二次根式有理化

合集下载

二次根式基本运算根式加减分母有理化讲义

二次根式基本运算根式加减分母有理化讲义

学习必备欢迎下载二次根式基本运算、分母有理化内容基本要求 略高要求 较高要求二次根式的 化简和运算理解二次根式的加、减、乘、除运算法则 会进行二次根式的化简,会进行二次根式的混合运算(不要求分母有理化)板块一二次根式的乘除最简二次根式:二次根式、W (。

> 0 )中的a 称为被开方数.满足下面条件的二次根式我们称为最简二次根式: ⑴被开放数的因数是整数,因式是整式(被开方数不能存在小数、分数形式)⑵被开方数中不含能开得尽方的因数或因式⑶分母中不含二次根式 二次根式的计算结果要写成最简根式的形式.二次根式的乘法法则:a a - 口 =x 嬴(a > 0 , b > 0 )二次根式的除法法则:f 二利用这两个法则时注意a 、b 的取值范围,对于abb = 'Ji •、J 如 1:'(一7) • (—5)中 \:(—7) • \;(-5) 一、二次根式的加减1 .同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式. 合并同类二次根式:a--x + b<x = (a + b )%:'x .同类二次根式才可加减合并.【例1】若最简二次根式怎二5与V 0T 3是可以合并的二次根式,则a =—。

【例2】下列二次根式中,与、应是可以合并的是()学习必备 欢迎下载b 都非负,否则不成立, A . 21a B . v 3a 2 C . a a 3 置要求【巩固】判断下列各组二次根式是不是同类二次根式:【例3】下列二次根式中,哪些是同类二次根式?(字母均为正数) 淳・,友…i° ; 2、而;^;史.【例4】若最简二次根式a +b 石Tb 与a7~2bb 是同类根式,求—a 2b 的值.【巩固】若a ,b 为非负数,a +b 4b 与石二b 是可以合并的二次根式,则a ,b 的值是( )A . a = 0, b = 2B . a = 1, b = 1C . a = 0, b = 2 或a = 1, b = 1D . a = 2, b【例5】已知最简根式a 、,:.五万与a -b 7是同类二次根式,则满足条件的a , b 的值( )A .不存在B .有一组C .有二组D .多于二组【巩固】若a 4与最简二次根式瓜K 为同类二次根式,其中a , b 为整数,则a =, b 二【例6】 方程、X +。

二次根式 的性质4-分母有理化

二次根式 的性质4-分母有理化

成果应用
例1.化去下列各式分母中的根号
1 1
23 1 3
2 3 3 3
6
4 3 2
3 2
2 3 2
3 2 3 2
52 6
2 5
4 12 5
83
15 24
5 3
3 2
3 3 2
3
23
2
3 3 6 7
3 31 6 77
3 1
3 2
3
3
2
2 3
2
3 2
6 3 2
2 33 2
3 22 33 2 2 33 22 33 2
12 5 6 6
2 5 6 6
分母有理化
将分母中的根号化去,叫作分母有理化.
分母有理化
1 2 =
5 1
2 5 =
7 2
解:1 2 = 5 1
2 51
2
= 51 5 1
5 1 4
=
5 1 2
= 51 22
解:2 5 = 7 2
5 7 2 7 2 7 2
5 7 2 =
1
1
1
+
+
+
1
21 3 2 2 3 52 6 5
2 1 + 1 + 1 + 1 + 1
3 1 5 3 7 5 3 7 11 3
解:1 1 + 1 + 1 + 1 + 1
21 3 2 2 3 52 6 5
= 2 1+ 3 2+2 3+ 5 2+ 6 5
= 6 1
2 1 +
1
+
1

5.2.3 二次根式的有理化

5.2.3  二次根式的有理化
二次根式的化简 分母有理化
合作交流
1.分母有理化:
把分母中的根号化去,使无理数分母变成 有理数,这个过程叫做分母有理化。
2.有理化因式:
两个含有根式(无理式)的代数式相乘, 如果它们的积为有理数(式),我们说 这两个代数式互为有理化因式.
如 2是 2的有理化式,3 1是 3-1的有理式.
例1.找出下列各式的有理化因式.
(3) a 1
(4) x2 1
(5) 27
(5) 3
(6)5 2 3 5 (6)5 2 3 5
例2.化简下列二次根式:
(1) 3 ,(2)3 2 ,(3) 1(, 4) 1
5 15
27 6
a
ห้องสมุดไป่ตู้
ab
5
3
a
a-b
例3.把下列各式有理化.
a
a-b
(1) 1 ,(2) 1 ,(3) 1 ,
3-1 3 1
课堂检测
1.写出下列各式的有理化因式:
(1) 3- 2,(2) 2 5,(3)2 3-5 2.
2.把下列各式的分母有理化:
(1)-8 3 (2)3 2 (3) 5a (4) 2y 2
8
6 27 2a 10ay 2 xy 4xy
-2
(5)
64
,3(6)
12
xy
,(7)
1
.
7- 11
2 3-3 2
33 2
- 7 - 11
- 2 3 3 2 6
- 1- 2 3
(4)
1
2
, (5)
3- 5 1-
3 2
55 .
2 3
5 2- 3
47
a b a b a2 a2 a2- a-2

二次根式的运算

二次根式的运算

二次根式的运算在数学中,二次根式是由数字和根号组成的表达式,其中根号表示取平方根的运算。

二次根式的运算是解决数学问题和实际应用中常见的操作之一。

本文将介绍二次根式的基本运算法则,并举例说明。

1. 二次根式的加法和减法二次根式的加法和减法遵循以下规则:(a√n) ± (b√n) = (a ± b)√n其中a和b为实数,n为正数。

通过将两个二次根式的系数相加或相减,保持根号下的数不变,可以进行加法或减法运算。

例如:3√2 + 5√2 = 8√24√3 - 2√3 = 2√32. 二次根式的乘法二次根式的乘法遵循以下规则:(a√n) × (b√m) = ab√(n×m)其中a、b、n和m为实数,且n和m均为正数。

乘法运算中,将两个根式的系数相乘,并将根号下的数相乘,得到新的根式。

例如:2√3 × 5√2 = 10√(3×2)3. 二次根式的除法二次根式的除法遵循以下规则:(a√n) ÷ (b√m) = (a/b)√(n/m)其中a、b、n和m为实数,且n和m均为正数。

除法运算中,将两个根式的系数相除,并将根号下的数相除,得到新的根式。

例如:(8√2) ÷ (4√2) = 8/4 = 2(3√6) ÷ (√3) = 3/1 = 34. 二次根式的化简化简二次根式是将复杂的根式转化为最简形式的过程。

化简的方法包括约分、提取公因式、合并同类项等。

例如:√8 = √(4×2) = 2√2√18 = √(9×2) = 3√25. 二次根式的有理化有理化二次根式是将分母中包含根号的式子转化为分母不含根号的形式。

有理化的方法包括乘以恰当的有理数等。

例如:1/(3 + √5) = (1/(3 + √5)) × ((3 - √5)/(3 - √5)) = (3 - √5)/(9 - 5) = (3 -√5)/4综上所述,二次根式的运算包括加法、减法、乘法、除法、化简和有理化等基本操作。

二次根式运算法则

二次根式运算法则

二次根式运算法则二次根式运算法则是指在进行二次根式的加减、乘除运算时所遵循的一些规则和方法。

掌握了这些规则,可以帮助我们简化和求解二次根式的运算,提高计算的准确性和效率。

一、二次根式的加减法则1. 同类项相加减法则对于同类项的二次根式,可以直接对其系数进行相加或相减。

例如:√2 + √3 = √2 + √32√5 - 3√5 = -√52. 不同类项的相加减法则对于不同类项的二次根式,不能直接进行相加或相减。

需要通过化简的方式将其转化为同类项,然后再进行运算。

例如:√2 + 2√3 = √2 + 2√3(√2 + √3)(√2 - √3) = 2 - √6二、二次根式的乘除法则1. 二次根式的乘法法则二次根式的乘法运算可以通过将根号内的数相乘,并合并同类项的方式进行。

例如:√2 × √3 = √6(√2 + √3)(√2 - √3) = 2 - 3 = -12. 二次根式的除法法则二次根式的除法运算可以通过将根号内的数相除,并合并同类项的方式进行。

例如:√6 ÷ √2 = √3(√6 + √2) ÷ √2 = (√6 + √2) × (√2 ÷ √2) = √3 + 1三、二次根式的化简法则对于复杂的二次根式,可以通过化简的方法将其简化为更简单的形式。

常用的化简法则有以下几种:1. 合并同类项法则将同类项的二次根式合并为一个二次根式。

例如:√2 + √2 = 2√22√3 + 3√3 = 5√32. 提取公因数法则将二次根式中的公因数提取出来,使其成为一个单独的因子。

例如:2√2 + 3√2 = 5√24√5 + 6√5 = 10√53. 有理化分母法则将二次根式的分母有理化,即将分母中的根号消去。

例如:1/√2 = √2/21/√3 = √3/3四、二次根式的运算顺序在进行二次根式的复合运算时,需要注意运算的顺序。

一般按照先乘除后加减的原则进行。

二次根式分母有理化综合训练

二次根式分母有理化综合训练

二次根式分母有理化综合训练分母有理化: 在进行二次根式的运算时,如遇到132+这样的式子,还需要进一步的化简: ()()()1313)13213)1321313)13213222-=--=--=-+-=+(((,这种化去分母中根号的运算叫分母有理化.笔记:分母有理化的方法把分子和分母都乘以同一个适当的代数式,使分母不含_____________.1、按要求填空: (1)把21分母有理化,分子分母应同时乘以_______,得到________;(2)把531+分母有理化,分子分母应同时乘以________,得到____________; (3)把1541+分母有理化,分子分母应同时乘以________,得到____________; (4)把2371+分母有理化,分子分母应同时乘以________,得到____________;注意:()()b a b a b a -=-+2、分母中含有根号的二次根式分母有理化:(1)121 (2)231 (3)541(4)52(5) 812(6)3273、较为复杂的分母有理化练习:(1)321+ (2)23321- (3)32347++(4)3211-+ (5)ab ab b a - (6)b a b a --4、计算(25+1)(211++321++431++…+100991+).7、观察以下各式:343412323112121-=+-=+-=+,,利用以上规律计算:()12019201820191341231121+⎪⎭⎫ ⎝⎛++++++++ 7、阅读下面问题:12)12)(12()121211-=-+-⨯=+(2323)(23(23231-=-+-=+)252)52)(5(25251-=-+-=+试求:(1)n n ++11(n 为正整数)的值.(2)利用上面所揭示的规律计算:201620151201520141431321211++++++++++8、阅读下面问题: 12)12)(12()12(1121-=-+-⨯=+;;23)23)(23(23231-=-+-=+34)34)(34(34341-=-+-=+.……试求:(1)671+的值;(2)17231+的值;(3)n n ++11(n 为正整数)的值.。

二次根式的化简

二次根式的化简

二次根式的化简二次根式是数学中的一个重要概念,它在解方程、求平方根等方面都有广泛的应用。

化简二次根式是指将其写成最简形式,以便于计算和理解。

本文将介绍二次根式的化简方法,并给出一些例子进行演示。

1. 同底数的二次根式相加减:当两个二次根式的底数相同时,可以直接将它们的系数相加或相减,并保持底数不变。

例如,化简√5 + 2√5:可以将√5看作是√5的系数为1的一次方根,则√5 + 2√5 = (1 + 2)√5 = 3√5。

再例如,化简4√7 - 3√7:可以将√7看作是√7的系数为1的一次方根,则4√7 - 3√7 = (4 - 3)√7 = √7。

2. 二次根式的有理化:有些二次根式的底数含有其他根号,这时可以采用有理化的方法化简。

例如,化简√(2 + √3):先将其表示为a + b√c的形式,其中a、b、c为有理数,即√(2 + √3)= a + b√c。

根据平方根的性质,可得(a + b√c)² = 2 + √3。

展开并比较实部和虚部的系数,解得a = 1,b = 1,c = 3。

因此,√(2 + √3)= 1 + √3。

再例如,化简1/√(2 + √3):同样地,将其表示为a + b√c的形式,即1/√(2 + √3)= a + b√c。

根据倒数的性质,可得(a + b√c)² = 1/(2 + √3)。

展开并比较实部和虚部的系数,解得a = 1/3,b = -1/3,c = 3。

因此,1/√(2 + √3)= 1/3 - 1/3√3。

3. 二次根式的乘法和除法:二次根式的乘法和除法可以采用分配律的方法进行。

例如,化简(√2 + √3)²:根据分配律和平方根的性质,(√2 + √3)² = (√2 + √3)(√2 + √3)= 2 + 2√6 + 3= 5 + 2√6。

再例如,化简(√6 - √2)/√3:同样地,根据分配律和平方根的性质,(√6 - √2)/√3 = (√6/√3) - (√2/√3)= √2 - √(2/3)。

二次根式的性质与运算

二次根式的性质与运算

二次根式的性质与运算二次根式是指形如√a的数,其中a是非负实数。

在数学中,二次根式是一种常见的数学表达式,它具有一些特定的性质与运算规则。

本文将探讨二次根式的性质与运算,帮助读者更好地理解和运用二次根式。

1. 二次根式的简化与化简二次根式可以通过简化和化简来使得表达更简洁、易读。

简化是指通过寻找因式分解或者找到平方数的形式来减少根号下的数字。

例如,√12可以简化为2√3。

化简是指将数的乘方分解成不包含二次根式的形式。

例如,√16可以化简为4。

2. 二次根式的加减运算在进行二次根式的加减运算时,需要满足被加减数的被开方数相同。

例如,√2 + √3无法进行直接运算,但可以通过换元化简为(√2 + √3)(√2 + √3)。

运用公式(a + b)(a + b) = a² + 2ab + b²,可以得到√2 + √3 = √2 +√3 + (√2)(√3)。

因此,二次根式的加减运算可以转化为求和的形式。

3. 二次根式的乘法运算二次根式的乘法运算可以通过将两个二次根式相乘,并通过关键的化简步骤来简化最终结果。

例如,√2 * √3 = √6。

如果需要计算更复杂的二次根式乘法,可以利用公式√a * √b = √(ab)进行化简。

4. 二次根式的除法运算二次根式的除法运算也是通过适当的化简步骤来求解。

例如,√6 /√2 = √3。

类似于乘法运算,可以利用公式√a / √b = √(a/b)进行化简。

5. 二次根式的幂运算二次根式也可以进行幂运算,即将二次根式的指数设置为非负整数。

例如,(√2)² = 2。

值得注意的是,在进行幂运算时,需要将指数应用于根号内的数字,并对结果进行简化。

6. 二次根式的有理化有理化是将二次根式与分母中的二次根式相消,使得根号仅出现在被开方数中。

例如,将分数1/√3有理化,可以通过乘以√3 / √3进行,得到√3 / 3。

综上所述,二次根式具有许多特定的性质与运算规则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

×× √
××
2
x2 y,
ab ,
3xy ,
5(a2 b2 )
25

×√

如何化去 a a 0,b 0 中被开方数中
b
的分母呢?
当a 0,b 0时,
方法一
a
a•b
ab
b
b•b
b2
ab ab
b2
b
如何化去 a a 0,b 0 中被开方数中
b
的分母呢?
当a 0,b 0时,
方法二
a b
化运算。
3. 在进行分母有理化之前,可以先观察把能化简的 二次根式先化简,再考虑如何化去分母中的根号。
1.二次根式的乘法:
a • b ab (a≥0,b≥0)
算术平方根的积等于各个被开方数积的算术平方根。
ab a • b (a 0,b 0)
积的算术平方根等于积中各因式的算术平方根.
思考:二次根式的除法有没有类似的法则呢?
2.二次根式的除法:
a a a 0,b 0
bb
两个二次根式相除,等于把被开方数相除, 作为商的被开方数。
a-1)= a-1 (4)3
2=
3
6
2.把下列各式的分母有理化:
(1)-8 3 (2)3 2
8

(3) 5a 10a
(4) 2y 2 4xy
3.化简:
(1) - 19 ÷ 95
(2)9 1 ÷(-3 2 1)
48
24
当堂检测:
14、. 等式
m-3 = m-5
mm- -53 成 立 的 条 件 是
(2)如果被开方数是整数或整式时,先因 数分解或因式分解,然后利用积的算术平方 根的性质,将式子化简。
练习:把下列各式化为最简二次根式:
1 5
32
2
2x3
7
3y
8
5
9
18 9
3 9
4a 2b3c
9
4
3
22
27
82
7 3
5 3
思考题:
1、已知 x 3 2 , 3 2
y 3 2, 3 2
求 x2 y xy2 的值。
27 3 3 3 3 3 (2) 最后结果中的二次根式 3 8 8 2a 4 a 2 a 要求写成最简二次根式的
2a 2a 2a 2a a 形式.
练习2:把下列各式化简(分母有理化):
(1)-4 2 37
(2) 2a a+b
(3) 2 3 40
解:(1)-4 2 =-4 2 • 7 = -4 14 ;
(3) 3b a 0,b 0
5a
例2:计算:1 3
解:
5
23 2
27
3 8
2a
1 解法1.. 3
3
55
解法2.. 3 3 5 5
35 55
5
15
55
15 15 15 25 25 5
在二次根式的运算中,
最后结果一般要求
2 3 2 3 2 2 3 6 (1)分母中不含有二次根式.
a• b b• b
ab b
这样也可以把分母中的根号化去。
例1 、 化去根号内的分母:
(1)
2 3;
(2) 2 1 3
(3) 2 y (x 0, y 0) 3x
分母有理化的概念:
把分母中的根号化去,使分母变成 有理数,这个过程叫做分母有理化。
练习1:化去根号内的分母:
(1) 2 ; 5
(2) 3 1 ; 5
成 立 的 条 件 是____m__>_5_____ 。
5、如图,在Rt△ABC中,∠C=900, ∠A=300,AC=2cm,求斜边AB的长
B
A
C
课堂小结:
1. 利用商的算术平方根的性质化简二次根式。
2. 二次根式的除法有两种常用方法:
(1)利用公式:
a =
a (a
≥ 0,b
>
0)
b
b
(2)把除法先写成分式的形式,再进行分母有理
例3、 计算:
(1) 1 (2) 3 (3) 3 1
2 1
3 1
3 1
计算:(1) 6 (2) 2 (3) a b
6 3
2 1 a b
(4) 3 2 (5) 6 (6) 4
3- 2
2 33
3 2-4
化简二次根式的方法:
(1)如果被开方数是分数或分式时,先利 用商的算术平方根的性质,将其变为二次根 式相除的形式,然后利用分母有理化,将式子 化简。
37
3 7• 7
21
(2) 2a = a+b
2a a+b = 2a a+b
a+b • a+b
a+b
(3) 3
2=
2 =
40 3 • 2 10 6
2 • 10 =
10 • 10
20 = 2 5 = 5 60 60 30
注意:要进行根式化简,关键是要搞清
楚分式的分子和分母都乘什么,有时还
要先对分母进行化简。
2、 已 知 实 数a、b满 足 4a-b+11+ 1 b-4a-3=0, 3
求2a
a •(
b ÷
1) 的 值 。
b ab
3、比较 7 5与 5 3 的大小。
当堂检测:
1.在括号内填写适当的数或式子使等式成立。
(1) 8 •( 2 )= 4
(2)2 5 •( 5 )= 10
(3) a-1 •(
a a bb
a 0,b 0
商的算术平方根,等于各个被开方数算术平
方根的商。
3、最简二次根式的特征:
(1)被开方数是正整数; (2)被开方数都不含分母; (3)被开方数中不含能开得尽方的因数或因式.
注意:二次根式的化简结果必须是最简二次根式..
练习
下列根式中,哪些是最简二次根式?
12a , 18, x2 9, 5x3 y , 27abc,
相关文档
最新文档