端的直线是圆的切线( ) ×
2. 与半径垂直的的直线是圆的切线( )
3. 过l 半径的rO 端点与半径垂直rO的直线l 是圆的切线rO(
l)
A
A
A
利用判定定理时,要注意直线须具备以 下两个条件,缺一不可:
(1)直线经过半径的外端; (2)直线垂直于这条半径。
O.
那过点O可作OB⊥ l 于点B,
则OA为直角三角形的斜边,
AB l
OB的长就是圆心0到切线l的距离,即OA=OB,
这与“直角三角形的斜边大于直角边”相矛盾,
所以半径OA与切线 l 不垂直的假设不成立。
那半径OA与切线 l 垂直成立。
人教版( 九2年01级2)数九学年上级册数直学线上和册圆的位24置.2关.2系直线精和品圆pp的t 课位件置关系(2) 课件(25张ppt)
九年级 上册
24.2.2 直线和圆的位置关系(2)
切线的判定与性质
直线和圆相切
.
O
切
切点 A
线
利用切线的定义: 与圆有唯一公共点的直线是圆的切线。
利用d与r的关系作判断: 当d=r时直线是圆的切线。
人教版数学九年级上册第二十四章.. 圆 完美课件

弦、直径
E
D
C O
A
B
F
弦
E
B
C
O
D
A F
直径
连接圆上任意两点的线段叫做弦.
经过圆心的弦叫做直径.
人教版数学九年级上册第二十四章24. 1.1 圆 课件
A B 探究
⊙O中有没有最长的弦?
证明: 连接OA、OB.
A
在△OAB中,
O
OA+OB > AB
(三角形两边之和大于第三边)
∵ OA、OB 均是半径
人教版数学九年级上册第二十四章24. 1.1 圆 课件
观察
观察车轮,你发现了什么?
人教版数学九年级上册第二十四章24. 1.1 圆 课件
人教版数学九年级上册第二十四章24. 1.1 圆 课件
人教版数学九年级上册第二十四章24. 1.1 圆 课件
车轮
人教版数学九年级上册第二十四章24. 1.1 圆 课件
G
F
D
K
5.在图中,找出两条弦,一条优弧,一条劣弧.
弦:GH 、CD;
CHK、CHG、CKH、CKI..优弧: KD 、 GK、 GC、 KC...... 劣弧:
6. 一根5m长的绳子,一端栓在柱子上, 另一端栓着一只羊,请画出羊的活动区域.
5
参考答案:
5m 4m o
5m 4m o
6. 一个8×10米的长方形草地,现要安装自 动喷水装置,这种装置喷水的半径为5米,你准 备安装几个? 怎样安装? 请说明理由.
静态定义:
圆心为O,半径为r的圆是所有到定点O的距离 等于定长 r 的点的集合.
人教版数学九年级上册第二十四章24. 1.1 圆 课件
新人教版九年级数学上册圆周角课件PPT

上任意一点(除点A、B),那么, ∠ACB 就是直径AB 所对的圆周角. 想想看,∠ACB 会是怎么样的角?
为什么呢?
新人教版九年级数学上册24.1.4圆周 角第1课 时 课件
新人教版九年级数学上册24.1.4圆周 角第1课 时 课件
证明:
因为OA=OB=OC,所以△AOC、 △BOC 都是等腰三角形,所以 ∠OAC=∠OCA,∠OBC=∠OCB. 又∠OAC+∠OBC+∠ACB=180°, 所以∠ACB=∠OCA+∠OCB=90°. 因此,不管点C在⊙O上何处(除点A、 B),∠ACB总等于90°,
结论: 半圆或直径所对的圆周角是90°(直角),反
过来也是成立的,90°的圆周角所对的弦是直径。
新人教版九年级数学上册24.1.4圆周 角第1课 时 课件
例题赏析:
例1 如图,⊙O的直径AB为10cm,弦AC为6cm,∠ACB平
分线交⊙O于D,求BC、AD、BD的长.
解:∵AB是直径,
∴ ∠ACB= ∠ADB=90°.
一、复习检测
1. 什么叫圆心角? __________________________________ __________.
2. 你能找出下面图形中的圆心角吗? (口述判断的理由)
探究一、圆周角的定义
顶点在圆心的角叫圆心角。
你能仿照圆心角的定义,给下图中象∠ACB 这样的角下个定义吗?
顶点在圆上,并且两边都和 圆相交的角叫做圆周角.
B
C
即 A 1 BOC 2
一条弧所对的圆周角等于它所对的圆心角的一半.
新人教版九年级数学上册24.1.4圆周 角第1课 时 课件
新人教版九年级数学上册24.1.4圆周 角第1课 时 课件
(2)在圆周角的内部.
为什么呢?
新人教版九年级数学上册24.1.4圆周 角第1课 时 课件
新人教版九年级数学上册24.1.4圆周 角第1课 时 课件
证明:
因为OA=OB=OC,所以△AOC、 △BOC 都是等腰三角形,所以 ∠OAC=∠OCA,∠OBC=∠OCB. 又∠OAC+∠OBC+∠ACB=180°, 所以∠ACB=∠OCA+∠OCB=90°. 因此,不管点C在⊙O上何处(除点A、 B),∠ACB总等于90°,
结论: 半圆或直径所对的圆周角是90°(直角),反
过来也是成立的,90°的圆周角所对的弦是直径。
新人教版九年级数学上册24.1.4圆周 角第1课 时 课件
例题赏析:
例1 如图,⊙O的直径AB为10cm,弦AC为6cm,∠ACB平
分线交⊙O于D,求BC、AD、BD的长.
解:∵AB是直径,
∴ ∠ACB= ∠ADB=90°.
一、复习检测
1. 什么叫圆心角? __________________________________ __________.
2. 你能找出下面图形中的圆心角吗? (口述判断的理由)
探究一、圆周角的定义
顶点在圆心的角叫圆心角。
你能仿照圆心角的定义,给下图中象∠ACB 这样的角下个定义吗?
顶点在圆上,并且两边都和 圆相交的角叫做圆周角.
B
C
即 A 1 BOC 2
一条弧所对的圆周角等于它所对的圆心角的一半.
新人教版九年级数学上册24.1.4圆周 角第1课 时 课件
新人教版九年级数学上册24.1.4圆周 角第1课 时 课件
(2)在圆周角的内部.
华师版九年级数学下册第27章圆PPT教学课件1

A
· O
B
三 关系定理及推论的运用
典例精析
» =CD » = DE », 例1 如图,AB是⊙O 的直径, BC
∠COD=35°,求∠AOE 的度数.
E D C A · O
» =CD » = DE », 解: ∵ BC
BOC COD DOE =35,
B
75 .
⌒ ⌒ 例2 如图,在⊙O中, AB=AC ,∠ACB=60°, 求证:∠AOB=∠BOC=∠AOC. ⌒ ⌒ 证明:∵AB=CD , ∴ AB=AC.△ABC是等腰三角形. 又∠ACB=60°, · O C A
⌒ ⌒ 果∠AOB=∠COD,那么,AB =CD ,弦AB=弦CD.
要点归纳 弧、弦与圆心角的关系定理
在同一个圆中,如果圆心角相等,那么它们所对
的弧相等,所对的弦相等.
①∠AOB=∠COD
C D O B A
⌒ ⌒ ②AB=CD ③AB=CD
想一想:定理“在同圆或等圆中,相等的圆心角所 对的弧相等,所对的弦也相等.”中,可否把条件 “在同圆或等圆中”去掉?为什么? 不可以,如图.
» 的中点E,连接OE.那么 不是,取 CD
A O
B C E D
» ∠AOB=∠COE=∠DOE,所以 » AB = CE
= DE » .
» =2 » AB,弦AB=CE=DE,在 CD
△CDE中,CE+DE>CD,即CD<2AB.
课堂小结
圆心角
概念:顶点在圆心的角 在同圆或等圆中
弦、弧、圆心角 的 关 系 定 理
圆心角相等,所对的弦相等. 在同一个圆中,如果弦相等,那么它们所对的
圆心角相等,所对的弧相等.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
演讲人:XXXXXX 时 间:XX年XX月XX日
外接圆, △ABC是⊙O
的内接三角形,点O是
O C △ABC的外心
B
外心是△ABC三条边的垂
直平分线的交点,它到三角
形的三个顶点的距离相等。
A
A
A
●O
●O
B
┐
CB
C
●O
B
C
锐角三角形的外心位于三角形内. 直角三角形的外心位于直角三角形斜边中点. 钝角三角形的外心位于三角形外.
某一个城市在一块空地新建了三个居 民小区,它们分别为A、B、C,且三个小 区不在同一直线上,要想规划一所中学,
You Know, The More Powerful You Will Be
结束语
当你尽了自己的最大努力时,失败也是伟大的 ,所以不要放弃,坚持就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End
A
方法:
1、在圆弧上任取三点A、
B、C。
2、作线段AB、BC的垂
直平分线,其交点O即为
圆心。
O
3、以点O为圆心,OC
长为半径作圆。
⊙O即为所求。
Hale Waihona Puke B C经过三角形各个顶点的圆 叫做三角形的外接圆,外接圆 的圆心叫做三角形的外心,这 个三角形叫做圆的内接三角形。
A
如图:⊙O是△ABC的
经过一个已知点A能确 定一个圆吗?
A
经过一个已知 点能作无数个圆
经过两个已知点A、B能 确定一个圆吗?
●O ●O ●A ●O ●B ●O
经过两个已知点 A、B能作无数个圆
经过三个已知点A, B,C能确定一个圆吗?
已知:不在同一直线上的三点A、 B、C
求作: ⊙O使它经过点A、B、C
使这所中学到三个小区的距离相等。请问 同学们这所中学建在哪个位置?你怎么确 定这个位置呢?
●A
B●
●C
某市要建一个圆形公园,要求公园刚好把动物园 A,植物园B和人工湖C包括在内,又要使这个圆形 的面积最小,请你给出这个公园的施工图。(A、 B、C不在同一直线上)
植物园
动物园
人工湖
学习总结
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
A N
F
作法:1、连结AB,作线段 AB的垂直平分线MN;
2、连接AC,作线段AC的垂
B
EO
M
C直平分线EF,交MN于点O; 3、以O为圆心,OB为半径作
圆。所以⊙O就是所求作的圆。
过如下三点能不能做圆? 为什么?
A
B
C
不在同一直线上的三点确定一个圆
现在你知道了怎样要
将一个如图所示的破损的
圆盘复原了吗?
长沙马王堆一号汉墓的 发掘,在我国的考古界算得 上惊人的发现,在世界考古 学史上,也产生了深远的影 响。一位考古学家在马王堆 汉墓挖掘时,发现一圆形瓷 器碎片,你能帮助这位考古 学家将这个破损的圆形瓷器 复原,以便于进行深入的研 究吗?
1、过一点可以作几条直线?
●A
●A
●B
2、过几点可确定一条直线?
外接圆, △ABC是⊙O
的内接三角形,点O是
O C △ABC的外心
B
外心是△ABC三条边的垂
直平分线的交点,它到三角
形的三个顶点的距离相等。
A
A
A
●O
●O
B
┐
CB
C
●O
B
C
锐角三角形的外心位于三角形内. 直角三角形的外心位于直角三角形斜边中点. 钝角三角形的外心位于三角形外.
某一个城市在一块空地新建了三个居 民小区,它们分别为A、B、C,且三个小 区不在同一直线上,要想规划一所中学,
You Know, The More Powerful You Will Be
结束语
当你尽了自己的最大努力时,失败也是伟大的 ,所以不要放弃,坚持就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End
A
方法:
1、在圆弧上任取三点A、
B、C。
2、作线段AB、BC的垂
直平分线,其交点O即为
圆心。
O
3、以点O为圆心,OC
长为半径作圆。
⊙O即为所求。
Hale Waihona Puke B C经过三角形各个顶点的圆 叫做三角形的外接圆,外接圆 的圆心叫做三角形的外心,这 个三角形叫做圆的内接三角形。
A
如图:⊙O是△ABC的
经过一个已知点A能确 定一个圆吗?
A
经过一个已知 点能作无数个圆
经过两个已知点A、B能 确定一个圆吗?
●O ●O ●A ●O ●B ●O
经过两个已知点 A、B能作无数个圆
经过三个已知点A, B,C能确定一个圆吗?
已知:不在同一直线上的三点A、 B、C
求作: ⊙O使它经过点A、B、C
使这所中学到三个小区的距离相等。请问 同学们这所中学建在哪个位置?你怎么确 定这个位置呢?
●A
B●
●C
某市要建一个圆形公园,要求公园刚好把动物园 A,植物园B和人工湖C包括在内,又要使这个圆形 的面积最小,请你给出这个公园的施工图。(A、 B、C不在同一直线上)
植物园
动物园
人工湖
学习总结
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
A N
F
作法:1、连结AB,作线段 AB的垂直平分线MN;
2、连接AC,作线段AC的垂
B
EO
M
C直平分线EF,交MN于点O; 3、以O为圆心,OB为半径作
圆。所以⊙O就是所求作的圆。
过如下三点能不能做圆? 为什么?
A
B
C
不在同一直线上的三点确定一个圆
现在你知道了怎样要
将一个如图所示的破损的
圆盘复原了吗?
长沙马王堆一号汉墓的 发掘,在我国的考古界算得 上惊人的发现,在世界考古 学史上,也产生了深远的影 响。一位考古学家在马王堆 汉墓挖掘时,发现一圆形瓷 器碎片,你能帮助这位考古 学家将这个破损的圆形瓷器 复原,以便于进行深入的研 究吗?
1、过一点可以作几条直线?
●A
●A
●B
2、过几点可确定一条直线?