Stains-for-Developing-TLC-Plates(薄层层析显色剂)
TLC薄层层析技术经验交流

展开方法
展开剂浸入薄层下端高度不应超过 0.5cm,当心将样品带被展开剂浸泡 硬板可以进行近水平、上行、下行、双向、多次展开等 展开槽有直立式、平卧式、双槽式、夹心式或水平式
Note:
a.展开槽应密闭。溶剂蒸气、液相( 展开剂)、固定相 ( 吸附剂) 一起构成复杂的三维层析过程
Note:
a.展开剂浑浊不清,应分液澄清后
b.正丁醇和丙醇对斑点扩散影响较小
c.丙酮可混溶溶剂,降低剂粘度,加快展速
d.由于混溶性和硅胶耐酸能力的限制,水和酸的使 用是有限度的。
nBuOH/aceton e/AcOH/H2O
VB1及其磷酸酯
nPrOH/NH3H2O (con.)/H2O =20/20/1
b.展缸预先饱和以减弱边缘效应,如果薄层板也同时 预饱和效果更佳。
c.点样带宽时(常见制备板)。先用大极性溶剂展2cm 以浓集样品,干燥薄层板,再用所需展开剂展开。
展开剂的选择原则
① 使各成分间有较好的分离; ② Rf在0.2~0.8为有效;监控点应在0.4~0.6之间 ③ 不与待测组分发生化学反应; ④ 沸点适中,黏度较小; ⑤ 展开后组分斑点圆且集中; ⑥ 混合溶剂最好新鲜配制;
Note: a. 点样量 c.留样对照
b.检测时间 d. 重要板留存
32
检测时机
反应物加完应立即检测;反应中出现变化(温度,颜色, 气体、沉淀)立即检测 反应物加完后半小时内应检测,然后适时跟踪检测 快速反应的体系(如硝化、还原),在短时间内需要检测 过夜反应,过夜前后应检测
33
官能团转化
极性增大:
红、桃红或棕色斑点
氨基酸、多肽
香草醛/硫酸
香草醛1g溶于硫酸lOOml。喷后于120℃加热 高级醇、酚、甾类及精
最全的TLC经验薄层层析显色剂

最全的TLC经验薄层层析显色剂
一、TLC经验简介
TLC(Thin Layer Chromatography,薄层层析)是一种常用的分离技术,它是一种物理分离方法,用于分离从未接触过的化学混合物。
它主要利用不溶于固定相的物质在一定的有机溶剂/挥发溶剂系统中的互相溶解性,从而将混合物分离成不同组分。
TLC可以大量分离未知物质、识别未知物质、鉴定物质的纯度、测定物质的比例、比较不同批次的物质、测定固体液体及气体的组成等。
二、TLC实验步骤:
1.准备薄层层析膜:TLC膜一般用玻璃或石英板,平板制成,一般涂有活性炭、白土、石英砂、铝粉等。
2.准备支持介质:需要选择的是盐酸和醇溶液,如85%乙醇-盐酸、苯甲酸-乙酸-乙醇和砒霜-乙醇等。
3.准备液体样品:需要用适当的溶剂溶解样品,然后将溶解后的液体样品用滤纸过滤,去除杂质后,备用。
4.加载樣品:将液体样品加入到提前准备的膜上。
5.洗膜:在膜上加入支持介质,移动膜直至支持介质溶解样品,使样品在膜上分离成几个不同的区域。
6.显色:用显色剂溶液浸泡膜,以使样品呈现出特定颜色。
薄层色谱法PPT参考课件

14
16
四、操作方法
①薄层板的制备
市售薄层板(预制板) 临用前一般应在110℃活化30分钟。聚酰胺薄膜不 许活化。预制薄层板分常规薄层板及高效板两种,由于商品供应来源不一, 需注意并记录生产厂家及生产批号,必要时需测定板效,以保证较好的重 现性。在质量保证的前提下,应尽量选用预制薄层极,以提高时效和色谱 的重现性。 自制薄层板 除另有规定外,将1份固定相(如硅胶G)和3份左右的水(或 加有粘合剂的水溶液,如0.2%-0.5%的CMC-Na水溶液,或规定浓度的改 性剂溶液)在研钵中沿同一个方向充分研磨混合,去除表面的气泡后,倒 入涂布器中,在玻板上平稳地移动涂布器,使硅胶浆均匀地涂布,薄层厚 度一般为0.2~0.3mm,涂布好的薄层板于室温下水平台上晾干,再于 110℃加热活化约30分钟,置干燥器中备用。使用前应在反射光和透射光下 检查板面及纹理是否均匀,如不均匀,有气泡或有麻点、有破损或已污染 (如灰尘、纤维)者应弃去不用。
365nm紫外光检视例图
254nm紫外光检视例图 15
⑥薄层色谱扫描仪
系指用一定波长的光对薄层板上有吸收的斑点,或经激发后能发射出荧 光的斑点,进行扫描,将扫描得到的谱图和积分数据用于物质定性或定 量的分析仪器。 薄层扫描仪不仅可以进行原位定量,薄层扫描全图谱对定性鉴别也能提 供有用的信息。
薄层色谱扫描仪
2
薄层色谱法是快速分离和定性分析少量物 质的一种很重要的实验技术,也用于跟踪反 应进程。 薄层色谱不需要特殊设备,操作简单,试 样和展开剂用量少,展开速度快。特别适合 于挥发性较小或较高温易发生变化的物质的 分离。 薄层色谱经常被用于探索柱层色谱分离条 件和监测柱层色谱过程 。 薄层色谱在药品食品检验、化工化学、临 床医学、农药残留检测等领域得到广泛应用。
@薄层色谱法(TLC)讲稿(xin).

温湿度的控制
温湿度对薄层影响都很大。不冻结的前
提下,通常温度越低分离越好,较难的 分离需在低温下分离,例如人参皂苷。 湿度的影响,估计主要是影响薄层板的 吸附能力,导致选择性(容量因子)的 变化,湿度应根据实际情况确定。温度 控制使用空调器或冰柜,湿度控制是通 过在另一展开槽放置相应浓度的硫酸。
薄层板示意图
前沿
原点
I0
I2 I1
比移值 :
组分移动距离
Rf= 溶剂前沿移动距离
相对比移值 :
Rx=
样品Rf值 参照物的Rf值
2.仪器与材料
薄层板 点样器 展开容器 显色设备 色谱检视装置
2.1薄层板
2.1.1薄层板分类
预制薄层板和自制薄层板(制备方法)
普通薄层板和高效薄层板(分离效果)
2.2点样器
毛细管 微量注射器 半自动及全自动点样器
2.3展开容器
专用平底或双槽展开缸、盖能密 闭
特殊水平展开缸
2.4显色设备
喷雾显色:玻璃喷雾瓶或专用喷
雾器,用压缩气体可使试剂呈均 匀细雾状喷出
浸渍显色
蒸气熏蒸显色
2.5色谱检视装置
可见紫外三用仪 装置可见紫外光源及相应滤光片
的暗箱 拍摄图像的设备
③香草醛/硫酸 检出物:高级醇、酚、甾类及精油。 溶液:香草醛1g溶于硫酸lOOml。 方法:基苦基偕肼 ’ 检出物:醇类、萜烯、羰基、酯与醚类。 溶液:本品15mg溶于氯仿25ml中。 方法:喷后于110oC加热5~lOmin。 结果:紫色背景呈黄色斑点。
薄层色谱法(TLC)的规 范化技术要求
1.什么是薄层色谱法?
系将适宜的固定相(吸附剂或载体)涂布于 玻璃板、塑料或铝基上,使成一均匀薄 层,待点样、展开后,与适宜的对照物 按同法在同板上所得的色谱图对比,并 可用薄层扫描仪进行扫描,用以进行药 品的鉴别、杂质检查或含量测定的方法。
薄层色谱扫描法测定板蓝根颗粒中亮氨酸的含量

瑞士卡玛公 司扫描仪 : C A MA G T L C S C A N N E R 3 ; 半 自动
点样器 : C A M A G L I N O MA T 5 ; H H - 4型数显恒温水浴锅 , 国华 电 器有限公司 ; N e w C l a s s i c M S电子天平 ( 0 . 0 l m g ) , 梅特勒公司。 板蓝根颗粒 ( 含糖 型 , 每袋装 1 0 g , 相 当于饮 片 1 4 g , 马鞍
摘要 : 目的 建立板蓝根颗粒 中亮氨酸含量 的测定方法 。方法 采用单 波长薄层 扫描 法 , 硅胶 G高效预制 板 , 正丁醇一 冰 醋酸一 水( 1 9 : 5 : 5 ) 为展开剂 , 测 定波长 5 0 9 n m。结果 亮氨酸点样量在 0 . 1~ 0 . 9 g 之间与吸收度积分值呈 良好 的线性关 系, 平均 回
2 方 法 与 结 果
2 . 1 薄层色谱条件及 扫描 方法 取对 照品溶 液 5 L点 于硅
胶 G高效预制板 上 , 展开剂 为正 丁醇一 冰醋酸一水 ( 1 9 : 5 : 5 ) ; 上行展开 , 展距 9 . 5 c m; 显 色剂 为茚 三酮 试液 。显色条 件 为
ห้องสมุดไป่ตู้
和精氨酸单组份 的含量 J ,没有测定其 有效 成分亮氨 酸的方
n e r o f s i n g l e w a v e l e n g t h w a s s e l e c t e d t o d e t e c t l e u c i n e wi t h s i l i c a g e l a t h i n l a y e r . T h e s a mp l e w a s s e p a r a t e d b y u s i n g b u t a n o l — g l a c i a l a c e t i —
薄层层析TLC通用显色剂

薄层层析通用显色剂1通用试剂(1)重络酸钾-硫酸:检查一般有机物.喷洒剂:5克重络酸钾溶于100毫升40%硫酸中.薄层检查:喷洒后加热到150℃至班点出现(2)荧光素-溴:检查不饱和化合物喷洒剂:0.1克荧光素溶于100毫升乙醇中溴试剂:5%的溴的四氯化碳溶液喷洒后处理:喷洒荧光素溶液后,放置存有溴溶液的缸内,可于紫外线分析灯下检查荧光,荧光素与溴化和成曙红(Eosin)(无萤光),而不饱和化合物则成溴加成物,保留了原有荧光;若点样较多,则呈黄色斑点,底板呈红色.(3)碘:检查一般有机物.方法:a层析谱放密闭缸内或瓷盘内,缸内预先放有碘结晶少许,大部分有机化合物呈棕色斑点。
b层析谱放碘蒸气中5分钟(或喷5%碘的氯仿溶液)取出置空气中待过量的碘蒸气全部挥发后,喷1%淀粉的水溶液,斑点转成蓝色。
(4)硫酸:通用喷洒剂:5%的浓硫酸乙醇溶液,或15%浓硫酸正丁醇溶液,或浓硫酸-醋酸(1:1)喷洒后处理:空气中干燥15分钟,再热至110℃直至出现颜色或荧光。
(5)硝酸银-氢氧化铵(Tollen-Zaffaroni)试剂:检查还原性物质。
溶液I:0.1%N硝酸银;溶液II:5N氢氧化铵喷洒剂:I和II以1:5混合(临用前混合)喷洒后处理:105℃加热5~10分钟,至深黑色斑点出现.(6)磷钼酸或磷钨酸,硅钨酸:检查还原性物质,类脂体,生物碱,甾体喷洒剂:5~10%磷钼酸或磷钨酸或硅钨酸乙醇溶液喷洒后处理:120℃加热至斑点出现.沉淀试剂:1克硅钨酸溶于20毫升水中,加10%盐酸至强碱性.2生物碱(7)硫酸:检查生物碱及含碘化合物喷洒剂:0.1克硫酸?混悬于4毫升水中,加入1克三氯醋酸,加热至沸,逐滴加入浓硫酸至澄清.喷洒后处理:110℃加热数分钟至斑点出现.(8)碘化铋钾(Drage ndorff)试剂:检查生物碱及其他含氟化合物.溶液I:0.85克次硝酸铋溶于10毫升冰醋酸40毫升水中溶剂II:8克碘化钾溶于20毫升水中.制备液I+II,等体积混合.可用于棕色瓶中保存较长时间,一般制备液可作沉淀试剂用.喷洒液:制备液1毫升与2毫升醋酸,10毫升水混合即得(9).碘化汞钾(Mayer)试剂:检查生物碱.制备液:13.55克氯化汞和49.8克碘化钾各溶于20毫升水中,等体积混合并用水稀释至1000毫升.喷洒液:制备液加1/10体积的17%盐酸.喷洒后处理:观察斑点,并于紫外线荧光分析灯下检出.(10)?酸纳-浓硫酸(Mandelin)试剂:检查生物碱.1%>酸纳的浓硫酸溶液.与多种生物碱呈不同颜色.(11)碘-碘化钾(Wagner)试剂:检查生物碱.1克碘及10克碘化钾,溶于50毫升水中,加热,加2毫升醋酸,再用水稀释至100毫升.可作纸层板显色剂,液可作沉淀试剂.3酚类,鞣质(12)三氯化铁:检查酚类及??酸.喷洒剂:1~5%三氯化铁的水溶液或乙醇溶液.并加盐酸少许.??酸呈红色斑点,酚类称蓝色或绿色斑点.(13)铁氰化钾-三氯化钾:检查酚类,芳香胺类及还原性物质.喷洒剂:1%铁氰化钾水溶液,2%三氯化铁水溶液.临用前等体积混合.喷洒后处理:喷洒后酚性物质呈蓝色斑点.再喷2N盐酸,能使颜色加深,纸谱可用稀盐酸洗去喷洒液.(14)4-胺基安替比林-铁氰化钾(Emerson反应):检查酚类.喷洒剂:I.2%4-氨基安替比林乙醇溶液;II.8%铁氰化钾水溶液.或用0.9%4-氨基安替比林和5.4%铁氰化钾水溶液方法:先喷洒I,再喷洒II,即显色,或再放入密闭缸中,缸内放25%氢氧化铵,即产生橙色至深红色.(15)对氨基苯磺酸,重氮盐(Pauly试剂):检查酚类,芳香胺类及能偶合的杂环化合物.喷洒剂:4.5克对氨基苯磺酸,加热溶于45毫升12N盐酸中,用水稀释至500毫升,取10毫升稀释液用冰冷却,加10毫升冷4.5%亚硝酸钠水溶液,0℃放15分钟(此试剂于0℃可保存3天),用前加等体积1%碳酸钠水溶液.一般重氮化试剂,也可用联苯胺,对硝基苯胺等.(16)对甲苯磺酸:检查甾体,黄酮,鞣质.喷洒剂:20%对甲苯磺酸氯仿溶液.喷洒后处理:100℃加热数分钟,紫外线分析灯下检查荧光斑点.4含氧杂环及蒽醌类*(17)三氯化铝:检查黄酮体.喷洒1%三氯化铝乙醇液于紫外线荧光分析灯下检示,呈黄色荧光(18)碱式醋酸铅:检查黄酮体.喷洒剂:饱和碱式醋酸铅(或饱和醋酸铅)水溶液.于紫外线荧光分析灯下检查荧光斑点.(19)醋酸镁:检查蒽醌甙,甙元及黄酮体喷洒剂:0.5%醋酸镁甲醇溶液方法:90℃加热5分钟,呈红色至紫色斑点.(20)氢氧化钾:检查香豆素,蒽醌甙及甙元喷洒剂:5~10%氢氧化钾的甲醇溶液.于日光及紫外线荧光分析灯下检示斑点.5萜类,甾体(21)三氯化锑(Carr-Price试剂):检查甾体,萜类,皂类.喷洒剂:25克三氯化锑溶于75克氯仿中(亦可以用氯仿或四氯化碳的饱和溶液).喷洒后处理:100℃加热5分钟,于紫外线荧光分析灯下检示荧光.(22)五氯化锑:检查甾体,萜类,皂甙.喷洒剂:五氯化锑-氯仿或四氯化碳(1:4),用前新鲜配制.喷洒后处理:120℃加热至斑点出现,并于紫外线荧光分析灯下检示.(23)香兰醛-硫酸:检查高级醇类,酚类,甾体,萜类,芳香油.喷洒剂:1克香兰素溶于100毫升浓硫酸,或0.5克香兰醛溶于100毫升硫酸-乙醇(4:1)中.喷洒后处理:室温或120℃加热观察显色斑点.(24)4-二甲氨基苯甲醛,醋酸,磷酸(E.P.试剂):检查?Azulene及?前体Proazulene.喷洒剂:0.25克4-二甲氨基苯甲醛,溶于50毫升醋酸5克85%磷酸和20毫升水的混合液中(棕色瓶中保存数月):烃室温即成蓝紫色斑点,>前体于80℃加热10分钟出现蓝紫色斑点.(25)氯胺T-三氯醋酸:检查强心甙.喷洒剂:I.3%氯仿T水溶液新鲜制备.II.25%三氯醋酸乙醇溶液(能保存数天).10毫升I加40毫升II,用前混合.喷洒后处理:110℃加热7分钟,紫外线荧光分析灯下检示呈蓝色或黄色荧光. (26)亚硝酸基铁氰化钠-氢氧化钠(Legal试剂):检查不饱和内酯;甲基酮或活性次甲基,常用于强心甙喷洒剂:1克亚硝基铁氰化钠溶于100毫升2N氢氧化钠-乙醇(1:1)的水溶液.显红色或紫色斑点.(27)3,5-二硝基苯甲酸(Legal试剂):检查强心甙,α,β-不饱和内酯.喷洒剂:1克3,5-二硝基苯甲酸溶于50毫升甲醇,加入1N氢氧化钾50毫升.强心甙呈紫红色斑点.6糖类(28)邻苯二甲基苯胺:检查还原糖.喷洒剂:0.93克苯氨,1.66克邻苯二甲酸溶于100毫升水饱和的正丁醇中.喷洒后处理:105℃加热10分钟.(29)2,3,5-Triphenyl-tetrazo lium chloride(T.T.C.):检查还原糖及其他还原物质。
薄层色谱法

特点
快,需十至几十分钟,同时展开多个 试样。
试样预处理简单,对试样限制少。 仪器简单,操作方便。 分离能力较强。 灵敏度较高。
发展简史
1938年N.A.Izmailor和M.S.Schraiber首 次在显微镜载玻片上涂布的氧化铝薄层 用微量圆环技术分离了多种植物酊剂中 的成分。
50年代J.G.Kirchner及ler以硅胶 为吸附剂,煅石膏为粘合剂涂布于玻璃 载板上制成硅胶薄层,成功地分离了挥 发油 。
Ri,s值
Ri,s= b/a
前沿
与组分、色谱条件、参考物质有
关。
参比物i
Ri,s值可以大于1,也可以小于1。 被测物s
a
重现性和可比性均比Rf值好,能
b
消除系统误差(参考物质与组分 原点 ×
在完全相同的条件下展开)
(b)
分配系数
K= Cs /Cm
在分离达到平衡时,组分在固定相的浓度Cs和 流动相的浓度Cm之比。
3.薄层色谱法的误差来源有哪些?
1、 已知A,B两物质在某薄层色谱系统中的 分配系数分别为100和120,哪一个的Rf值小 些?
答:因为在薄层色谱中,组分的分配系数与 比移值成反比关系,所以,分配系数为120的 组分Rf值小些。
2、 在薄层色谱中,以硅胶为固定相,氯仿为流 动相时,试样中某组分Rf值太大,若改用氯仿-甲 醇(2∶1)时,则试样中该组分的Rf值会变得更 大,还是变小?为什么?
– 点样量应适中,过载会引起斑点拖尾,分离 度变差,以最小检测量的几倍~几十倍为宜。
– 手工点样工具:定容玻璃毛细管(1 –5ul), 微量注射器。
展开
展开方式:上行展开
展开过程:
展开缸预先用展开剂饱和,平衡系统, 薄层板浸入展开剂展开(距边缘0.51cm),挥干展开剂
薄层层析法在医药中的应用

薄层层析法在医药中的应用薄层层析法(Thin Layer Chromatography,TLC)是一种常用的分离和鉴定化合物的方法,在医药中有着广泛的应用。
本文将介绍薄层层析法在医药中的基本原理、技术流程和应用。
一、基本原理薄层层析法是基于物质在固定相和移动相中的差异分离的。
它利用薄层吸附剂上的固体相分离混合物中的各个成分,并利用不同成分在移动相中的迁移率落在薄层上不同位置的原理,定性和定量地分离和鉴定混合物中的各种成分。
通常将分离出的化合物与标准样品相比较,以确定它们的身份。
二、技术流程准备工作:选择合适的薄层(通常是硅胶或氧化铝)、选定溶剂和运移剂;将薄层涂在玻璃板或铝箔支撑上;在远离光线的地方进行实验,使运移剂和实验样品在溶剂中均匀悬浮。
步骤1:将样品溶解在适当的溶剂中,并在薄层板上涂抹均匀的样品。
通常使用微量滴管或吸管沿着薄层板上下移动,将涂层均匀地涂抹到薄层吸附剂表面上。
步骤2:将带有样品的薄层板放入容器中,向容器中添加适量的运移剂,不要让运移剂淹没薄层板。
步骤3:当运移剂到达薄层板的顶部或需要分离的物质迁移到目标位置时,用UV灯源或染色剂将分离的化合物可视化。
步骤4:通过与标准样品的比较来鉴定和定量分离出的化合物。
三、医药中的应用1、药物分析薄层层析法是一种常用的药物分析方法,可用于分离、检测和定量分析中药材中的有效成分。
该方法不需要昂贵的仪器设备和熟练的技能,因此受到药学研究人员的广泛关注。
TLC可以用于鉴定银杏叶中主要活性成分酰基左旋甘氨酸的含量。
2、药物质量控制薄层层析法也可用于天然药物中的有效成分的分离和纯化。
该方法可以识别分离出的化合物,并确定其结构和含量。
利用TLC,可以分离和纯化黄芪药材中的黄酮类化合物。
薄层层析法可以用于毒物检测和识别。
该方法可以分离毒物和其代谢产物,并将其与标准毒物库中的物质进行比较。
TLC可以用于检测尿液中的吗啡、可卡因和芬太尼等毒物。
薄层层析法具有简便,快速,准确,无需昂贵的仪器和熟练的技能等优点,在医药中有着广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Stains for Developing TLC PlatesOnce a TLC has been developed, it is frequently necessary to aid in the visualization of the components of a reaction mixture. This is true primarily because most organic compounds are colorless. Frequently, the organic compounds of interest contain a chromophore which may be visualized by employing either a short or a long wave UV lamp. These lamps may be found as part of a standard organic chemistry research or teaching lab. Typical examples of functional groups which may be visualized through this method are aromatic groups, α,β-unsaturated carbonyls, and any other compounds containing extensively π-conjugated systems. While exposing these TLC plates to UV light, you will notice that the silica gel will fluoresce, while any organic molecule which absorbs UV light will appear as a dark blue spot. Circling these spots gently with a dull pencil will permit an initial method for visualization. Fortunately, there are a number of permanent or semi-permanent methods for visualization which will not only allow one to see these compounds but also provide a method for determining what functional groups are contained within the molecule. This method is referred to as staining the TLC plate, and experience will allow you to determine what functional groups will appear as what color upon visualization. Following is a listing of the most commonly employed stains, the kind of compounds for which they're usually employed, and a typical recipe.A Note on TLC PlatesAlthough it should be obvious, be sure that the kind of TLC plate you are using is compatible with the stain or the conditions for its development. For instance, the inexpensive plates using a plastic polymer backing cannot be used for stains requiring heat for development. Glass backing is fine for this, but the silica gel is typically not tightly bonded to the glass, and tends to be inadvertantly scraped off very easily; thus, these are not suitable for storage following development. In our group, we use aluminum-backed plates, which are less expensive than glass, are heat-impervious, the silica gel is very tightly bound to the backing, and are so thin that, if desired, a particularly spectacular plate can be taped into your lab notebook.The Stain ListIodineThe staining of a TLC plate with iodine vapor is among the oldest methods for the visualization of organic compounds. It is based upon the observation that iodine has a high affinity for both unsaturated and aromatic compounds.RecipeA chamber may be assembled as follows: To 100 mL wide mouth jar (with cap) is added a piece of filter paper and few crystals of iodine. Iodine has a high vapor pressure for a solid and the chamber will rapidly become saturated with iodine vapor. Insert your TLC plate and allow it to remain within the chamber until it develops alight brown color over the entire plate. Commonly, if your compound has an affinity for iodine, it will appear as a dark brown spot on a lighter brown background. Carefully remove the TLC plate at this point and gently circle the spots with a dull pencil. The iodine will not remain on the TLC plate for long periods of time so circling these spots is necessary if one wishes to refer to these TLC's at a later date.Ultraviolet LightGood for visualizing any compounds which are UV-active, particularly those with extended conjugation, aromatic rings, etc. Spot(s) must be lightly traced with a pencil while visible, since when the UV light is removed, the spots disappear.Ceric Ammonium SulfateSpecifically developed for vinca alkaloids (aspidospermas).RecipePrepare a 1% solution of of cerium (IV) ammonium sulfate in 50% phosphoric acid.Cerium SulfateGeneral stain, particularly effective for alkaloids.RecipePrepare an aqueous solution of 10% cerium (IV) sulfate and 15% sulfuric acid.Ferric ChlorideExcellent for phenols.RecipePrepare a solution of 1% ferric (III) chloride in 50% aqueous methanol.Morin HydrateGeneral stain (morin is a hydroxy flavone), is fluorescently active.RecipePrepare a 0.1% solution of morin hydrate (by weight) in methanol.NinhydrinExcellent for amino acidsRecipeDissolve 1.5g ninhydrin in 100mL of n-butanol and then add 3.0mL acetic acid.Dinitrophenylhydrazine (DNP)Developed mainly for aldehydes and ketones; forms the corresponding hydrazones, which are usually yellow to orange and thus easily visualized.RecipeDissolve 12g of 2,4-dinitrophenylhydrazine, 60mL of conc. sulfuric acid, and 80mL of water in 200mL of 95% ethanol.VanillinVery good general stain, giving a range of colors for different spots.RecipePrepare a solution of 15g vanillin in 250mL ethanol and 2.5mL conc. sulfuric acid.Potassium PermanganateThis particular stain is excellent for functional groups which are sensitive to oxidation. Alkenes and alkynes will appear readily on a TLC plate following immersion into the stain and will appear as a bright yellow spot on a bright purple background. Alcohols, amines, sulfides, mercaptans and other oxidizable functional groups may also be visualized, however it will be necessary to gently heat the TLC plate following immersion into the stain. These spots will appear as either yellow or light brown on a light purple or pink background. Again it would be advantageous to circle such spots following visualization as eventually the TLC will take on a light brown color upon standing for prolonged periods of time.RecipeDissolve 1.5g of KMnO4, 10g K2CO3, and 1.25mL 10% NaOH in 200mL water. A typical lifetime for this stain is approximately 3 months.Bromocresol Green StainThis particular stain is excellent for functional groups whose pKa is approximately 5.0 and lower. Thus, this stain provides an excellent means of selectively visualizing carboxylic acids. These will appear as bright yellow spots on either a dark or light blue background and typically, it is not necessary to heat the TLC plate following immersion. This TLC visualization method has a fairly long lifetime (usually weeks) thus, it is not often necessary to circle such spots following activation by staining.RecipeTo 100 ml of absolute ethanol is added 0.04 g of bromocresol green. Then a 0.1 M solution of aqueous NaOH is added dropwise until a blue color just appears in solution (the solution should be colorless prior to addition). Ideally, these stains may be stored in 100 mL wide mouth jars. The lifetime of such a solution typically depends upon solvent evaporation. Thus, it would be advantageous to tightly seal such jars in-between uses.Cerium Molybdate Stain (Hanessian's Stain)This stain is a highly sensitive, multipurpose (multifunctional group stain). One word of caution, very minor constituents may appear as significant impurities by employing this stain. To ensure accurate results when employing this stain, it is necessary to heat the treated TLC plate vigorously (a heat gun works well). Thus, this may not be a stain to employ if your sample is somewhat volatile. The TLC plate itself will appear as either light blue or light green upon treatment, while the color of the spots may vary (although they usually appear as a dark blue spot). Typically, functional groups will not be distinguishable based upon the color of their spots; however, it would be worth while to make a list of potential colors of various functional groups as you experience variations in colors. This may permit future correlations which may prove beneficial when performing similar chemistry on related substrates.RecipeTo 235 mL of distilled water was added 12 g of ammonium molybdate, 0.5 g of ceric ammonium molybdate, and 15 mL of concentrated sulfuric acid. Storage is possible in a 250 mL wide mouth jar. This stain has a long shelf-life so long as solvent evaporation is limited. It may also prove worth while to surround the jar with aluminum foil as the stain may be somewhat photo-sensitive and exposure to direct light may shorten the shelf-life of this reagent. It is worth while to also mention that it would be beneficial to circle the observed spots with a dull pencil following heating as this stain will eventually fade on the TLC plate after a few days.p-Anisaldehyde Stain #1This stain is an excellent multipurpose visualization method for examining TLC plates. It is sensitive to most functional groups, especially those which are strongly and weakly nucleophilic. It tends to be insensitive to alkenes, alkynes, and aromatic compounds unless other functional groups are present in the molecules which are being analyzed. It tends to stain the TLC plate itself, upon mild heating, to a light pink color, while other functional groups tend to vary with respect to coloration. It is recommended that a record is kept of which functional group stains which color for future reference, although these types of comparisons may be misleading when attempting to ascertain which functional groups are present in a molecule (especially in complex molecules). The shelf-life of this stain tends to be quite long except when exposed to direct light or solvent is allowed to evaporate. It is recommended that the stain be stored in a 100 mL wide mouth jar wrapped with aluminum foil to ensure a long life time.RecipeTo 135 mL of absolute ethanol was added 5 mL of concentrated sulfuric acid, 1.5 mL of glacial acetic acid and 3.7 mL of p-anisaldehyde. The solution is then stirred vigorously to ensure homogeneity. The resulting staining solution is ideally stored in a 100 mL wide mouth jar covered with aluminum foil.p-Anisaldehyde Stain #2A more specialized stain than #1 (above), used for terpenes, cineoles, withanolides, acronycine, etc. As above, heating with a heat gun must be employed to effect visualization.RecipePrepare solution as follows: anisaldehyde:HClO4:acetone:water (1:10:20:80)Phosphomolybdic Acid (PMA) StainPhosphomolybdic acid stain is a good "universal" stain which is fairly sensitive to low concentrated solutions. It will stain most functional groups, however it does not distinguish between different functional groups based upon the coloration of the spots on the TLC plate. Most often, TLC's treated with this stain will appear as a light green color, while compounds of interest will appear as much darker green spots. It is necessary to heat TLC plates treated with this solution in order to activate the stain for visualization. The shelf life of these solutions are typically quite long, provided solvent evaporation is kept to a minimum.RecipeDissolve 10 g of phosphomolybdic acid in 100 mL of absolute ethanol.Occasionally, if you find it necessary to develop or investigate other staining techniques, the following references may be helpful:•Handbook of Thin-Layer Chromatography J. Sherman and B. Fried, Eds., Marcel Dekker, New York, NY, 1991.•Thin-Layer Chromatography 2nd ed. E. Stahl, Springer-Verlag, New York, NY, 1969.•T hin-Layer Chromatography Reagents and Detection Methods, Vol. 1a: Physical and Chemical Detection Methods: Fundamentals, Reagents I H. H. Jork, W. Funk, W. Fischer, and H. Wimmer, VHC, Weinheim, Germany, 1990.•Thin-Layer Chromatography: Techniques of Chemistry, Vol. XIV, 2nd ed. J. G. Kirchner and E. S. Perry, Eds., John Wiley and Sons, 1978.。