《创新设计 高考总复习》2014届高考数学一轮复习:易失分点清零(二)函数的概念、图象和性质

合集下载

《创新设计·高考总复习》2014届高考数学湘教版(理)一轮复习【配套课件】易失分点清零六平面向量

《创新设计·高考总复习》2014届高考数学湘教版(理)一轮复习【配套课件】易失分点清零六平面向量

易失分点4 判别不清向量的夹角 【示例 4】► 在△ABC 中,|A→C|=5,|B→C|=3,|A→B|=6,则
A→B·C→A等于
( ).
A.13 B.26 C.-13 D.-26
解析 ∵A→B与C→A的夹角为 180°-∠A,而 cos A=
|A→B|2+|A→C|2-|B→C|2 →→
2|AB||AC|
设 t∈R,如果 3a=c,2b=d,e=t(a+b),那么 t 为何值时, C,D,E 三点在一条直线上?
解 由题设知,C→D=d-c=2b-3a,C→E=e-c=(t-3)a +tb,C,D,E 三点在一条直线上的充要条件是存在实 数 k,使得C→E=kC→D,即(t-3)a+tb=-3ka+2kb, 整理得(t-3+3k)a=(2k-t)b. ①若 a,b 共线,则 t 可为任意实数;
此时 a 与 b 的夹角 θ 的值为23π.
(2)由(1)知(a·b)max=-12, ∴|a+λb|2=λ2-λ+1=λ-122+34, ∴当 λ=12时,|a+λb|的值最小, 此时a+12b·b=0, 这表明a+12b⊥b.
警示 本题可以通过对已知条件两端平方解决,容易出现 的问题是对向量模与数量积的关系不清导致错误,如认为 |a-kb|=|a|-|kb|或|a-kb|2=|a|2-2k|a||b|+k2|b|2 等都会 得出错误的结果.还有就是在得到 a·b=-1+4kk2后,忽视 了 k>0 的限制条件,求错最值.
易失分点3 向量的模与数量积的关系不清致误
【示例 3】► 已知向量 a,b 满足|a|=|b|=1,且|a-kb|= 3|ka +b|,其中 k>0. (1)试用k表示a·b,并求出a·b的最大值及此时a与b的夹角θ 的值; (2)当a·b取得最大值时,求实数λ,使|a+λb|的值最小,并 对这一结果作出几何解释.

[精品]【配套课件】《创新设计·高考一轮总复习》数学

[精品]【配套课件】《创新设计·高考一轮总复习》数学
(1)设 z=xy,求 z 的最小值; (2)设 z=x2+y2,求 z 的取值范围.
抓住2个考点
突破3个考向
揭秘3年高考
[解析]
由约束条件x3-x+4y5+y-3≤250≤,0, x≥1,
作出(x,y)的可行域如图所示.
抓住2个考点
突破3个考向
揭秘3年高考
由x3=x+1, 5y-25=0,
抓住2个考点
突破3个考向
揭秘3年高考
【训练3】 (2012·江西)某农户计划种植黄瓜和韭菜,种植 面积不超过50亩,投入资金不超过54万元,假设种植 黄瓜和韭菜的产量、成本和售价如下表
解得
A1,252

.

由xx= -14, y+3=0, 解得 C(1,1),
由x3-x+4y5+y-3= 25=0,0, 解得 B(5,2).
抓住2个考点
突破3个考向
揭秘3年高考
Hale Waihona Puke (1)∵z=yx=yx- -00.
∴z 的值即是可行域中的点与原点 O 连线的斜率.
观察图形可知 zmin=kOB=25.
抓住2个考点
突破3个考向
揭秘3年高考
【训练 2】 (2012·陕西)设函数 f(x)=-ln 2xx,-x1>,0x,≤0, D 是 由 x 轴和曲线 y=f(x)及该曲线在点(1,0)处的切线所围成的 封闭区域,则 z=x-2y 在 D 上的最大值为________. 解析 由题知在点(1,0)处的切线的斜率
抓住2个考点
突破3个考向
揭秘3年高考
x+y-1≥0, 【训练 1】 若不等式组x-1≤0,
ax-y+1≥0a为常数
面区域的面积等于 2,则 a 的值为

《创新设计 高考总复习》高考数学一轮复习:易失分点清零(十二) 解析几何

《创新设计 高考总复习》高考数学一轮复习:易失分点清零(十二) 解析几何

警示 直线与圆锥曲线相交于两点时,应满足Δ>0,有很多 同学在做此类题时易忽视Δ>0,有些题目,不用Δ>0,对最 终结果不受影响,但在做一些存在型探索题时,若忽视 Δ>0,就会导致错误结果,只要遇到直线与圆锥曲线相交 问题,就要想到Δ>0,可以一开始就利用Δ>0求出一个范围, 也可以最后利用Δ>0进行检验.
易失分点3 解决直线与圆锥曲线的相交问题时忽视Δ>0的条件
【示例 3】► 已知 m>1.直线 l:x-my-m22= 0,椭圆 C:mx22+y2=1,F1,F2 分别为椭 圆 C 的左、右焦点. (1)当直线l过右焦点F2时,求直线l的方程; (2)设直线l与椭圆C交于A,B两点,△AF1F2,△BF1F2的 重心分别为G,H.若原点O在以线段GH为直径的圆内,求 实数m的取值范围.
y1+y2=-m2 ,y1y2=m82-12. 由于 F1(-c,0),F2(c,0),故 O 为 F1F2 的中点. 由 G、H 分别为△AF1F2,△BF1F2 的重心, 可知 Gx31,y31,Hx32,y32, |GH|2=x1-9 x22+y1-9 y22. 设 M 是 GH 的中点,则 Mx1+6 x2,y1+6 y2,由题意可知, 2|MO|<|GH|,
即 4x1+6 x22+y1+6 y22<x1-9 x22+y1-9 y22. 即 x1x2+y1y2<0. 而 x1x2+y1y2=my1+m22my2+m22+y1y2 =(m2+1)m82-12, ∴m82-12<0,即 m2<4.又∵m>1 且 Δ>0, ∴1<m<2.∴m 的取值范围是(1,2).
易失分点清零(十二) 解析几何(二)

《创新设计·高考总复习》2014届高考数学湘教版(理)一轮复习【配套课件】易失分点清零十一解析几何一

《创新设计·高考总复习》2014届高考数学湘教版(理)一轮复习【配套课件】易失分点清零十一解析几何一

易失分点3 忽视零截距致误 【示例3】► 已知直线l1:(a+1)x+y-2-a=0(a∈R)在两坐标
轴上的截距相等,求直线l的方程. 解 当直线经过坐标原点时,该直线在两坐标轴上的截距 都为0,此时2+a=0,解得a=-2,此时直线方程为-x +y=0,即x-y=0. 当直线不经过坐标原点,即a≠-2时,由直线在两坐标轴

过 A 可作该圆的两条切线,则 A 在圆 C 外,
∴1+4+a+4+a2>0,即 a2+a+9>0.

由①②可得:-23
32 <a< 3
3 .
∴a
的取值范围是-2

3
3,2
3
3

答案
-2
3,2
3

3 3
警示 若已知圆的一般方程(含参数),切记注 意应用圆的充要条件,否则会导致错误.
交于 A,B 两点,坐标原点 O 到直线 l 的距离为 23, 求△AOB 面积的最大值. 解 设 A(x1,y1),B(x2,y2). (1)当 AB⊥x 轴时,|AB|= 3. (2)当 AB 与 x 轴不垂直时,设直线 AB 的方程为 y= kx+m. 由已知 1|m+|k2= 23,得 m2=34(k2+1).
易失分点2 忽视圆存在的条件
【示例2】► 已知圆C的方程为x2+y2+ax+2y+a2=0,过 定点A(1,2)可作该圆的两条切线,则a的取值范围为 ________.
解析 圆 C 的方程可变形为:x+a22+(y+1)2=4-43a2,
其中4-43a2>0,即-2
3
32 <a<
3
3 .
标或纵坐标结合直线的斜率来表示弦长,即 1+k2·|x1-x2|

《创新设计》2014届高考数学北师大版(文科)第一轮复习方案【配套word版文档】:第6讲_函数的奇偶性与周期性

《创新设计》2014届高考数学北师大版(文科)第一轮复习方案【配套word版文档】:第6讲_函数的奇偶性与周期性

课时作业(六)A [第6讲 函数的奇偶性与周期性](时间:35分钟 分值:80分)基础热身1.[2012·九江模拟] 已知函数f (x )=⎩⎪⎨⎪⎧1-2-x (x ≥0),2x -1(x <0),则该函数是( ) A .偶函数,且单调递增B .偶函数,且单调递减C .奇函数,且单调递增D .奇函数,且单调递减2.函数f (x )=a 2x -1a x (a >0,a ≠1)的图像( ) A .关于原点对称 B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称3.[2012·哈尔滨师范大学附中月考] 设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=( )A .-3B .-1C .1D .34.[2012·上海卷] 已知y =f (x )是奇函数,若g (x )=f (x )+2且g (1)=1,则g (-1)=________.能力提升5.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=x ,则f ⎝⎛⎭⎫-134=( ) A.32 B .-32C.12 D .-126.[2012·长春外国语学校月考] 已知函数f (x )是定义在R 上的奇函数,且f (x +2)=-f (x ),若f (1)=1,则f (3)-f (4)=( )A .-1B .1C .-2D .27.[2013·保定摸底] 若函数f (x )=|x -2|+a 4-x 2的图像关于原点对称,则f a 2=( ) A.33 B .-33C .1D .-1 8.[2012·鹰潭模拟] 设函数f (x )=x 3+log 2(x +x 2+1),则对任意实数a ,b ,a +b ≥0是f (a )+f (b )≥0的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件9.[2013·银川一中月考] 已知f (x )是定义在R 上的函数,且满足f (x +1)+f (x )=3,当x ∈[0,1]时,f (x )=2-x ,则f (-2 005.5)=________.10.[2013·南昌一中、十中联考] 函数f (x )是定义在R 上的奇函数,下列结论中,正确结论的序号是________.①f (-x )+f (x )=0;②f (-x )-f (x )=-2f (x );③f (x )f (-x )≤0;④f (x )f (-x )=-1. 11.[2012·南京三模] 若函数f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2+ax ,x <0是奇函数,则满足f (x )>a 的x 的取值范围是________.12.(13分)[2012·衡水中学一调] 已知函数f (x )=x m -2x 且f (4)=72. (1)求m 的值;(2)判定f (x )的奇偶性;(3)判断f (x )在(0,+∞)上的单调性,并给予证明.难点突破13.(12分)已知定义域为R 的函数f (x )=-2x +b 2x +1+a是奇函数. (1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.课时作业(六)B [第6讲 函数的奇偶性与周期性](时间:35分钟 分值:80分)基础热身1.[2012·佛山质检] 下列函数中既是奇函数,又在区间(-1,1)上是增函数的为( )A .y =|x |B .y =sin xC .y =e x +e -xD .y =-x 32.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( )A .-13 B.13 C.12 D .-123.已知f (x )=⎩⎪⎨⎪⎧x 2-x +1(x >0),-x 2-x -1(x <0),则f (x )为( ) A .奇函数 B .偶函数C .非奇非偶函数D .不能确定奇偶性4.[2012·浙江卷] 设函数f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则f ⎝⎛⎭⎫32=________.能力提升5.[2012·郑州模拟] 设函数f (x )=⎩⎪⎨⎪⎧2x ,x <0,0,x =0,g (x ),x >0,且f (x )为奇函数,则g (3)=( )A .8 B.18 C .-8 D .-186.已知y =f (x )是定义在R 上的偶函数,且f (x )在(0,+∞)上是增函数,如果x 1<0,x 2>0,且|x 1|<|x 2|,则有( )A .f (-x 1)+f (-x 2)>0B .f (x 1)+f (x 2)<0C .f (-x 1)-f (-x 2)>0D .f (x 1)-f (x 2)<07.[2012·石嘴山二联] 已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (-2 012)+f (2 011)的值为( )A .1B .2C .-2D .-18.[2013·忻州一中月考] 命题p :任意x ∈R ,3x >x ;命题q :若函数y =f (x -1)为奇函数,则函数y =f (x )的图像关于点(1,0)成中心对称.以下说法正确的是( )A .p 或q 真B .p 且q 真C .綈p 真D .綈q 假9.函数f (x )对于任意实数x 满足条件f (x +2)f (x )=1,若f (1)=-5,则f (-5)=________.10.[2011·广东卷] 设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________.11.[2012·临川模拟] 设函数f (x )=2 011x +1+2 0102 011x +1+2 012sin x ,x ∈⎣⎡⎦⎤-π2,π2的最大值为M ,最小值为N ,那么M +N =__________.12.(13分)已知函数f (x )=lg 1+x 1-x. (1)求证:对于f (x )的定义域内的任意两个实数a ,b ,都有f (a )+f (b )=f ⎝ ⎛⎭⎪⎫a +b 1+ab ; (2)判断f (x )的奇偶性,并予以证明.难点突破13.(12分)函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (3x +1)+f (2x -6)≤3,且f (x )在(0,+∞)上是增函数,求x 的取值范围.课时作业(六)A【基础热身】1.C [解析] x >0时,f (-x )=2-x -1=-f (x );x <0时,f (-x )=1-2x =-f (x ).所以f (x )为奇函数,又由图像知为增函数.故选C.2.A [解析] 因为f (-x )=a -x -1a-x =-(a x -a -x )=-f (x ),所以f (x )是奇函数,其图像关于原点对称.故选A.3.A [解析] 依题意当x >0时,f (x )=-f (-x )=-(2x 2+x ),所以f (1)=-3.故选A.4.3 [解析] 考查函数的奇偶性和转化思想,解此题的关键是利用y =f (x )为奇函数. 已知函数y =f (x )为奇函数,由已知得g (1)=f (1)+2=1,∴f (1)=-1,则f (-1)=-f (1)=1,所以g (-1)=f (-1)+2=1+2=3.【能力提升】5.A [解析] 依题意f -134=f -54=f 34=32.故选A. 6.A [解析] 由f (x +2)=-f (x )得f (x +4)=-f (x +2)=f (x ),根据f (x )为R 上的奇函数,得f (0)=0,所以f (3)=f (-1)=-f (1)=-1,f (4)=f (0)=0,所以f (3)-f (4)=-1.故选A.7.A [解析] 函数f (x )定义域为{x |-2<x <2},依题意函数f (x )为奇函数,所以f (0)=0,得a =-2,所以f a 2=f (-1)=|-1-2|-24-1=33.故选A. 8.A [解析] 判断出函数f (x )为奇函数和增函数.故选A.9.1.5 [解析] 由f (x +1)+f (x )=3得f (x )+f (x -1)=3,两式相减得f (x +1)=f (x -1),所以f (x +2)=f (x ),所以函数f (x )是周期为2的周期函数,所以f (-2 005.5)=f (-1.5)=f (-2+0.5)=f (0.5)=1.5.10.①②③ [解析] 因为函数f (x )是定义在R 上的奇函数,所以①正确,由f (-x )+f (x )=0,可推得选项②③正确,④中,要求f (-x )≠0,故④错误.11.(-1-3,+∞) [解析] 由函数f (x )是奇函数,所以当x <0时,-x >0,f (-x )=(-x )2-2(-x )=x 2+2x =-f (x )=x 2-ax ,所以a =-2.当x <0时,f (x )>a 即-x 2-2x >-2⇒x 2+2x -2<0,解得-1-3<x <0;当x ≥0时,f (x )>-2恒成立.综上,满足f (x )>a 的x 的取值范围是(-1-3,+∞).12.解:(1)因为f (4)=72,所以4m -24=72,所以m =1. (2)因为f (x )的定义域为{x |x ≠0},又f (-x )=-x -2-x =-x -2x =-f (x ), 所以f (x )是奇函数.(3)设x 1>x 2>0,则f (x 1)-f (x 2)=x 1-2x 1-x 2-2x 2=(x 1-x 2)1+2x 1x 2, 因为x 1>x 2>0,所以x 1-x 2>0,1+2x 1x 2>0, 所以f (x 1)>f (x 2),所以f (x )在(0,+∞)上为单调递增函数.(或用求导数的方法)【难点突破】13.解:(1)因为f (x )是定义域为R 的奇函数,所以f (0)=0,即-1+b 2+a =0,所以b =1.所以f (x )=-2x +12x +1+a.又由f (1)=-f (-1)知-2+14+a =--12+11+a,所以a =2. (2)方法一:由(1)知f (x )=-2x +12x +1+2=-12+12x +1.易知f (x )在(-∞,+∞)上为减函数. 又因f (x )是奇函数,从而不等式f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<f (-2t 2+k ). 因f (x )是减函数,所以t 2-2t >-2t 2+k .即对一切t ∈R 有3t 2-2t -k >0.从而判别式Δ=4+12k <0,解得k <-13. 方法二:由(1)知f (x )=-2x +12x +1+2,又由题设条件得 -2t 2-2t +12t 2-2t +1+2+-22t 2-k +122t 2-k +1+2<0, 即(22t 2-k +1+2)(-2t 2-2t +1)+(2t 2-2t +1+2)(-22t 2-k +1)<0.整理得23t 2-2t -k >1,因底数2>1,故3t 2-2t -k >0.上式对一切t ∈R 均成立,从而判别式Δ=4+12k <0,解得k <-13. 课时作业(六)B【基础热身】1.B [解析] 由题中选项可知,y =|x |,y =e x +e -x 为偶函数,排除A ,C ;而y =-x 3在R 上递减,故选B.2.B [解析] 因为函数f (x )=ax 2+bx 在[a -1,2a ]上为偶函数,所以b =0,且a -1+2a =0,即b =0,a =13.所以a +b =13. 3.A [解析] 若x <0,则-x >0,所以f (-x )=(-x )2-(-x )+1=x 2+x +1=-f (x ).若x >0,则-x <0,所以f (-x )=-(-x )2-(-x )-1=-x 2+x -1=-f (x ).所以f (x )为奇函数.4.32[解析] 函数f (x )是定义在R 上的周期为2的偶函数,且当x ∈[0,1]时,f (x )=x +1,那么f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-32=f ⎝⎛⎭⎫2-32=f ⎝⎛⎭⎫12=32.【能力提升】5.D [解析] 因为f (x )为奇函数,所以x >0时,f (x )=-f (-x )=-2-x ,即g (x )=-2-x ,所以g (3)=-2-3=-18.故选D. 6.D [解析] 因为x 1<0,x 2>0,|x 1|<|x 2|,所以0<-x 1<x 2.又f (x )是(0,+∞)上的增函数,所以f (-x 1)<f (x 2).又f (x )为定义在R 上的偶函数,所以f (x 1)<f (x 2),所以f (x 1)-f (x 2)<0.选D.7.A [解析] 由已知f (x )是偶函数且是周期为2的周期函数,则f (-2 012)=f (2 012)=f (0)=log 21=0,f (2 011)=f (1)=log 22=1,所以f (-2 012)+f (2 011)=0+1=1,故选择A.8.A [解析] 命题p 是真命题.对于命题q ,函数y =f (x -1)为奇函数,将其图像向左平移1个单位,得到函数y =f (x )的图像,该图像的对称中心为(-1,0),而得不到对称中心为(1,0),所以命题q 为假命题,所以p ∨q 是真命题.故选A.9.-15[解析] 因为f (x +2)f (x )=1,所以f (x +4)f (x +2)=1,于是有f (x +4)=f (x ),所以f (x )是以4为周期的周期函数,f (-5)=f (-1)=1f (-1+2)=1f (1)=-15. 10.-9 [解析] 由f (a )=a 3cos a +1=11得a 3cos a =10,所以f (-a )=(-a )3cos(-a )+1=-a 3cos a +1=-10+1=-9.11.4 021 [解析] f (x )=2 011(2 011x +1)-12 011x +1+2 012sin x =-12 011x +1+2 012sin x +2 011.而g (x )=-12 011x +1+12+2 012sin x 为奇函数,∴f (x )=g (x )+2 011-12,则可得出结论.12.解:函数的定义域为{x |-1<x <1}=(-1,1).(1)证明:任意a ,b ∈(-1,1),f (a )+f (b )=lg 1+a 1-a +lg 1+b 1-b =lg (1+a )(1+b )(1-a )(1-b ), f a +b 1+ab =lg 1+a +b 1+ab 1-a +b 1+ab=lg 1+ab +a +b 1+ab -a -b =lg (1+a )(1+b )(1-a )(1-b ), 所以f (a )+f (b )=f a +b 1+ab. (2)任意x ∈(-1,1),f (-x )+f (x )=lg 1-x 1+x +lg 1+x 1-x =lg (1-x )(1+x )(1+x )(1-x )=lg1=0, 即f (-x )=-f (x ),所以f (x )是奇函数.【难点突破】13.解:(1)因为对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2),所以令x 1=x 2=1,得f (1)=2f (1),所以f (1)=0.(2)令x 1=x 2=-1,有f (1)=f (-1)+f (-1),所以f (-1)=12f (1)=0. 令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ),所以f (-x )=f (x ),所以f (x )为偶函数.(3)依题设有f (4×4)=f (4)+f (4)=2,f (16×4)=f (16)+f (4)=3,又f (3x +1)+f (2x -6)≤3,即f ((3x +1)(2x -6))≤f (64).(*)方法一:因为f (x )为偶函数,所以f (|(3x +1)(2x -6)|)≤f (64).又f (x )在(0,+∞)上是增函数,所以0<|(3x +1)(2x -6)|≤64.解上式,得3<x ≤5或-73≤x <-13或-13<x <3. 所以x 的取值范围为x ⎪⎪-73≤x <-13或-13<x <3或3<x ≤5. 方法二:因为f (x )在(0,+∞)上是增函数,所以(*)等价于不等式组⎩⎪⎨⎪⎧(3x +1)(2x -6)>0,(3x +1)(2x -6)≤64或⎩⎪⎨⎪⎧(3x +1)(2x -6)<0,-(3x +1)(2x -6)≤64, ⎩⎨⎧x >3或x <-13,-73≤x ≤5或⎩⎪⎨⎪⎧-13<x <3,x ∈R . 所以3<x ≤5或-73≤x <-13或-13<x <3. 所以x 的取值范围为x⎪⎪⎪ )-73≤x <-13或-13<x <3或3<x ≤5.。

《创新设计》2014届高考数学人教A版(理)一轮复习:第二篇 第9讲 函数的应用

《创新设计》2014届高考数学人教A版(理)一轮复习:第二篇 第9讲 函数的应用

第9讲 函数的应用A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.(2013·成都调研)在我国大西北,某地区荒漠化土地面积每年平均比上一年增长10.4%,专家预测经过x 年可能增长到原来的y 倍,则函数y =f (x )的图象大致为 ( ).解析 由题意可得y =(1+10.4%)x .答案 D2.(2013·青岛月考)某电信公司推出两种手机收费方式:A种方式是月租20元,B 种方式是月租0元.一个月的本地网内打出电话时间t (分钟)与打出电话费s (元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差 ( ).A .10元B .20元C .30元D.403元 解析 设A 种方式对应的函数解析式为s =k 1t +20,B 种方式对应的函数解析式为s =k 2t ,当t =100时,100k 1+20=100k 2,∴k 2-k 1=15,t =150时,150k 2-150k 1-20=150×15-20=10.答案 A3.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L 1=5.06x -0.15x 2和L 2=2x ,其中x 为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得最大利润为( ). A .45.606万元B .45.6万元C .45.56万元D .45.51万元解析 依题意可设甲销售x 辆,则乙销售(15-x )辆,总利润S =L 1+L 2,则总利润S =5.06x -0.15x 2+2(15-x )=-0.15x 2+3.06x +30=-0.15(x -10.2)2+0.15×10.22+30(x ≥0),∴当x =10时,S max =45.6(万元).答案 B4.(2013·太原模拟)某汽车运输公司购买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y (单位:10万元)与营运年数x (x ∈N *)为二次函数关系(如图所示),则每辆客车营运多少年时,其营运的年平均利润最大( ). A .3 B .4 C .5 D .6解析 由题图可得营运总利润y =-(x -6)2+11,则营运的年平均利润y x =-x-25x +12,∵x ∈N *,∴y x ≤-2 x ·25x +12=2,当且仅当x =25x ,即x =5时取“=”.∴x =5时营运的年平均利润最大.答案 C二、填空题(每小题5分,共10分)5.为了保证信息安全,传输必须使用加密方式,有一种方式其加密、解密原理如下:明文――→加密密文――→发送密文――→解密明文已知加密为y =a x -2(x 为明文,y 为密文),如果明文“3”通过加密后得到密文为“6”,再发送,接受方通过解密得到明文“3”,若接受方接到密文为“14”,则原发的明文是________.解析 依题意y =a x -2中,当x =3时,y =6,故6=a 3-2,解得a =2.所以加密为y =2x -2,因此,当y =14时,由14=2x -2,解得x =4.答案 46.如图,书的一页的面积为600 cm 2,设计要求书面上方空出2cm 的边,下、左、右方都空出1 cm 的边,为使中间文字部分的面积最大,这页书的长、宽应分别为________.解析 设长为a cm ,宽为b cm ,则ab =600,则中间文字部分的面积S =(a -2-1)(b -2)=606-(2a +3b )≤606-26×600=486,当且仅当2a =3b ,即a =30,b =20时,S max =486. 答案 30 cm 、20 cm三、解答题(共25分)7.(12分)为了发展电信事业方便用户,电信公司对移动电话采用不同的收费方式,其中所使用的“如意卡”与“便民卡”在某市范围内每月(30天)的通话时间x (分)与通话费y (元)的关系分别如图①、②所示.(1)分别求出通话费y 1,y 2与通话时间x 之间的函数关系式;(2)请帮助用户计算,在一个月内使用哪种卡便宜?解 (1)由图象可设y 1=k 1x +29,y 2=k 2x ,把点B (30,35),C (30,15)分别代入y 1,y 2得k 1=15,k 2=12.∴y 1=15x +29,y 2=12x .(2)令y 1=y 2,即15x +29=12x ,则x =9623.当x =9623时,y 1=y 2,两种卡收费一致;当x <9623 时,y 1>y 2,即使用“便民卡”便宜;当x >9623时,y 1<y 2,即使用“如意卡”便宜.8.(13分)(2013·济宁模拟)某单位有员工1 000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出x (x ∈N *)名员工从事第三产业,调整后他们平均每人每年创造利润为10⎝ ⎛⎭⎪⎫a -3x 500万元(a >0),剩下的员工平均每人每年创造的利润可以提高0.2x %.(1)若要保证剩余员工创造的年总利润不低于原来1 000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?(2)在(1)的条件下,若调整出的员工创造的年总利润始终不高于剩余员工创造的年总利润,则a 的取值范围是多少?解 (1)由题意得:10(1 000-x )(1+0.2x %)≥10×1 000,即x 2-500x ≤0,又x >0,所以0<x ≤500.即最多调整500名员工从事第三产业.(2)从事第三产业的员工创造的年总利润为10⎝ ⎛⎭⎪⎫a -3x 500x 万元,从事原来产业的员工的年总利润为10(1 000-x )(1+0.2x %)万元,则10⎝ ⎛⎭⎪⎫a -3x 500x ≤10(1 000-x )(1+0.2x %),所以ax -3x 2500≤1 000+2x -x -1500x 2,所以ax ≤2x 2500+1 000+x ,即a ≤2x 500+1 000x +1恒成立,因为2500x +1 000x ≥2 2x 500×1 000x =4,当且仅当2x 500=1 000x ,即x =500时等号成立.所以a ≤5,又a >0,所以0<a ≤5,即a 的取值范围为(0,5].B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.(2013·潍坊联考)一张正方形的纸片,剪去两个一样的小矩形得到一个“E”形图案,如图所示,设小矩形的长、宽分别为x ,y剪去部分的面积为20,若2≤x ≤10,记y =f (x ),则y =f (x )的图象是 ( ).解析 由题意得2xy =20,即y =10x ,当x =2时,y =5,当x =10时,y =1时,排除C ,D ,又2≤x ≤10,排除B.答案 A2.(2011·湖北)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M (t )=M 02-t 30,其中M 0为t =0时铯137的含量.已知t =30时,铯137含量的变化率是-10ln 2(太贝克/年),则M (60)=( ). A .5太贝克B .75ln 2太贝克C .150ln 2太贝克D .150太贝克 解析 由题意M ′(t )=M 02-t 30⎝ ⎛⎭⎪⎫-130ln 2, M ′(30)=M 02-1×⎝ ⎛⎭⎪⎫-130ln 2=-10ln 2, ∴M 0=600,∴M (60)=600×2-2=150.答案 D二、填空题(每小题5分,共10分)3.(2013·阜阳检测)按如图所示放置的一边长为1的正方形P ABC 沿x 轴滚动,设顶点P (x ,y )的轨迹方程是y=f (x ),则y =f (x )在其两个相邻零点间的图象与x 轴所围区域的面积为________.解析 将P 点移到原点,开始运动,当P 点第一次回到x 轴时经过的曲线是三段首尾相接的圆弧,它与x 轴围成的区域面积为π4+⎝ ⎛⎭⎪⎫π2+1+π4=π+1. 答案 π+14.某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________km. 解析 由已知条件y =⎩⎨⎧ 8,0<x ≤3,8+2.15(x -3)+1,3<x ≤8,8+2.15×5+2.85(x -8)+1,x >8,由y =22.6解得x =9.答案 9三、解答题(共25分)5.(12分)(2011·湖南)如图,长方体物体E 在雨中沿面P (面积为S )的垂直方向做匀速度移动,速度为v (v >0),雨速沿E 移动方向的分速度为c (c ∈R ).E 移动时单位时间内的淋雨量包括两部分:①P 或P 的平行面(只有一个面淋雨)的淋雨量,假设其值与|v -c |×S 成正比,比例系数为110;②其他面的淋雨量之和,其值为12.记y 为E 移动过程中的总淋雨量.当移动距离d =100,面积S =32时,(1)写出y 的表达式;(2)设0<v ≤10,0<c ≤5,试根据c 的不同取值范围,确定移动速度v ,使总淋雨量y 最少.解 (1)由题意知,E 移动时单位时间内的淋雨量为320|v -c |+12,故y =100v ⎝ ⎛⎭⎪⎫320|v -c |+12=5v(3|v -c |+10). (2)由(1)知,当0<v ≤c 时,y =5v (3c -3v +10)=5(3c +10)v-15; 当c <v ≤10时,y =5v (3v -3c +10)=5(10-3c )v+15. 故y =⎩⎪⎨⎪⎧ 5(3c +10)v -15,0<v ≤c ,5(10-3c )v +15,c <v ≤10.①当0<c ≤103时,y 是关于v 的减函数,故当v =10时,y min =20-3c 2.②当103<c ≤5时,在(0,c ]上,y 是关于v 的减函数;在(c,10]上,y 是关于v的增函数.故当v =c 时,y min =50c .6.(13分)(2013·徐州模拟)某学校要建造一个面积为10 000平方米的运动场.如图,运动场是由一个矩形ABCD 和分别以AD 、BC 为直径的两个半圆组成.跑道是一条宽8米的塑胶跑道,运动场除跑道外,其他地方均铺设草皮.已知塑胶跑道每平方米造价为150元,草皮每平方米造价为30元.(1)设半圆的半径OA =r (米),设建立塑胶跑道面积S 与r 的函数关系S (r );(2)由于条件限制r ∈[30,40],问当r 取何值时,运动场造价最低?最低造价为多少?(精确到元)解 (1)塑胶跑道面积S =π[r 2-(r -8)2]+8×10 000-πr 22r ×2 =80 000r +8πr -64π.∵πr 2<10 000,∴0<r <100π. (2)设运动场的造价为y 元,y =150×⎝ ⎛⎭⎪⎫80 000r +8πr -64π+30×⎝ ⎛10 000-80 000r)-8πr +64π=300 000+120×⎝ ⎛⎭⎪⎫80 000r +8πr -7 680π. 令f (r )=80 000r +8πr ,∵f ′(r )=8π-80 000r 2,当r ∈[30,40]时,f ′(r )<0,∴函数y =300 000+120×⎝ ⎛⎭⎪⎫80 000r +8πr -7 680π在[30,40]上为减函数.∴当r =40时,y min ≈636 510,即运动场的造价最低为636 510元.。

《创新设计》2014届高考数学人教A版(理)一轮复习配套word版文档:第十二篇 第3讲 数学归纳法.pdf

《创新设计》2014届高考数学人教A版(理)一轮复习配套word版文档:第十二篇 第3讲 数学归纳法.pdf
学海无涯
第 3 讲 数学归纳法
A 级 基础演练(时间:30 分钟 满分:55 分)
一、选择题(每小题 5 分,共 20 分)
1.用数学归纳法证明不等式 1+12+14+…+2n1-1>16247(n∈N*)成立,其初始值至
少应取
( ).
A.7
B.8
C.9
D.10
解析
左边=1+12+14+…+2n1-1=11--2112n=2-2n1-1,代入验证可知 n 的最小
4=1+3=2+2=3+1;
5=1+4=2+3=3+2=4+1; …;
一个整数 n 所拥有数对为(n-1)对.
学海无涯
(n-1)n 设 1+2+3+…+(n-1)=60,∴ 2 =60,
∴n=11 时还多 5 对数,且这 5 对数和都为 12,
12=1+11=2+10=3+9=4+8=5+7,
∴第 60 个数对为(5,7).
(1)求 a2,a3,a4 的值,并猜想数列{an}的通项公式(不需证明); (2)记 Sn 为数列{an}的前 n 项和,试求使得 Sn<2n 成立的最小正整数 n,并给出 证明. 解 (1)a2=5,a3=7,a4=9,猜想 an=2n+1. (2)Sn=n(3+22n+1)=n2+2n,使得 Sn<2n 成立的最小正整数 n=6. 下证:n≥6(n∈N*)时都有 2n>n2+2n. ①n=6 时,26>62+2×6,即 64>48 成立; ②假设 n=k(k≥6,k∈N*)时,2k>k2+2k 成立,那么 2k+1=2·2k>2(k2+2k)=k2 +2k+k2+2k>k2+2k+3+2k=(k+1)2+2(k+1),即 n=k+1 时,不等式成立; 由①、②可得,对于所有的 n≥6(n∈N*)

《创新设计·高考总复习》2014届高考数学浙江专版(理)一轮复习【配套word版文档】:第3篇 第1讲

《创新设计·高考总复习》2014届高考数学浙江专版(理)一轮复习【配套word版文档】:第3篇 第1讲

第三篇导数及其应用第1讲导数及导数的计算分层A级基础达标演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1.曲线y=e x在点A(0,1)处的切线斜率为().A.1 B.2C.e D.1 e解析由题意知y′=e x,故所求切线斜率k=e x|x=0=1.答案 A2.(2013·合肥模拟)函数y=x2cos x在x=1处的导数是().A.0 B.2cos 1-sin 1C.cos 1-sin 1 D.1解析y′=2x cos x-x2sin x,当x=1时,y′=2cos 1-sin 1.答案 B3.(2012·青岛一模)设曲线y=1+cos xsin x在点⎝⎛⎭⎪⎫π2,1处的切线与直线x-ay+1=0平行,则实数a等于().A.-1 B.1 2C.-2 D.2解析∵y′=-sin2x-(1+cos x)cos xsin2x=-1-cos xsin2x,∴y′|x=π2=-1,由条件知1a=-1,∴a=-1,故选A.答案 A4.(2013·广州模拟)已知曲线C:f(x)=x3-ax+a,若过曲线C外一点A(1,0)引曲线C的两条切线,它们的倾斜角互补,则a的值为().A.278B.-2C.2 D.-27 8解析设切点坐标为(t,t3-at+a).由题意知,f′(x)=3x2-a,切线的斜率为k=y′|x=t=3t2-a,①所以切线方程为y-(t3-at+a)=(3t2-a)(x-t).②将点(1,0)代入②式得-(t3-at+a)=(3t2-a)(1-t),解之得:t=0或t=3 2.分别将t=0和t=32代入①式,得k=-a和k=274-a,由题意得它们互为相反数得a=27 8.答案 A二、填空题(每小题5分,共10分)5.设直线y=12x+b是曲线y=ln x(x>0)的一条切线,则实数b的值为________.解析由已知条件可得直线的斜率k=12,y′=(ln x)′=1x=12,得切点的横坐标为x=2,切点坐标为(2,ln 2).由点(2,ln 2)在切线y=12x+b上可得b=ln 2-12×2=ln 2-1.答案ln 2-16.(2012·金华十校联考)在平面直角坐标系xOy中,点P在曲线C:y=x3-10x +3上,且在第二象限内.已知曲线C在点P处的切线的斜率为2,则点P 的坐标为________.解析由y=x3-10x+3,得y′=3x2-10.曲线C在点P处的切线的斜率为2,令y′=3x2-10=2,得x2=4,因为点P在第二象限,∴x=-2,又点P在曲线C上,∴y=-8+20+3=15,则点P的坐标为(-2,15).答案(-2,15)三、解答题(共25分)7.(12分)如图所示,已知A(-1,2)为抛物线C:y=2x2上的点,直线l1过点A,且与抛物线C相切,直线l2:x=a(a<-1)交抛物线C于点B,交直线l1于点D.(1)求直线l1的方程;(2)求△ABD的面积S.解(1)由条件知点A(-1,2)为直线l1与抛物线C的切点,∵y′=4x,∴直线l1的斜率k=-4,所以直线l1的方程为y-2=-4(x+1),即4x+y+2=0.(2)点A的坐标为(-1,2),由条件可求得点B的坐标为(a,2a2),点D的坐标为(a,-4a-2),∴△ABD的面积为S=12×|2a2-(-4a-2)|×|-1-a|=|(a+1)3|=-(a+1)3.8.(13分)已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标;(3)如果曲线y=f(x)的某一切线与直线y=-14x+3垂直,求切点坐标与切线的方程.解(1)可判定点(2,-6)在曲线y=f(x)上.∵f′(x)=(x3+x-16)′=3x2+1.∴f′(x)在点(2,-6)处的切线的斜率为k=f′(2)=13.∴切线的方程为y-(-6)=13(x-2),即13x-y-32=0.(2)设切点为(x0,y0),则直线l的斜率为f′(x0)=3x20+1,∴直线l的方程为y=(3x20+1)(x-x0)+x30+x0-16.又∵直线l过点(0,0),∴0=(3x20+1)(-x0)+x30+x0-16,整理得x30=-8,∴x0=-2,∴y0=(-2)3+(-2)-16=-26,k=3×(-2)2+1=13. ∴直线l的方程为y=13x,切点坐标为(-2,-26).(3)∵切线与直线y =-x4+3垂直, ∴切线的斜率k =4.设切点的坐标为(x 0,y 0),则f ′(x 0)=3x 20+1=4, ∴x 0=±1,∴⎩⎨⎧ x 0=1,y 0=-14或⎩⎨⎧x 0=-1,y 0=-18,所以切线方程为y -(-14)=4(x -1)或y -(-18)=4(x +1). 即4x -y -18=0或4x -y -14=0.分层B 级 创新能力提升1.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n (x )=f ′n -1(x ),n ∈N *,则f 2 013(x )等于( ).A .sin xB .-sin xC .cos xD .-cos x解析 f 1(x )=f 0′(x )=cos x ,f 2(x )=f 1′(x )=-sin x ,f 3(x )=f 2′(x )=-cos x ,f 4(x )=f 3′(x )=sin x ,…,由规律知,这一系列函数式值的周期为4,故f 2 013(x )=cos x . 答案 C2.(2013·豫东、豫北十所名校测试)在函数y =x 3-9x 的图象上,满足在该点处的切线的倾斜角小于π4,且横、纵坐标都为整数的点的个数是 ( ).A .0B .1C .2D .3解析 依题意得,y ′=3x 2-9,令0≤y ′<1,得3≤x 2<103,显然满足该不等式的整数x 不存在,因此在函数y =x 3-9x 的图象上,满足在该点处的切线的倾斜角小于π4,且横、纵坐标都为整数的点的个数是0,选A. 答案 A3.设函数f (x )=sin θ3x 3+3cos θ2x 2+tan θ,其中θ∈⎣⎢⎡⎦⎥⎤0,5π12,则导数f ′(1)的取值范围是________.解析 ∵f ′(x )=sin θ·x 2+3cos θ·x , ∴f ′(1)=sin θ+3cos θ=2sin ⎝ ⎛⎭⎪⎫θ+π3,∵θ∈⎣⎢⎡⎦⎥⎤0,5π12,∴θ+π3∈⎣⎢⎡⎦⎥⎤π3,3π4,∴sin ⎝ ⎛⎭⎪⎫θ+π3∈⎣⎢⎡⎦⎥⎤22,1,∴f ′(1)∈[2,2]. 答案 [2,2]4.(2013·湖南十二校联考)设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,则x 1·x 2·x 3·…·x 2 013的值为________.解析 ∵y ′=(n +1)x n ,∴曲线在点(1,1)处的切线斜率k =n +1,切线方程为y -1=(n +1)(x -1),即y =(n +1)x -n ,令y =0,得x n =n n +1,∴x 1·x 2·x 3·…·x 2 013=12×23×34×…×2 0132 014=12 014. 答案 12 0145.(2012·佛山调研)已知函数f (x )=x 3-ax 2+10.(1)当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)在区间[1,2]内至少存在一个实数x ,使得f (x )<0成立,求实数a 的取值范围.解 (1)当a =1时,f ′(x )=3x 2-2x ,f (2)=14, 曲线y =f (x )在点(2,f (2))处的切线斜率k =f ′(2)=8,∴曲线y =f (x )在点(2,f (2))处的切线方程为y -14=8(x -2),即8x -y -2=0.(2)由已知得a >x 3+10x 2=x +10x 2,设g (x )=x +10x 2(1≤x ≤2),g ′(x )=1-20x 3, ∵1≤x ≤2,∴g ′(x )<0, ∴g (x )在[1,2]上是减函数. g (x )min =g (2)=92,∴a >92, 即实数a 的取值范围是⎝ ⎛⎭⎪⎫92,+∞.6.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.(1)解 方程7x -4y -12=0可化为y =74x -3, 当x =2时,y =12.又f ′(x )=a +bx 2,于是⎩⎪⎨⎪⎧2a -b 2=12,a +b 4=74,解得⎩⎨⎧a =1,b =3.故f (x )=x -3x .(2)证明 设P (x 0,y 0)为曲线上任一点,由f ′(x )=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0),即y -(x 0-3x 0)=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0).令x =0,得y =-6x 0,从而得切线与直线x =0交点坐标为⎝ ⎛⎭⎪⎫0,-6x 0. 令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0). 所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12⎪⎪⎪⎪⎪⎪-6x 0|2x 0|=6.故曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,此定值为6.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

易失分点清零(二) 函数的概念、图象和性质1.下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( ).A .f (x )=1xB .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1)解析 对于A ,f (x )是反比例函数,可知其在(0,+∞)上是减函数,所以A 符合题意;对于B ,可知其是开口向上的抛物线,在(-∞,1]上是减函数,故不符合题意;对于C ,可知其是指数函数,且底数e>1,故其在(0,+∞)上是增函数;对于D ,可知其是底数大于1的对数函数,其在(-1,+∞)上递增. 答案 A2.定义在R 上的函数f (x )满足f (x )= ⎩⎨⎧log 2(8-x ),x ≤0,f (x -1)-f (x -2),x >0,则f (3)的值为 ( ).A .1B .2C .-2D .-3解析 f (3)=f (2)-f (1)=f (1)-f (0)-f (1)=-f (0)=-log 28=-3. 答案 D3.f (x )=13x 3+ax 2+5x +6在区间[1,3]上为单调函数,则实数a 的取值范围为( ).A .[-5,+∞)B .(-∞,-3]C .(-∞,-3]∪[-5,+∞)D .[-5,5]解析 f ′(x )=x 2+2ax +5,当f (x )在[1,3]上单调递减时,由⎩⎨⎧f ′(1)≤0,f ′(3)≤0得a ≤-3;当f (x )在[1,3]上单调递增时,f ′(x )≥0中,Δ=4a 2-4×5≤0或⎩⎨⎧Δ>0,-a <1,f ′(1)≥0或⎩⎨⎧Δ>0,-a >3,f ′(3)≥0,得a ∈[-5,+∞).综上:a 的取值范围为(-∞,-3]∪[-5,+∞),故选C.答案 C4.已知f (x )=⎩⎨⎧x +1,x ∈[-1,0],x 2+1,x ∈[0,1],则下列函数的图象错误的是( ).解析 根据分段函数的解析式,可得此函数的图象,如图所示.由于此函数在x ∈[-1,1]上函数值恒为非负值,所以|f (x )|的图象不发生改变,故D 选项错误. 答案 D5.(2013·哈尔滨月考)函数f (x )=log a (2-ax 2)在(0,1)上为减函数,则实数a 的取值范围是( ).A.⎣⎢⎡⎭⎪⎫12,1 B .(1,2)C .(1,2]D.⎝ ⎛⎭⎪⎫12,1解析由题意得a>0,所以内函数u=2-ax2在(0,1)上为减函数,而函数f(x)=log a(2-ax2)在(0,1)上也为减函数,则外函数y=log a u必是增函数(复合函数单调性是同增异减),所以a>1.同时u>0在(0,1)上恒成立,故2-a×1≥0即a≤2.综上有a∈(1,2].答案 C6.已知函数f(x)的定义域为[1,9],且当1≤x≤9时,f(x)=x+2,则函数y=[f(x)]2+f(x2)的值域为().A.[1,3] B.[1,9] C.[12,36] D.[12,204]解析∵函数f(x)的定义域为[1,9],∴要使函数y=[f(x)]2+f(x2)有意义,必须满足1≤x≤9,1≤x2≤9,解得1≤x≤3.∴函数y=[f(x)]2+f(x2)的定义域为[1,3].∵当1≤x≤9时,f(x)=x+2,∴当1≤x≤3时,也有f(x)=x+2,即y=[f(x)]2+f(x2)=(x+2)2+(x2+2)=2(x+1)2+4,∴当x=1时,y取得最小值,y min=12,当x=3时,y取得最大值,y max=36,∴所求函数的值域为[12,36],故选C.答案 C7.函数y=f(x)与函数y=g(x)的图象如图则函数y=f(x)·g(x)的图象可能是().解析从f(x)、g(x)的图象可知它们分别为偶函数、奇函数,故f(x)·g(x)是奇函数,排除B项.又g(x)在x=0处无意义,故f(x)·g(x)在x=0处无意义,排除C、D两项.答案 A8.(2013·山西四校联考)已知函数y=f(x)是定义在R上的增函数,函数y=f(x-1)的图象关于点(1,0)对称.若对任意的x,y∈R,不等式f(x2-6x+21)+f(y2-8y )<0恒成立,则当x >3时,x 2+y 2的取值范围是 ( ).A .(3,7)B .(9,25)C .(13,49)D .(9,49)解析 函数y =f (x -1)的图象关于点(1,0)对称,∴函数y =f (x )关于点(0,0)对称,即函数为奇函数,且在R 上是增函数,故有f (x 2-6x +21)<-f (y 2-8y )恒成立,即f (x 2-6x +21)<f (-y 2+8y )恒成立,即(x -3)2+(y-4)2<4恒成立,故以(x ,y )为坐标的点在以(3,4)为圆心,以2为半径的圆内,且直线x =3右边的部分,而x 2+y 2的几何意义恰好是圆内的点到原点(0,0)的距离的平方,故最大值是原点到圆心的距离加上半径的长的平方49,最小值是原点到(3,2)的距离的平方13,故选C. 答案 C9.(2013·衡阳六校联考)设f (x )=lg ⎝ ⎛⎭⎪⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是( ).A .(-1,0)B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞)解析 因为函数f (x )=lg ⎝ ⎛⎭⎪⎫21-x +a 为奇函数,且在x =0处有定义,故f (0)=0,即lg(2+a )=0,∴a =-1.故函数f (x )=lg ⎝ ⎛⎭⎪⎫21-x -1=lg 1+x 1-x .令f (x )<0得0<1+x 1-x <1,即x ∈(-1,0). 答案 A10.(2013·九江质检)具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ).A .①②B .①③C .②③D .①解析 对于①,f (x )=x -1x ,f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x ),满足;对于②,f ⎝ ⎛⎭⎪⎫1x =1x +x =f (x ),不满足;对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝ ⎛⎭⎪⎫1x =-f (x ),满足.综上可知,满足“倒负”变换的函数是①③. 答案 B11.(2013·东北五校联考)函数y =log 0.5(4x -3)的定义域是________. 解析 由log 0.5(4x -3)≥0,得0<4x -3≤1,34<x ≤1.因此,函数y =log 0.5(4x -3)的定义域是⎝ ⎛⎦⎥⎤34,1.答案 ⎝ ⎛⎦⎥⎤34,112.已知函数f (x )满足f ⎝ ⎛⎭⎪⎫2x +|x |=log 2x |x |,则f (x )=________.解析 由题意,知x >0,设t =2x +|x |=1x .则x =1t .故log 2x |x |=12log 2x 2=log 2x =log 21t =-log 2t , 所以f (t )=-log 2t ,即f (x )=-log 2x (x >0). 答案 -log 2x (x >0)13.(2013·昆明模拟)已知定义在R 上的偶函数满足:f (x +4)=f (x )+f (2),且当x ∈[0,2]时,y =f (x )单调递减,给出以下四个命题: ①f (2)=0;②x =-4为函数y =f (x )图象的一条对称轴;③函数y =f (x )在[8,10]上单调递增;④若方程f (x )=m 在[-6,-2]上的两根为x 1,x 2则x 1+x 2=-8.以上命题中所有正确命题的序号为________.解析 令x =-2,得f (2)=f (-2)+f (2),即f (-2)=0,又函数f (x )是偶函数,故f (2)=0;根据①可得f (x +4)=f (x ),则函数f (x )的周期是4,由于偶函数的图象关于y 轴对称,故x =-4也是函数y =f (x )图象的一条对称轴;根据函数的周期性可知,函数f (x )在[8,10]上单调递减,③不正确;由于函数f (x )的图象关于直线x =-4对称,故如果方程f (x )=m 在区间[-6,-2]上的两根为x 1,x 2,则x 1+x 22=-4,即x 1+x 2=-8.故正确命题的序号为①②④.答案 ①②④14.已知f (x )=lg(-x 2+8x -7)在(m ,m +1)上是增函数,则m 的取值范围是________.解析 复合函数f (x )=lg(-x 2+8x -7)可以分解为外函数y =lg u 和内函数u =-x 2+8x -7.外函数是增函数,故内函数在(m ,m +1)上必是增函数.故有⎩⎨⎧m +1≤4,-m 2+8m -7≥0, 解得1≤m ≤3. 答案 [1,3]15.设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x -1),已知当x ∈[0,1]时f (x )=⎝ ⎛⎭⎪⎫121-x,则①2是函数f (x )的周期;②函数f (x )在(1,2)上递减,在(2,3)上递增; ③函数f (x )的最大值是1,最小值是0; ④当x ∈(3,4)时,f (x )=⎝ ⎛⎭⎪⎫12x -3,其中所有正确命题的序号是________. 解析 由已知条件:f (x +2)=f (x ),则y =f (x )是以2为周期的周期函数,①正确;当-1≤x ≤0时,0≤-x ≤1,f (x )=f (-x )=⎝ ⎛⎭⎪⎫121+x,函数y =f (x )的图象如图所示:当3<x <4时,-1<x -4<0,f (x )=f (x -4)=⎝ ⎛⎭⎪⎫12x -3,因此②④正确.③不正确.答案 ①②④。

相关文档
最新文档