厦门中考数学试卷及答案
2022年初中数学中考厦门试题解析

福建省厦门市2022年中考数学试卷一、选择题〔本大题共7小题,每题3分,共21分。
每题都有四个选项,其中有且只有一个选项正确〕1.〔3分〕〔2022•厦门〕以下计算正确的选项是〔〕A.﹣1+2=1 B.﹣1﹣1=0 C.〔﹣1〕2=﹣1 D.﹣12=1考点:有理数的乘方;有理数的加法;有理数的减法.分析:根据有理数的加减法运算法那么,有理数的乘方对各选项分析判断后利用排除法求解.解答:解:A、﹣1+2=1,故本选项正确;B、﹣1﹣1=﹣2,故本选项错误;C、〔﹣1〕2=1,故本选项错误;D、﹣12=﹣1,故本选项错误.应选A.点评:此题考查了有理数的乘方,有理数的加减运算,要特别注意﹣12和〔﹣1〕2的区别.2.〔3分〕〔2022•厦门〕∠A=60°,那么∠A的补角是〔〕A.160°B.120°C.60°D.30°考点:余角和补角.分析:根据互为补角的两个角的和等于180°列式进行计算即可得解.解答:解:∵∠A=60°,∴∠A的补角=180°﹣60°=120°.应选B.点评:此题考查了余角和补角,熟记互为补角的两个角的和等于180°是解题的关键.3.〔3分〕〔2022•厦门〕如图是以下一个立体图形的三视图,那么这个立体图形是〔〕A.圆锥B.球C.圆柱D.正方体考点:由三视图判断几何体.分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答:解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱.应选C.点评:此题由物体的三种视图推出原来几何体的形状,考查了学生的思考能力和对几何体三种视图的空间想象能力和综合能力.4.〔3分〕〔2022•厦门〕掷一个质地均匀的正方体骰子,当骰子停止后,朝上一面的点数为5的概率是〔〕A.1B.C.D.0考点:概率公式.分析:根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.解答:解:∵任意抛掷一个均匀的正方体骰子,朝上的点数总共会出现6种情况,且每一种情况出现的可能性相等,而朝上一面的点数为5的只有一种,∴朝上一面的点数为5的概率是.应选C.点评:此题考查概率公式,用到的知识点为:概率=所求情况数与总情况数之比.5.〔3分〕〔2022•厦门〕如下列图,在⊙O中,,∠A=30°,那么∠B=〔〕A.150°B.75°C.60°D.15°考点:圆心角、弧、弦的关系.分析:先根据等弧所对的弦相等求得AB=AC,从而判定△ABC是等腰三角形;然后根据等腰三角形的两个底角相等得出∠B=∠C;最后由三角形的内角和定理求角B的度数即可.解答:解:∵在⊙O中,,∴AB=AC,∴△ABC是等腰三角形,∴∠B=∠C;又∠A=30°,∴∠B==75°〔三角形内角和定理〕.应选B.点评:此题综合考查了圆心角、弧、弦的关系,以及等腰三角形的性质.解题的关键是根据等弧对等弦推知△ABC是等腰三角形.6.〔3分〕〔2022•厦门〕方程的解是〔〕A.3B.2C.1D.0考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:2x=3x﹣3,解得:x=3,经检验x=3是分式方程的解.应选A点评:此题考查了解分式方程,解分式方程的根本思想是“转化思想〞,把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.〔3分〕〔2022•厦门〕在平面直角坐标系中,将线段OA 向左平移2个单位,平移后,点O 、A 的对应点分别为点O 1、A 1.假设点O 〔0,0〕,A 〔1,4〕,那么点O 1、A 1的坐标分别是〔 〕A . 〔0,0〕,〔1,4〕B . 〔0,0〕,〔3,4〕C . 〔﹣2,0〕,〔1,4〕D . 〔﹣2,0〕,〔﹣1,4〕考点:坐标与图形变化-平移.分析:根据向左平移,横坐标减,纵坐标不变求出点O 1、A 1的坐标即可得解.解答: 解:∵线段OA 向左平移2个单位,点O 〔0,0〕,A 〔1,4〕,∴点O 1、A 1的坐标分别是〔﹣2,0〕,〔﹣1,4〕.应选D .点评: 此题考查了坐标与图形变化﹣平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.二、填空题〔本大题共10小题,每题4分,共40分〕8.〔4分〕〔2022•厦门〕﹣6的相反数是 6 .考点:相反数. 分析:求一个数的相反数,即在这个数的前面加负号.解答: 解:根据相反数的概念,得﹣6的相反数是﹣〔﹣6〕=6.点评: 此题考查了相反数的定义,互为相反数的两个数分别在原点两旁且到原点的距离相等.9.〔4分〕〔2022•厦门〕计算:m 2•m 3= m 5.考点:同底数幂的乘法.分析:根据同底数幂相乘,底数不变指数相加进行计算即可得解.解答: 解:m 2•m 3=m 2+3=m 5.故答案为:m 5.点评:此题考查了同底数幂相乘,底数不变指数相加的性质,熟记性质是解题的关键. 10.〔4分〕〔2022•厦门〕假设在实数范围内有意义,那么x 的取值范围是 x ≥3 . 考点:二次根式有意义的条件. 分析:根据被开方数大于等于0列式进行计算即可求解. 解答:解:根据题意得x ﹣3≥0, 解得x ≥3. 故答案为:x ≥3. 点评: 此题考查了二次根式有意义的条件,知识点为:二次根式的被开方数是非负数.11.〔4分〕〔2022•厦门〕如图,在△ABC中,DE∥BC,AD=1,AB=3,DE=2,那么BC= 6.考点:相似三角形的判定与性质.分析:根据DE∥BC,可判断△ADE∽△ABC,利用对应边成比例的知识可求出BC.解答:解:∵DE∥BC,∴△ADE∽△ABC,∴=,即=解得:BC=6.故答案为:6.点评:此题考查了相似三角形的判定与性质,解答此题的关键是掌握:相似三角形的对应边成比例.12.〔4分〕〔2022•厦门〕在一次中学生田径运动会上,参加男子跳高的15名运发动成绩如下表成绩〔米〕 1.50 1.60 1.65 1.70 1.75 1.80人数〔个〕 2 3 3 2 4 1那么这些运发动成绩的中位数是 1.65米.考点:中位数.专题:计算题.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.解答:解:按从小到大的顺序排列后,最中间的数是1.65,所以中位数是1.65〔米〕.故答案为1.65.点评:考查中位数的意义,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,那么正中间的数字即为所求;如果是偶数个,那么找中间两位数的平均数.13.〔4分〕〔2022•厦门〕x2﹣4x+4=〔x﹣2〕2.考点:因式分解-运用公式法.分析:利用完全平方公式分解因式即可.解答:解:x2﹣4x+4=〔x﹣2〕2.故答案为:x﹣2.点评:此题考查了公式法分解因式,熟记完全平方公式结构是解题的关键.14.〔4分〕〔2022•厦门〕反比例函数的图象的一支位于第一象限,那么常数m的取值范围是m>1.考点:反比例函数的性质.分析:根据反比例函数的图象关于原点对称可得到图象的另一分支所在的象限及m的取值范围.解答:解:∵反比例函数的图象关于原点对称,图象一支位于第一象限,∴图象的另一分支位于第三象限;∴m﹣1>0,∴m>1;故答案为:m>1.点评:此题考查的是反比例函数的图象和反比例函数的性质,即①反比例函数y=〔k≠0〕的图象是双曲线;②当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小.15.〔4分〕〔2022•厦门〕如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,假设AC+BD=24厘米,△OAB的周长是18厘米,那么EF=3厘米.考点:三角形中位线定理;平行四边形的性质.分析:根据AC+BD=24厘米,可得出出OA+OB=12cm,继而求出AB,判断EF是△OAB 的中位线即可得出EF的长度.解答:解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AC+BD=24厘米,∴OA+OB=12cm,∵△OAB的周长是18厘米,∴AB=6cm,∵点E,F分别是线段AO,BO的中点,∴EF是△OAB的中位线,∴EF=AB=3cm.故答案为:3.点评:此题考查了三角形的中位线定理,解答此题需要用到:平行四边形的对角线互相平分,三角形中位线的判定定理及性质.16.〔4分〕〔2022•厦门〕某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400米以外的平安区域.甲工人在转移过程中,前40米只能步行,之后骑自行车.导火线燃烧的速度为0.01米/秒,步行的速度为1米/秒,骑车的速度为4米/秒.为了确保甲工人的平安,那么导火线的长要大于 1.3米.考点:一元一次不等式的应用分析:计算出工人转移需要的最短时间,然后即可确定导火线的最短长度.解答:解:设导火线的长度为x,工人转移需要的时间为:+=130秒,由题意得,x≥130×0.01m/s=1.3m.故答案为:1.3.点评:此题考查了一元一次不等式的应用,解答此题关键是确定工人转移需要的时间.17.〔4分〕〔2022•厦门〕如图,在平面直角坐标系中,点O是原点,点B〔0,〕,点A 在第一象限且AB⊥BO,点E是线段AO的中点,点M在线段AB上.假设点B和点E关于直线OM对称,那么点M的坐标是〔1,〕.考点:轴对称的性质;坐标与图形性质;解直角三角形分析:根据点B的坐标求出OB的长,再连接ME,根据轴对称的性质可得OB=OE,再求出AO的长度,然后利用勾股定理列式求出AB的长,利用∠A的余弦值列式求出AM 的长度,再求出BM的长,然后写出点M的坐标即可.解答:解:∵点B〔0,〕,∴OB=,连接ME,∵点B和点E关于直线OM对称,∴OB=OE=,∵点E是线段AO的中点,∴AO=2OE=2,根据勾股定理,AB===3,tan∠A==,即=,解得AM=2,∴BM=AB﹣AM=3﹣2=1,∴点M的坐标是〔1,〕.故答案为:〔1,〕.点评:此题考查了轴对称的性质,坐标与图形性质,解直角三角形,熟练掌握轴对称的性质并作出辅助线构造出直角三角形是解题的关键.三、解答题〔本大题共9小题,共89分〕18.〔21分〕〔2022•厦门〕〔1〕计算:5a+2b+〔3a﹣2b〕;〔2〕在平面直角坐标系中,点A〔﹣4,1〕,B〔﹣2,0〕,C〔﹣3,﹣1〕.请在图1上画出△ABC,并画出与△ABC关于原点O对称的图形;〔3〕如图2所示,∠ACD=70°,∠ACB=60°,∠ABC=50°.求证:AB∥CD.考点:作图-旋转变换;整式的加减;平行线的判定分析:〔1〕根据整式的加减法那么直接去括号合并同类项即可得出;〔2〕根据点的坐标得出△ABC,再利用关于原点对称点坐标性质得出与△ABC关于原点O对称的图形即可;〔3〕利用三角形内角和定理得出∠A=70°,再利用平行线的判定得出AB∥CD.解答:〔1〕解:5a+2b+〔3a﹣2b〕=5a+3a+2b﹣2b=8a.〔2〕解:如下列图:△A′B′C′与△ABC关于原点O对称;〔3〕证明:∵∠ACB=60°,∠ABC=50°,∴∠A=180°﹣60°﹣50°=70°,∵∠ACD=70°,∴AB∥CD.点评:此题主要考查了整式的加减以及平行线的判定和关于原点对称点的图形画法等知识,根据得出对应点位置是解题关键.19.〔21分〕〔2022•厦门〕〔1〕甲市共有三个郊县,各郊县的人数及人均耕地面积如表所示:郊县人数/万人均耕地面积/公顷A 20 0.15B 5 0.20C 10 0.18求甲市郊县所有人口的人均耕地面积〔精确到0.01公顷〕;〔2〕先化简下式,再求值:,其中,;〔3〕如图,A,B,C,D是⊙O上的四点,延长DC,AB相交于点E,假设BC=BE.求证:△ADE是等腰三角形.考点:圆周角定理;分式的化简求值;等腰三角形的判定;加权平均数.分析:〔1〕求出总面积和总人口,再相除即可;〔2〕先算加法,再化成最简分式,再代入求出即可;〔3〕求出∠A=∠BCE=∠E,即可得出AD=DE.解答:解:〔1〕甲市郊县所有人口的人均耕地面积是≈0.17〔公顷〕;〔2〕原式===x﹣y,当x=+1,y=2﹣2时,原式=+1﹣〔2﹣2〕=3﹣;〔3〕∵A、D、C、B四点共圆,∴∠A=∠BCE,∵BC=BE,∴∠BCE=∠E,∴∠A=∠E,∴AD=DE,即△ADE是等腰三角形.点评:此题考查了分式求值,四点共圆,等腰三角形的性质和判定,求平均数等知识点的应用,主要考查学生的推理和计算能力.20.〔6分〕〔2022•厦门〕有一个质地均匀的正12面体,12个面上分别写有1~12这12个整数〔每个面只有一个整数且互不相同〕.投掷这个正12面体一次,记事件A为“向上一面的数字是2或3的整数倍〞,记事件B为“向上一面的数字是3的整数倍〞,请你判断等式P〔A〕=+P〔B〕是否成立,并说明理由.考点:概率公式.分析:让向上一面的数字是2的倍数或3的倍数的情况数除以总情况数即为事件A所求的概率,进而得出事件B的概率,进而得出答案.解答:解:不成立;理由:∵投掷这个正12面体一次,记事件A为“向上一面的数字是2或3的整数倍〞,∴符合要求的数有:2,3,4,6,8,9,10,12一共有8个,那么P〔A〕=,∵事件B为“向上一面的数字是3的整数倍〞,∴符合要求的数有:3,6,9,12一共有4个,那么P〔B〕=,∵+=≠,∴P〔A〕≠+P〔B〕.点评:此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P〔A〕=.21.〔6分〕〔2022•厦门〕如图,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点E.假设AE=4,CE=8,DE=3,梯形ABCD的高是,面积是54.求证:AC⊥BD.考点:相似三角形的判定与性质;勾股定理的逆定理;梯形.专题:证明题.分析:由AD∥BC,可证明△EAD∽△ECB,利用相似三角形的性质即可求出BE的长,过D作DF∥AC交BC延长线于F,那么四边形ACFD是平行四边形,所以CF=AD,再根据勾股定理的逆定理证明BD⊥DF即可证明AC⊥BD.解答:证明:∵AD∥BC,∴△EAD∽△ECB,∴AE:CE=DE:BE,∵AE=4,CE=8,DE=3,∴BE=6,S梯形=〔AD+BC〕×=54,∴AD+BC=15,过D作DF∥AC交BC延长线于F,那么四边形ACFD是平行四边形,∴CF=AD,∴BF=AD+BC=15,在△BDF中,BD2+DF2=92+122=225,BF2=225,∴BD2+DF2=BF2,∴BD⊥DF,∵AC∥DF,∴AC⊥BD.点此题考查了相似三角形的判定和性质、平行四边形的判定和性质、梯形的面积公式以评:及勾股定理的逆定理的运用,题目的综合性很强,难度中等.22.〔6分〕〔2022•厦门〕一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是常数.容器内的水量y〔单位:升〕与时间x〔单位:分〕之间的关系如下列图.当容器内的水量大于5升时,求时间x的取值范围.考点:一次函数的应用分析:分别求出0≤x<3和3≤x≤12时的函数解析式,再求出y=5时的x的值,然后根据函数图象写出x的取值范围即可.解答:解:①0≤x<3时,设y=mx,那么3m=15,解得m=5,所以,y=5x,②3≤x≤12时,设y=kx+b,∵函数图象经过点〔3,15〕,〔12,0〕,∴,解得,所以,y=﹣x+20,当y=5时,由5x=5得,x=1,由﹣x+20=5得,x=9,所以,当容器内的水量大于5升时,时间x的取值范围是1<x<9.点评:此题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,以及函数值求自变量的方法.23.〔6分〕〔2022•厦门〕如下列图,在正方形ABCD中,点G是边BC上任意一点,DE⊥AG,垂足为E,延长DE交AB于点F.在线段AG上取点H,使得AG=DE+HG,连接BH.求证:∠ABH=∠CDE.考点:正方形的性质;全等三角形的判定与性质.专题:证明题.分析:根据正方形的性质可得AB=AD,∠ABG=∠DAF=90°,再根据同角的余角相等求出∠1=∠2,然后利用“角边角〞证明△ABG和△DAF全等,根据全等三角形对应边相等可AF=BG,AG=DF,全等三角形对应角相等可得∠AFD=∠BGA,然后求出EF=HG,再利用“边角边〞证明△AEF和△BHG全等,根据全等三角形对应角相等可得∠1=∠3,从而得到∠2=∠3,最后根据等角的余角相等证明即可.解答:证明:在正方形ABCD中,AB=AD,∠ABG=∠DAF=90°,∵DE⊥AG,∴∠2+∠EAD=90°,又∵∠1+∠EAD=90°,∴∠1=∠2,在△ABG和△DAF中,,∴△ABG≌△DAF〔ASA〕,∴AF=BG,AG=DF,∠AFD=∠BGA,∵AG=DE+HG,AG=DE+EF,∴EF=HG,在△AEF和△BHG中,,∴△AEF≌△BHG〔SAS〕,∴∠1=∠3,∴∠2=∠3,∵∠2+∠CDE=∠ADC=90°,∠3+∠ABH=∠ABC=90°,∴∠ABH=∠CDE.点评:此题考查了正方形的性质,全等三角形的判定与性质,等角或同角的余角相等的性质,此题难点在于两次证明三角形全等,用阿拉伯数字加弧线表示角可以更形象直观.24.〔6分〕〔2022•厦门〕点O是平面直角坐标系的原点,直线y=﹣x+m+n与双曲线交于两个不同的点A〔m,n〕〔m≥2〕和B〔p,q〕.直线y=﹣x+m+n与y轴交于点C,求△OBC 的面积S的取值范围.考点:反比例函数与一次函数的交点问题.分析:先确定直线y=﹣x+m+n与坐标轴的交点坐标,即C点坐标为〔0,m+n〕,D点坐标为〔m+n,0〕,那么△OCD为等腰直角三角形,根据反比例函数的对称性得到点A与点B关于直线y=x对称,那么B点坐标为〔n,m〕,根据三角形面积公式得到S△OBC=〔m+n〕•n,然后mn=1,m≥2确定S的范围.解答:解:如图,C点坐标为〔0,m+n〕,D点坐标为〔m+n,0〕,那么△OCD为等腰直角三角形,∴点A与点B关于直线y=x对称,那么B点坐标为〔n,m〕,∴S=S△OBC=〔m+n〕•n=mn+n2,∵点A〔m,n〕在双曲线上,∴mn=1,即n=∴S=+〔〕2∵m≥2,∴0<≤,∴0<〔〕2≤,∴<S≤.点评:此题考查了反比例函数图象与一次函数的交点问题:反比例函数与一次函数的图象的交点坐标满足两函数的解析式.也考查了一次函数的性质.25.〔6分〕〔2022•厦门〕如下列图,四边形OABC是菱形,∠O=60°,点M是边OA的中点,以点O为圆心,r为半径作⊙O分别交OA,OC于点D,E,连接BM.假设BM=,的长是.求证:直线BC与⊙O相切.考点:切线的判定;菱形的性质;弧长的计算.专题:证明题.分析:过点O作OF⊥BC于F,过点B作BG⊥OA于G,那么四边形BGOF为矩形,OF=BG.设菱形OABC的边长为2a,先在Rt△BMG中,利用勾股定理得出BG2+GM2=BM2,即〔a〕2+〔2a〕2=〔〕2,求得a=1,得到OF=,再根据弧长公式求出r=,那么圆心O到直线BC的距离等于圆的半径r,从而判定直线BC与⊙O相切.解答:证明:如图,过点O作OF⊥BC于F,过点B作BG⊥OA于G,那么四边形BGOF 为矩形,OF=BG.设菱形OABC的边长为2a,那么AM=OA=a.∵菱形OABC中,AB∥OC,∴∠BAG=∠COA=60°,∠ABG=90°﹣60°=30°,∴AG=AB=a,BG=AG=a.在Rt△BMG中,∵∠BGM=90°,BG=a,GM=a+a=2a,BM=,∴BG2+GM2=BM2,即〔a〕2+〔2a〕2=〔〕2,解得a=1,∴OF=BG=.∵的长==,∴r=,∴OF=r=,即圆心O到直线BC的距离等于圆的半径r,∴直线BC与⊙O相切.点评:此题考查了菱形的性质,勾股定理,弧长的计算公式,切线的判定,综合性较强,难度适中,利用菱形的性质及勾股定理求出a的值是解题的关键.26.〔11分〕〔2022•厦门〕假设x1,x2是关于x的方程x2+bx+c=0的两个实数根,且|x1|+|x2|=2|k|〔k是整数〕,那么称方程x2+bx+c=0为“偶系二次方程〞.如方程x2﹣6x﹣27=0,x2﹣2x﹣8=0,,x2+6x﹣27=0,x2+4x+4=0,都是“偶系二次方程〞.〔1〕判断方程x2+x﹣12=0是否是“偶系二次方程〞,并说明理由;〔2〕对于任意一个整数b,是否存在实数c,使得关于x的方程x2+bx+c=0是“偶系二次方程〞,并说明理由.考点:根与系数的关系;解一元二次方程-因式分解法;根的判别式.专题:阅读型;新定义.分析:〔1〕求出原方程的根,再代入|x1|+|x2|看结果是否为2的整数倍就可以得出结论;〔2〕由条件x2﹣6x﹣27=0和x2+6x﹣27=0是偶系二次方程建模,设c=mb2+n,就可以表示出c,然后根据公式法就可以求出其根,再代入|x1|+|x2|就可以得出结论.解答:解:〔1〕不是,解方程x2+x﹣12=0得,x1=3,x2=﹣4.|x1|+|x2|=3+4=7=2×3.5.∵3.5不是整数,∴x2+x﹣12=0不是“偶系二次方程;〔2〕存在.理由如下:∵x2﹣6x﹣27=0和x2+6x﹣27=0是偶系二次方程,∴假设c=mb2+n,当b=﹣6,c=﹣27时,﹣27=36m+n.∵x2=0是偶系二次方程,∴n=0时,m=﹣,∴c=﹣b2.∵是偶系二次方程,当b=3时,c=﹣×32.∴可设c=﹣b2.对于任意一个整数b,c=﹣b2时,△=b2﹣4c,=4b2.x=,∴x1=b,x2=b.∴|x1|+|x2|=2b,∵b是整数,∴对于任何一个整数b,c=﹣b2时,关于x的方程x2+bx+c=0是“偶系二次方程〞.点评:此题考查了一元二次方程的解法的运用,根的判别式的运用根与系数的关系的运用及数学建模思想的运用,解答本体时根据条件特征建立模型是关键.。
2019-2020厦门市中考数学试题(带答案)

2019-2020厦门市中考数学试题(带答案)1.旋转中心可能是点B。
2.有一组邻边相等的平行四边形是矩形。
3.y=3(x-2)^2+3.4.方差为2.5.选项B。
6.∠2的度数为65°。
7.对角线互相垂直平分的四边形是正方形。
8.∠AED度数为110°。
9.x=1或x=-2.10.竹竿AB与AD的长度之比为sinα/sinβ。
11.选项B。
12.线段DE的长为15/4.连接PP1、NN1、MM1,作PP1的垂直平分线过B、D、C,作NN1的垂直平分线过B、A,作MM1的垂直平分线过B,因此三条线段的垂直平分线正好都过B,即旋转中心是B。
因此选B。
本题考查了旋转中心的确认,解题的关键是熟知旋转的性质特点。
根据矩形的判定定理,可以快速确定答案。
有一个角为直角的平行四边形是矩形满足判定条件,因此选A。
B四条边都相等的四边形是菱形,故B错误;C有一组邻边相等的平行四边形是菱形,故C错误;对角线相等且相互平分的四边形是矩形,则D错误。
根据“上加下减,左加右减”的原则,将抛物线y=3x向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为y=3(x+2)+3,故答案选A。
先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案。
根据题意,得:(6+7+x+9+5)/5 = x/2,解得:x=3,因此这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为[(6-6)²+(7-6)²+(3-6)²+(9-6)²+(5-6)²]/5=4,因此选A。
根据对顶角相等,得∠1与∠2一定相等,因此A选项中的答案可能成立。
B、C项中无法确定∠1与∠2是否相等,因此也可能成立。
D选项中因为∠1=∠ACD,∠2>∠ACD,所以∠2>∠1,因此也成立。
因此需要进一步分析,可以发现只有D选项中的角度关系是符合题意的,因此选D。
厦门数学中考试题参考答案及评分标准

考生须知: 厦门市2007年初中毕业及高中阶段各类学校招生考试数学试题(试卷满分: 150 分; 考试时间:120分钟) 1. 解答的内容一律写在答题卡上, 考生不得擅自带走• 2. 作图或画辅助线要用 0.5毫米的黑色签字笔画好. 一、选择题(本大题共 7小题,每小题3分,共21分.每小题都有四个选项,其中有且只有 一个选项是正确的) 下列计算正确的是 A . — 3X 2 = — 6 B. — 1— 1 = 0 已知点 A (— 2, 3),则点A 在 A .第一象限 B .第二象限 下列语句正确的是 A.画直线AB = 10厘米 C.画射线OB = 3厘米 下列事件,是必然事件的是 A. 掷一枚均匀的普通正方体骰子,骰子停止后朝上的点数是B. 掷一枚均匀的普通正方体骰子,骰子停止后朝上的点数是偶数C. 打开电视,正在播广告 D •抛掷一枚硬币,掷得的结果不是正面就是反面 1.2. 3. 4.6. 7. 否则以0分计算.交卷时只交答题卡,本卷由考场处理, C. ( — 3)2= 6 C.第三象限D. 2 -1 = 2 D.第四象限B.画直线 D.延长线段AB 到点C,使得BC = AB I 的垂直平分线 方程组丿x + y = 5, 的解是,2x — y = 4.X= 3, x = 3, x =— 3, x =— 3, A .彳 B . C .丿D. \ly = 2. w=— 2.j= 2. 丁=— 2.5. 如果两个角是对顶角,那么这两个角相等;②如果一个等腰三角形下列两个命题:①有一个内角是60° ,那么这个等腰三角形一定是等边三角形 .则以下结论正确的是A.只有命题①正确B.只有命题②正确C.命题①、②都正确D.命题①、②都不正确小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为 69千克,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈一同坐在跷跷板的另一端,这时爸爸的一端仍然着地 .后来 小宝借来一副质量为 6千克的哑铃,加在他和妈妈坐的一端,结果爸爸被跷起离地 .小宝的体重可能是 A. 23.2 千克B. 23千克C. 21.1 千克D. 19.9 千克二、填空题(本大题共 10小题,每小题4分,共40分) 9.已知/ A = 50°,则/ A 的补角是 计算15 车序号1 2 3 4 5 6 车速(千米/时) 85 100 90 82 70 82 不等式2x — 4> 0的解集是 ________ . _______ 一名警察在高速公路上随机观察了 6辆车的车速,如下表所示: 则这6辆车车速的众数是 _______________ 千米/时. 已知图1所示的图形是由6个大小一样的正方形拼接而成的,此图形能否折成正方体 _________ (在横线上填“能”或“否”). 已知摄氏温度(C )与华氏温度「F )之间的转换关系是: 5摄氏温度=9 % (华氏温度—32).若华氏温度是68 F, 则摄氏温度是 C . 已知在 Rt △ ABC 中,/ C = 90°,直角边 AC 是直角边 BC 的2倍,贝U sin / A 的值 是 如图2,在平行四边形 ABCD 中,AF 交DC 于E ,交BC 的延长线于F ,若/ DAE = 20° , / AED = 90°,则/ B = __________ 度;若E C = 1,AD = 4厘米,则CF = _____________ 厘米. AB 3 在平面直角坐标系中, O 是坐标原点•点P (m , n )在反 图2 、 k 厂 比例函数y = X 的图象上.若m = k , n = k — 2,则k = ____________ ;若m + n = ,2k, OP = 2, k 且此反比例函数 y = -满足:当x > 0时,y 随x 的增大而减小,则 k =—— X 解答题(本大题共 9小题,共89分) 2 “ 2 ——1 V + X (本题满分8分)计算X 一 十J 厂+ 1. x x (本题满分8分)一次抽奖活动设置了如下的翻奖牌,如果你只能有一次机会在 字中选中一个翻牌,(1)求得到一架显微镜的概率;9个数(2)请你根据题意写出一个事件,使这个事件发生的概率是2 9.10. 11. 12. 13. 14.15. 16. 17. 三、 18. 19.1 2 3 4 5 6 789翻奖牌正面一架 两张 谢谢显微镜球票 参与 一张 一副 一张 唱片 球拍 唱片 两张 一张 一副 球票唱片球拍翻奖牌反面(本题满分8分)已知:如图3, AB 是O O 的弦,点(1) 若/ OAB = 35°,求/ AOB 的度数; (2) 过点C 作CD // AB ,若CD 是O O 的切线,求证:点C 是AB 的中点.21. (本题满分9分)某种爆竹点燃后,其上升的高度h (米)和时间t (秒)符合关系式1h = v o t — 2g t 2 ( O v t W 2),其中重力加速度 g 以10米/秒2计算.这种爆竹点燃后以 V o = 20 米/秒的初速度上升, (1) 这种爆竹在地面上点燃后,经过多少时间离地15米?(2) 在爆竹点燃后的1.5秒至1.8秒这段时间内,判断爆竹是上升,或是下降,并说明 理由. 22. (本题满分10分)已知四边形ABCD ,对角线AC 、BD 交于点O.现给出四个条件:①AC 丄BD :②AC 平分对角线 BD :③ AD // BC :④ / OAD = Z ODA.请你以其中的三个 条件作为命题的题设,以“四边形 ABCD 是菱形”作为命题的结论,(1 )写出一个真命题,并证明;(2 )写出一个假命题,并举出一个反例说明.23. (本题满分10分)已知:如图4,在厶ABC 中,D 是AB 边上的一点,BD > AD ,/ A =Z ACD ,(1)若/ A =Z B = 30 °,BD =3,求 CB 的长;(2 )过D 作/ CDB 的平分线 DF 交CB 于F ,C若线段AC 沿着AB 方向平移,当点 A 移到点D 时,F判断线段AC 的中点E 能否移到线段 DF 上,并说明理由. ______________________________ADB20. 图3图424. (本题满分12分)已知抛物线的函数关系式:y= x2 3+ 2( a —1) x+ a2-2a (其中x是自变量),(1)若点P(2,3)在此抛物线上,①求a的值;②若a> 0,且一次函数y= kx+ b的图象与此抛物线没有交点,请你写出一个符合条件的一次函数关系式(只需写一个,不必写出过程) ;(2)设此抛物线与x轴交于点A (x1, 0)、B (x2, 0).若xi^^3< x2,且抛物线的顶点3在直线x= 4的右侧,求a的取值范围.25. (本题满分12分)已知:如图5, PA、PB是O O的切线,A、B是切点,连结OA、OB、OP,(1)若/ AOP = 60°,求/ OPB 的度数;A(2 )过O作OC、OD分别交AP、BP于C、D两点,判断直线CD与O O的位置关系,并说明理由①若/ COP = Z DOP,求证:AC = BD;②连结CD,设△ PCD的周长为I,若I = 2AP,图526. (本题满分12分)已知点P (m, n) ( m>0)在直线y= x+ b (0< b< 3)上,点A、B4 2 2在x轴上(点A在点B的左边),线段AB的长度为3匕,设厶FAB的面积为S,且S=?b 2+ 3b,3(1 )若b = 2,求S的值;(2 )若S= 4,求n的值;(3)若直线y= x + b ( 0< b< 3)与y轴交于点C,A PAB是等腰三角形,当CA // PB时,求b的值.厦门市2007年初中毕业及高中阶段各类学校招生考试数学参考答案及评分标准题号 1 2 3 4 5 6 7 选项A BDD AC C、选择题(本大题共 7小题,每小题3分,共21分)二、填空题(本大题共 8. 3. 9. 130 度. 10小题,每小题4分,共40 分)10.5.11. x >2.12.82千米/时.13. 台匕 冃匕.14. 20 C .15.5 16. 70 度2厘米.17.3; 2.三、解答题(本大题共 (本题满分8分) 2 , 2 解:匸1X + X x 9小题,共89分) 18. 2 2x — 1 x • ~~2~7~■x x + x 19. (本题满分 (1)解:8分) ]9.20. (x — 1)( x + 1) x — 1 + 1=x.x(x + 1) + 1解:••• 0A = OB ,” 1 分 •• / OAB = Z OBA . ” 2 分 • • / OAB = 35° , ” 3 分 •• / AOB = 110°. ”4 分(2)证明:连结0C ,交AB 于E .(1) 如得到“一副球拍”或得到“两张球票”或 “一架显微镜或谢谢参与” . (2)解:得到 (本题满分8分)CD 是O 0的切线, ••• 0C 丄 CD .CD // AB , • / OEB = Z OCD . • 0E 丄AB . •/ 0A = OB ,• △ AOB 是等腰三角形,OE 是等腰三角形 AOB 顶角的平分线.•••点C 是AB 的中点.21.(本题满分9分)(1)解:由已知得,15 = 20t — |x 10X t 2,整理得,t 2 — 4t + 3= 0.解得,h= 3, t 2= 1当t =3时,不合题意,舍去• •当爆竹点燃后1秒离地15米.2(2)解:由题意得, h =- 5t + 20t.20•顶点的横坐标t =-莎)=2.2或:h =— 5( t — 2) + 20•顶点的横坐标t = 2.又••• 一 5V 0,二抛物线开口向下.•在爆竹点燃后的1.5秒至1.8秒这段时间内,爆竹在上升•22.(本题满分10 分)(1)真命题:如图,已知四边形ABCD ,对角线AC 、BD 交于点O.若平分对角线BD , AD // BC ,则四边形ABCD 是菱形.证明:•/ AD // BC ,• / CBO =Z ADO .•/ AC 垂直平分 BD , • Rt △ AOD 也 Rt △ COB . • AD = BC .•四边形ABCD 是平行四边形.(2)假命题1:已知四边形ABCD ,对角线AC 、BD 交于点O.若AC 丄BD , AC 平分对 角线BD ,/ OAD = Z ODA ,则四边形 ABCD 是菱形. 反作等腰直角三角形 ABD ,/ A = 90°,以BD 为一边,作等边三角形 BCD ,连结AC 、BD 交于点O. 贝U AC 丄BD , AC 平分对角线 BD ,/ OAD = Z ODA”9分•/ AC 丄 BD , 四边形ABCD 是菱形.AC 丄 BD , ACD3分但四边形ABCD不是菱形. ,,10分假命题2 :已知四边形ABCD,对角线AC、BD交于点O.若AC丄BD, AD // BC, / OAD = Z ODA,则四边形ABCD是菱形. ”6分反例:作等腰直角三角形AOD,/ AOD = 90° .延长DO至B, AO至C,取OB = OC (OB M OD ).连结AB、BC、CD ,贝U AC 丄BD , AD // BC,/ OAD = Z ODA. ,, 9 分则四边形ABCD是等腰梯形,不是菱形•,,10分假命题3:已知四边形ABCD,对角线AC、BD交于点O.若AC平分对角线BD , AD // BC,/ OAD = / ODA,则四边形ABCD是菱形. ”6分反例:作等腰三角形AOD ( OA = OD,/ AOD丰90°).延长DO至B,AO至C,取OB= OC= OA = OD.连结AB、BC、CD,贝U AD 丰 AB,AC 平分对角线BD,AD // BC,/ OAD = / ODA. ,,9分则四边形ABCD是矩形,不是菱形.5510分23.(本题满分10分)(1)解:•/ /A =/ ACD = 30°,CF ••• / CDB = 60° . ,, 1 分E又T/ B = 30°,A D B• / DCB = 90° . ,, 2 分亠亠BC在Rt△ BDC 中,cosB = BD,553分厂血3BC —BD •cosB — 3 •—.v2 2554分(2)解: •/ / CDB — / A +/ ACD,且DF 是/ CDB 的平分线,• 2 / FDB —2/ A,• / FDB —/ A. •AC // DF.5分方法 1 T / FDB =/ A,/ B =/ B,△ BDF s\ BAC.DF = BDAC = BA.BD > AD, DF 1> —AC 2BD、1 -- 〉_BA 2•/ E是AC的中点,•AE >1.即DF > AE.点E可以移到线段DF上.10分方法2:记点M为线段AB的中点,T BD >AD,点M在线段BD上.过M作MN // AC交BC于N./ BMN = / A,Z B =Z B,△ BMN BAC.BN = BM = 1BC = BA = 2N是BC的中点.MN // AC, AC// DF MN // DF.点N在线段BF上.点M在线段BD上,••• MN v DF.••• M为AB的中点,N是BC的中点,AE v DF.•••点E可以移到线段DF上.方法3:记点M为线段AB的中点,T BD > AD,”8分MN = AE.”9分”10分点M在线段BD上.过M作MN // AC交BC于N. / BMN = / A,Z B =Z B,△BMN BAC.MN = BM = 1AC = BA = 2.1E 为 AC 的中点,••• MN = 2AC = AE.MN // AC , AC // DF , 点M 在线段BD 上, MN BM 彳DF BD MN v DF. AE v DF.点E 可以移到线段DF 上.方法4:如图,延长 DF 至G ,使得DG = AC.•四边形ADGC 是平行四边形. • CG // AB.•••/ CGF =Z FDB ,/ GCF = Z FBD .△ CFG BFD. GF = CG FD = DB . CG = AD , AD v DB.即 計• GF + FD v 2F D. • DG > 2.1 FD > 2AC.又••• E 是AC 的中点,24.(本题满分12分)(1 [① 解:由题意得,3=4 + 2( a — 1) X 2 + a — 2a,”1 分 整理得,a 2+ 2a — 3= 0. ”2 分 解得,a 1=— 3, a 2= 1.”4 分9 / 12MN // DF.9分 10分CG DB v 1.• FD > AE.点E 可以移到线段DF 上. 9分 10分②解:y = x — 2.、.22(2)由题意得,x + 2( a — 1) x + a — 2a = 0解得,X 1 = — a , X 2 = — a + 2.解得一-,/3 v a v 2 — /3.3 1• 3 — a >4,解得 a v 4.3 I I1 8• S^- • AB • n , • -x- • n = 4.X 1< 3 v X 2,—a v” :3 v — a + 2.可以解得顶点坐标为(1 — a , — 1).11分10分△ OCP ^A ODP.CP = DP.•/ FA 、PB 是O O 的切线, • FA = PB. .AC = BD.② 证明 1:连结 CD.•/ l = 2AP , PA = PB ,CD = AC + BD.•/ OA = OB ,且/ OAC = Z OBD = 90° .•/ OC 1 = OC , DC 1= DC , OD = OD , ••• △ OCDOCD.10 / 1225. 12分(本题满分12分)(2)① 证明:•••/ COP =Z DOP ,/ CPO = Z DPO , PO = PO ,(1).将厶OAC 绕点O 逆时针旋转,使点 A 与B 重合. 记点C 的对称点为 C 1,. AC = BC 1,OC = OC 1.vZ OAC =Z OBD = 90°,•••点 C 1在PB 的延长线上.过O 作OE 丄CD , E 是垂足.即0E 是点0到直线CD 的距离, 112 X CD® 2 X CD &0B = OE.直线CD 与O O 相切.证明 2:过 O 作 OE 丄CD.设 OE = d , CE = x, DE = y.2 A —2 , A —22_122 , . -.22d = AC + AO — x , d = BD + AO — y ,••• AC 1 4— BD 2+ y 2— x 2= 0”8 分••• ( AC + x)( AC — x) = (BD + y)( BD — y)l = 2AP , FA = PB , • x + y = AC + BD.”9 分AC — x = y — BD.• ( AC + x)( y — BD) = (BD + y)( BD — y). (y — BD) (AC + x + BD + y )= 0.• ( AC + x + BD + y )M 0, - -y — BD = 0.BD = y.• d = AO. •直线CD 与O O 相切.26.(本题满分12分)32 9 23 (1)解:• b = -,• S = x + x-23 4 3 2=5 =2.” 2 2 2 (2)解:• S = 4,• 4 = 3b + 3b.• b 2 + b — 6 = 0. 解得 b =— 3 (舍去),b = 2.• AB 的长度为3.4 1 1 ,2 3n = 3.2 2 1⑶解:• S = 3b 2 + 3b , S = 2 •丨 AB| • n ,11分 12分10分11分 12分1分2分 3分4分5分 6分31 42 2 2 2 • §b • n = 3b + 3b. ■/ b z 0,n = b + 1. /• m + b = b + 1./• m = 1.P (1, b +1)过P 作PD 垂直x 轴于点D ,则点D (1 , 0). 4 1PD — AB = b + 1 — 3b = 1 — 3b. ” 8 分 1■/ 0 v b v 3,二 1 — §b > 0.”9 分••• PD > AB. •/ PA > PD , PD >AB ,「. PA > PD > AB ,即 PA >AB. •••PA 工 AB.同理 PB z AB”10 分2 2••• △ PAB 是等腰三角形,• PA = PB. • A (1— 3b , 0), B (1+ -b , 0)方法 1:v CA // PB ,••• / OAC =Z DPB ,• Rt △ AOC s Rt △ BDP.23• 4b — b — 3 = 0. •- b = 1 或 b = — 4 (不合题意,舍去)b = 1.方法2:延长PA 交y 轴于点C 1,v PA = PB ,/ CAO = Z PBA =Z PAB =Z OAC 1• OC 1= OC ,• C 1 (0, — b ).设直线 PA 的解析式为:y = kx +1. "k + t = b + 1, "k = 2b + 1, 则有* 解得,’L. t =— b. L_t =— b.•直线PA 的解析式为:y = (2 b + 1)x — b.” 11分/ 2 2--0 = (2 b +1) (1 — 3b )— b.•- 4 b — b — 3 = 0.3CO = OA PD = DB1 — 3b11分3b12分Rt △ AOC 也 Rt △ AOC .•- b= 1或b=—4 (不合题意,舍去).•b= 1. ”12分。
厦门初三数学试题及答案

厦门初三数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是实数?A. -3B. √2C. πD. i答案:B2. 一个二次方程的系数a=1,b=-6,c=8,它的判别式Δ是多少?A. 4B. 12C. 16D. 36答案:C3. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B4. 以下哪个数列是等差数列?A. 2, 4, 6, 8B. 2, 3, 5, 7C. 2, 5, 8, 11D. 2, 6, 18, 54答案:A5. 函数y = 2x + 3的斜率是多少?A. 2B. 3C. 5D. 6答案:A6. 一个直角三角形的两条直角边分别是3和4,斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A7. 一个数的平方根是4,这个数是多少?A. 16B. 8C. 12D. 20答案:A8. 一个数的立方根是2,这个数是多少?A. 6B. 8C. 12D. 64答案:B9. 一个正方体的棱长是3,它的体积是多少?A. 27B. 9C. 36D. 81答案:A10. 一个长方体的长、宽、高分别是2、3、4,它的体积是多少?A. 24B. 36C. 48D. 52答案:A二、填空题(每题2分,共20分)1. 一个数的相反数是-5,这个数是______。
答案:52. 一个数的绝对值是6,这个数可以是______或______。
答案:6 或 -63. 一个三角形的三个内角分别是40°、50°和90°,这是一个______三角形。
答案:直角4. 一个平行四边形的对角线互相平分,那么它是一个______。
答案:矩形5. 一个数的平方是25,这个数是______或______。
答案:5 或 -56. 一个数的立方是-8,这个数是______。
答案:-27. 一个圆的直径是10,那么它的周长是______。
答案:π×10 或10π8. 一个长方体的长、宽、高分别是a、b、c,它的表面积是______。
备考练习:2022年福建省厦门市中考数学历年真题汇总 卷(Ⅲ)(含答案详解)

2022年福建省厦门市中考数学历年真题汇总 卷(Ⅲ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、下列计算正确的是( ) A .22212315x x x -+=- B .232325a a a +=C .165m m m -=-D .10.2504ab ab -+= 2、如图,点A 的坐标为()0,1,点B 是x 轴正半轴上的动点,以AB 为腰作等腰直角ABC ,使90BAC ∠=︒,设点B 的横坐标为x ,设点C 的纵坐标为y ,能表示y 与x 的函数关系的图象大致是( ) ·线○封○密○外A .B .C .D .3、正八边形每个内角度数为( )A .120°B .135°C .150°D .160°4、对于反比例函数6y x=,下列结论错误的是( ) A .函数图象分布在第一、三象限B .函数图象经过点(﹣3,﹣2)C .函数图象在每一象限内,y 的值随x 值的增大而减小D .若点A (x 1,y 1),B (x 2,y 2)都在函数图象上,且x 1<x 2,则y 1>y 25、若单项式12m a b -与212n a b 是同类项,则n m 的值是( ) A .6 B .8 C .9 D .126、已知21x =,2y =,且x y >,则x y -的值为( )A .1或3B .1或﹣3C .﹣1或﹣3D .﹣1或37、如图,在矩形ABCD 中,AB =2,BC =4,对角线AC ,BD 相交于点O ,OE ⊥AC 交BC 于点E ,EF ⊥BD 于点F ,则OE +EF 的值为( )AB .2C .52D .8、菱形ABCD 的周长是8cm ,∠ABC =60°,那么这个菱形的对角线BD 的长是( ) AB .C .1cmD .2cm9、下列说法正确的是( ) A .2mn π的系数是2πB .28ab 2-的次数是5次C .3234xy x y +-的常数项为4D .21165x x -+是三次三项式 10、将1-,2,2-,3按如图的方式排列,规定(),m n 表示第m 排左起第n 个数,则()5,4与()21,7表示的两个数之积是( )A .2-B .4C .4-D .6 第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分)1、实数a 、b 在数轴上对应点的位置如图所示,化简a b a -+的值是_________.2、近几年,就业形式严峻,考研人数持续增加,官方统计显示2022年考研报名人数为4570000人,·线○封○密○外创下了历史新高,将数据“4570000”用科学记数法表示为______.3、若机器人在数轴上某点第一步从0A 向左跳1个单位到1A ,第二步从1A 向右跳2个单位到2A ,第三步从2A 向左跳3个单位到3A ,第四步从3A 向右跳4个单位到4A ,按以上规律跳2018步,机器人落在数轴上的点2018A ,且所表示的数恰好是2019,则机器人的初始位置0A 所表示的数是__________.4、如图,AB ∥CD ∥EF ,如果AC =2,CE =3,BD =1.5,那么BF 的长是_____.5、若关于x 的分式方程133x a x x+=---有增根,则a=________. 三、解答题(5小题,每小题10分,共计50分)1、在Rt ABC 中,90ABC ∠=︒,AB BC =,点E 在射线CB 上运动.连接AE ,将线段AE 绕点E 顺时针旋转90°得到EF ,连接CF .(1)如图1,点E 在点B 的左侧运动.①当1BE =,BC =时,则EAB ∠=___________°;②猜想线段CA ,CF 与CE 之间的数量关系为____________.(2)如图2,点E 在线段CB 上运动时,第(1)问中线段CA ,CF 与CE 之间的数量关系是否仍然成立?如果成立,请说明理由;如果不成立,请求出它们之间新的数量关系.2、已知,90MON ∠=︒,点A 在边OM 上,点P 是边ON 上一动点,OAP α∠=.以线段AP 为边在AP上方作等边ABP ∆,连接OB 、BP ,再以线段OB 为边作等边OBC ∆(点C 、P 在OB 的同侧),作CH ON ⊥于点H . (1)如图1,60α=︒.①依题意补全图形;②求BPH ∠的度数; (2)如图2,当点P 在射线ON 上运动时,用等式表示线段OA 与CH 之间的数量关系,并证明. 3、如图,在△ABC 中,已知AD 平分∠BAC ,E 是边AB 上的一点,AE =AC ,F 是边AC 上的一点,联结DE 、CE 、FE ,当EC 平分∠DEF 时,猜测EF 、BC 的位置关系,并说明理由.(完成以下说理过程) 解:EF 、BC 的位置关系是______. 说理如下: 因为AD 是∠BAC 的角平分线(已知) 所以∠1=∠2. ·线○封○密○外在△AED 和△ACD 中,()()()()()()AE AC ⎧=⎪∠=∠⎨⎪=⎩已知公共边, 所以△AED ≌△ACD (SAS ).得__________(全等三角形的对应边相等).4、计算:101()(5)2π-- 5、李老师参加“新星杯”教学大赛,在课堂教学的练习环节中,设计了一个学生选题活动,即从4道题目中任选两道作答.李老师用课件在同一页面展示了A ,B ,C ,D 四张美丽的图片,其中每张图片链接一道练习题目,李老师找甲、乙两名同学随机各选取一张图片,并要求全班同学作答选取图片所链接的题目.(1)甲同学选取A 图片链接题目的概率是 ;(2)求全班同学作答图片A 和B 所链接题目的概率.(请用列表法或画树状图法求解)-参考答案-一、单选题1、D【分析】根据合并同类项法则合并同类项,进行计算即可.【详解】A .2222123915x x x x -+=≠-,故选项A 错误;B . 2332a a , 不是同类项,不能合并,故选项B 错误;C .16155m m m m -=≠-,故选项C 错误;D .1110.250444ab ab ab ab -+=-+=,故选项D 正确.故选D .【点睛】本题考查了同类项和合并同类项,掌握同类项定义,所含字母相同,相同字母的指数也相同的项是同类项,合并同类项法则只把同类项的系数相加减字母和字母的指数不变是解题的关键. 2、A【分析】根据题意作出合适的辅助线,可以先证明△ADC 和△AOB 的关系,即可建立y 与x 的函数关系,从而可以得到哪个选项是正确的.【详解】解:作AD ∥x 轴,作CD ⊥AD 于点D ,如图所示,由已知可得,OB =x ,OA =1,∠AOB =90°,∠BAC =90°,AB =AC ,点C 的纵坐标是y ,∵AD ∥x 轴, ∴∠DAO +∠AOB =180°,∴∠DAO =90°,∴∠OAB +∠BAD =∠BAD +∠DAC =90°,∴∠OAB =∠DAC ,在△OAB 和△DAC 中·线○封○密○外AOB ADC OAB DAC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△OAB ≌△DAC (AAS ),∴OB =CD ,∴CD =x ,∵点C 到x 轴的距离为y ,点D 到x 轴的距离等于点A 到x 的距离1,∴y =x +1(x >0).故选:A .【点睛】本题考查动点问题的函数图象,全等三角形的性质和判定,等腰三角形的定义.解题的关键是明确题意,建立相应的函数关系式,根据函数关系式判断出正确的函数图象.3、B【分析】根据正多边形的每一个内角相等,则对应的外角也相等,根据多边形的外角和为360°,进而求得一个外角的度数,即可求得正八边形每个内角度数.【详解】解:∵正多边形的每一个内角相等,则对应的外角也相等,一个外角等于:360845÷=︒∴内角为18045135︒-︒=︒故选B【点睛】本题考查了正多边形的内角与外角的关系,利用外角求内角是解题的关键.4、D【分析】根据反比例函数的性质得出函数增减性以及所在象限和经过的点的特点分别分析得出即可.【详解】解:A 、∵k =6>0,∴图象在第一、三象限,故A 选项正确;B 、∵反比例函数6y x =,∴xy =6,故图象经过点(-3,-2),故B 选项正确;C 、∵k >0,∴x >0时,y 随x 的增大而减小,故C 选项正确;D 、∵不能确定x 1和x 2大于或小于0 ∴不能确定y 1、y 2的大小,故错误; 故选:D . 【点睛】 本题考查了反比例函数k y x =(k≠0)的性质:①当k >0时,图象分别位于第一、三象限;当k <0时,图象分别位于第二、四象限.②当k >0时,在同一个象限内,y 随x 的增大而减小;当k <0时,在同一个象限,y 随x 的增大而增大. 5、C 【分析】 根据同类项的定义可得122m n -==,,代入即可求出m n 的值. 【详解】 解:∵12m a b -与212n a b 是同类项, ∴122m n -==,, 解得:m =3, ∴239n m ==. 故选:C . ·线○封○密·○外【点睛】此题考查了同类项的定义,解题的关键是熟练掌握同类项的定义.同类项:如果两个单项式,他们所含的字母相同,并且相同字母的指数也相同,那么就称这两个单项式为同类项.6、A【分析】由题意利用乘方和绝对值求出x 与y 的值,即可求出x -y 的值.【详解】解:∵21x =,2y =,1,2,x yx y >,∴x =1,y =-2,此时x -y =3;x =-1,y =-2,此时x -y =1.故选:A .【点睛】此题考查了有理数的乘方,绝对值,以及有理数的减法,熟练掌握运算法则是解本题的关键.7、A【分析】依据矩形的性质即可得到BOC ∆的面积为2,再根据BOC COE BOE S S S∆=+,即可得到OE EF +的值. 【详解】解:2AB =,4BC =,∴矩形ABCD 的面积为8,AC =12BO CO AC ∴==对角线AC ,BD 交于点O , BOC ∴∆的面积为2, EF OB ⊥,EO AC ⊥,BOC COE BOE S S S ∆∴=+,即11222CO EO OB EF =⨯+⨯,12)2EO EF ∴=+,)4EO EF +=,EO EF ∴+ 故选:A . 【点睛】 本题主要考查了矩形的性质,解题的关键是掌握矩形的四个角都是直角,矩形的对角线相等且互相平分. 8、B【分析】 由菱形的性质得AB =BC =2(cm ),OA =OC ,OB =OD ,AC ⊥BD ,再证△ABC 是等边三角形,得AC =AB =2(cm ),则OA =1(cm ),然后由勾股定理求出OBcm ),即可求解. 【详解】 解:∵菱形ABCD 的周长为8cm , ∴AB =BC =2(cm ),OA =OC ,OB =OD ,AC ⊥BD , ∵∠ABC =60°, ∴△ABC 是等边三角形, ·线○封○密·○外∴AC=AB=2cm,∴OA=1(cm),在Rt△AOB中,由勾股定理得:OB cm),∴BD=2OB=cm),故选:B.【点睛】此题考查了菱形的性质,勾股定理,等边三角形的性质和判定,解题的关键是熟练掌握菱形的性质,勾股定理,等边三角形的性质和判定方法.9、A【分析】根据单项式的系数、次数的定义以及多项式次数、项数、常数项的定义可解决此题.【详解】π的系数是2π,故选项正确;解:A、2mnB、28ab2-的次数是3次,故选项错误;C、32+-的常数项为-4,故选项错误;xy x y34D、2-+是二次三项式,故选项错误;x x1165故选A.【点睛】本题主要考查单项式的系数、次数的定义以及多项式次数、项数、常数项的定义,熟练掌握单项式的系数、次数的定义以及多项式次数、项数、常数项的定义是解决本题的关键. 10、A【分析】根据数的排列方法可知,第一排1个数,第二排2个数,第三排3个数,第四排4个数,…第(m -1)排有(m -1)个数,从第一排到(m -1)排共有:1+2+3+4+…+(m -1)个数,根据数的排列方法,每四个数一个循环,根据题目意思找出第m 排第m 个数后再计算 【详解】 解:(5,4)表示第5排从左向右第4个数,由图可知,(5,4)所表示的数是2;()21,7是第21排第7个数,则前20排有120202102+⨯=个数,则()21,7是第217个数,1-,2,2-,3四个数循环出现, 2174541÷=⋅⋅⋅∴()21,7表示的数是1- ∴()5,4与()21,7表示的两个数之积是()212⨯-=- 故选A 【点睛】 本题考查了数字的变化规律,判断出所求的数是第几个数是解决本题的难点;得到相应的变化规律是解决本题的关键. 二、填空题 1、b 【分析】 根据数轴,b >0,a <0,则a -b <0,化简绝对值即可. 【详解】·线○封○密·○外∵b >0,a <0,∴a -b <0, ∴a b a -+=b -a +a=b ,故答案为:b .【点睛】本题考查了绝对值的化简,正确确定字母的属性是化简的关键.2、4.57×106【分析】将一个数表示成a ×10n ,1≤a <10,n 是正整数的形式,叫做科学记数法,根据此定义即可得出答案.【详解】解:根据科学记数法的定义,4570000=4.57×106,故答案为:4.57×106.【点睛】本题主要考查科学记数法的概念,关键是要牢记科学记数法的形式.3、1010【分析】由题意知每跳两次完毕向右进1个单位,按此规律跳了2018步后距出发地0A 的距离是1009个单位,且在0A 的右侧,根据2018A 所表示的数恰是2019,即可求得初始位置0A 点所表示的数.【详解】解:设机器人在数轴上表示a的点开始运动,A0表示a,A1表示a-1,第二步从1A向右跳2个单位到2A,A2表示a-1+2= a+1,第三步从2A向左跳3个单位到3A,A3表示a+1-3,第四步从3A向右跳4个单位到4A,A4表示a+1-3+4= a+2,由题意知每跳两次完毕向右进1个单位,而201821009÷=,所以电子跳蚤跳2018步后A2018表示的数为a+1009,又因为2018A表示2019,∴a+1009=2019,∴a=1010,所以0A表示1010.故答案为:1010.【点睛】本题考查了数轴、列代数式,简单一元一次方程,图形的变化规律,得到每跳动2次相对于原数+1的规律是解题的关键.4、15 4【分析】根据平行线分线段成比例定理解答即可.【详解】解:∵AB∥CD∥EF,AC=2,CE=3,BD=1.5,∴AC BDAE BF=,即2 1.523BF=+,·线○封○密○外解得:BF =154, 故答案为:154. 【点睛】本题主要考查了平行线分线段成比例,熟知平行线分线段成比例定理是解题的关键.5、3【分析】分式方程去分母转化为整式方程,由分式方程有增根求出a 的值即可.【详解】 解:133x a x x+=---, 去分母得: x −a =3-x ,由分式方程有增根,得到x −3=0,即x =3,代入整式方程得:3−a =3-3,解得:a =3.故答案为:3.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.三、解答题1、 (1)①30;②CA CF += (2)不成立,CA CF -=·线【分析】(1)①由直角三角形的性质可得出答案;②过点E 作ME ⊥EC 交CA 的延长线于M ,由旋转的性质得出AE =EF ,∠AEF =90°,得出∠AEM =∠CEF ,证明△FEC ≌△AEM (SAS ),由全等三角形的性质得出CF =AM ,由等腰直角三角形的性质可得出结论;(2)过点F 作FH ⊥BC 交BC 的延长线于点H .证明△ABE ≌△EHF (AAS ),由全等三角形的性质得出FH =BE ,EH =AB =BC ,由等腰直角三角形的性质可得出结论;(1)①∵AB BC ==1BE =,90ABC ∠=︒,∴2AE =,∵sin∠EAB =12BE AE = ∴30EAB ∠=︒,故答案为:30°;②CA CF +=.如图1,过点E 作ME EC ⊥交CA 的延长线于M ,∵90ABC ∠=︒,AB BC =,∴45ACB ∠=︒,∴45M ∠=︒,∴M ECM ∠=∠,∴ME EC =,∵将线段AE 绕点E 顺时针旋转90°得到EF ,∴AE EF =,90AEF ∠=︒,∴AEM CEF ∠=∠,在△FEC 和△AEM 中ME EC AEM CEF AE EF =⎧⎪∠=∠⎨⎪=⎩, ∴()FEC AEM SAS ≌△△,∴CF AM =,∴CA AM CA CF CM +=+=,∵CME △为等腰直角三角形,∴CM ,∴CA CF +=;故答案为:CA CF +=;(2)不成立.如图2,过点F 作FH BC ⊥交BC 的延长线于点H .∴90AEF ∠=︒,AE EF =,·∵90BAE AEB AEB FEH ∠+∠=∠+∠=︒,∴FEH BAE ∠=∠,在△FEC 和△AEM 中ABE EHF BAE FEH AE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()ABE EHF AAS ≌△,∴FH BE =,EH AB BC ==,∴CH BE FH ==,∴FHC 为等腰直角三角形,∴CH BE ==.又∵EC BC BE AC =-=-,即CA CF -=.【点睛】本题考查了旋转的性质,解直角三角形,等腰直角三角形的判定与性质,全等三角形的判定与性质,三角形的面积,熟练掌握旋转的性质是解题的关键.2、(1)①见解析;②∠BPH =90°(2)2OA CH =,证明见解析【分析】(1)①按照题意作图即可.②由等边三角形性质及平角为180°即可求得90BPH ∠=︒.(2)由(1)知ABP △是等边三角形可证得BOC 是等边三角形,即可由边角边证得ΔΔABO PBC ≅,再由直角三角形的性质以及平角的性质可推得2OA CH =.(1)①如图所示,即为所求;以B 、O 为圆心,OB 长为半径,画弧交于点C ,连接OC ,BC ,即为等边三角形OBC ∆.②ΔABP 是等边三角形,60BPA ∴∠=︒,60OAP α∠==︒,30OPA ∴∠=︒,18090BPH OPA BPA ∴∠=︒-∠-∠=︒;(2)2OA CH =,证明如下:如图,连接BC ,PC ,由(1)可知,ABP ∆是等边三角形,BA BP ∴=,60ABP BPA ∠=∠=︒, ΔBOC 是等边三角形, BO BC ∴=,60BOC ∠=︒, 60ABO OBP PBC ∴∠=︒-∠=∠, ΔΔ()ABO PBC SAS ∴≅, AO PC ∴=,BPC BAO =∠∠, OAP α∠=, 60BAO BAP OAP α∴∠=∠+∠=︒+, 60BPC α∴∠=︒+, 180120(90)30BPN APO BPA αα∠=︒-∠-∠=︒-︒-=︒+, 30HPC BPC BPN ∴∠=∠-∠=︒, CH ON ⊥, 90CHO ∴∠=︒, 在Rt CHP △中,2PC CH =,·线○封○密○外2OA CH ∴=.【点睛】本题考查了三角形内的综合问题,包括尺规作图,全等三角形的证明及性质,等边三角形的性质等,两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS ”),等边三角形三边相等,且每个角都等于60°,在直角三角形中,如果一个锐角等于30︒,那么它所对的直角边等于斜边的一半熟悉其判定及性质是解题的关键.3、EF ∥BC ,DE =DC .【分析】先利用△AED ≌△ACD 得到∠3=∠4,利用角的平分线,转化为一对相等的内错角,继而判定直线的平行.【详解】解:EF 、BC 的位置关系是EF ∥BC .理由如下:如图,∵AD 是∠BAC 的角平分线(已知)∴∠1=∠2.在△AED 和△ACD 中,()12()AE AC AD AD =⎧⎪∠=∠⎨⎪=⎩已知公共边,∴△AED ≌△ACD (SAS ).∴DE =DC (全等三角形的对应边相等),∴∠3=∠4.∵EC 平分∠DEF (已知),∴∠3=∠5.∴∠4=∠5.所以EF ∥BC (内错角相等,两直线平行).故答案为:EF ∥BC ,∠1=∠2,AD =AD ,DE =DC .【点睛】 本题考查了三角形的全等和性质,角的平分线即从角的顶点出发的射线把这个角分成相等的两个角,等腰三角形的性质,平行线的判定,熟练掌握灯光要三角形的性质,平行线的判定是解题的关键. 4、6+【分析】 由实数的运算法则计算即可. 【详解】解:原式11312=++213=++6=+【点睛】本题考查了实数的混合运算,实数包括有理数和无理数,所以实数的混合运算包含了绝对值,幂的运算,开平方开立方等全部计算形式,仍满足先乘除后加减,有括号先算括号内的运算顺序. 5、·线○封○密·○外(1)1 4(2)图表见解析,1 6【分析】(1)根据题意可得一共有4种等可能结果,甲同学选取A图片链接题目有1种结果,再根据概率公式,即可求解;(2)根据题意,列出表格,可得到共有12种结果,每种结果出现的可能性相同,其中甲、乙同学选取图片A和B图片链接的题目有2种,再根据概率公式,即可求解.(1)解:根据题意得:甲同学选取A图片链接题目的概率是14;(2)解:根据题意,列表如下:共有12种结果,每种结果出现的可能性相同,其中甲、乙同学选取图片A和B图片链接的题目有2种:(A ,B ),(B ,A ),∴P (全班同学作答图片A 和B 所链接的题目)21126==. 【点睛】 本题主要考查了用列表法或画树状图法求概率,根据题意,画出表格是解题的关键. ·线○封○密○外。
2021年福建厦门中考数学试题及答案

∴ .
25.
【答案】(1)-1;(2)① ;②见解析
【详解】解:因为抛物线 与x轴只有一个公共点,
以方程 有两个相等的实数根,
所以 ,即 .
(1)因为抛物线过点 ,所以 ,
所以 ,即 .
所以 ,
当 时, 取到最小值 .
(2)①因 抛物线 与x轴只有一个公共点,
所以抛物线上的点只能落在x轴的同侧.
又点 中恰有两点在抛物线的图象上,
所以只能是 在抛物线的图象上,
由对称性可得抛物线的对称轴为 ,所以 ,
即 ,因为 ,所以 .
又点 在抛物线的图象上,所以 ,
故抛物线的解析式为 .
②由题意设 ,则 .
记直线 为m,分别过M,N作 ,垂足分别为E,F,
即 ,
因为 ,所以 .
又 ,所以 ,所以 .
所以 ,所以 ,即 .
参考答案:
1.
【答案】A
2.
【答案】A
3.
【答案】D
4.
【答案】D
5.
【答案】B
6.
【答案】B
7.
【答案】C
8.
【答案】C
9.
【答案】D
10.
【答案】C
11.
【答案】1
12.
【答案】答案不唯一(如 等)
13.
【答案】
14.
【答案】
15.
【答案】4
16.
【答案】①②④
17. 计算: .
【答案】
【详解】
23. “田忌赛马”的故事闪烁着我国古代先贤的智慧光芒.该故事的大意是:齐王有上、中、下三匹马 ,田忌也有上、中、下三匹马 ,且这六匹马在比赛中的胜负可用不等式表示如下: (注: 表示A马与B马比赛,A马获胜).一天,齐王找田忌赛马,约定:每匹马都出场比赛一局,共赛三局,胜两局者获得整场比赛的胜利.面对劣势,田忌事先了解到齐王三局比赛的“出马”顺序为上马、中马、下马,并采用孙膑的策略:分别用下马、上马、中马与齐王的上马、中马、下马比赛,即借助对阵( )获得了整场比赛的胜利,创造了以弱胜强的经典案例.
2019-2020厦门市中考数学试题(带答案)

2019-2020厦门市中考数学试题(带答案)一、选择题1.在如图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是( )A .点AB .点BC .点CD .点D2.下列命题正确的是( ) A .有一个角是直角的平行四边形是矩形 B .四条边相等的四边形是矩形 C .有一组邻边相等的平行四边形是矩形D .对角线相等的四边形是矩形3.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =-- 4.如果一组数据6、7、x 、9、5的平均数是2x ,那么这组数据的方差为( ) A .4B .3C .2D .15.已知AC 为矩形ABCD 的对角线,则图中1∠与2∠一定不相等的是( ) A .B .C .D .6.如图,直线l 1∥l 2,将一直角三角尺按如图所示放置,使得直角顶点在直线l 1上,两直角边分别与直线l 1、l 2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为( )A .25°B .75°C .65°D .55°7.下列命题中,真命题的是( ) A .对角线互相垂直的四边形是菱形 B .对角线互相垂直平分的四边形是正方形C .对角线相等的四边形是矩形D .对角线互相平分的四边形是平行四边形8.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED 度数为( )A .110°B .125°C .135°D .140°9.分式方程()()31112x x x x -=--+的解为( )A .1x =B .2x =C .1x =-D .无解10.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠A BC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )A .tan tan αβB .sin sin βαC .sin sin αβD .cos cos βα11.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是 ( )A .B .C .D .12.如图,在矩形ABCD 中,BC=6,CD=3,将△BCD 沿对角线BD 翻折,点C 落在点C 1处,BC 1交AD 于点E ,则线段DE 的长为( )A .3B .154C .5D .152二、填空题13.如图,已知AB ∥CD ,F 为CD 上一点,∠EFD=60°,∠AEC=2∠CEF ,若6°<∠BAE <15°,∠C 的度数为整数,则∠C 的度数为_____.14.如图,△ABC 的三个顶点均在正方形网格格点上,则tan ∠BAC =_____________.15.如图,在Rt△ABC 中,∠ACB=90°,∠ABC=30°,将△ABC 绕点C 顺时针旋转至△A′B′C,使得点A′恰好落在AB 上,则旋转角度为_____.16.如图,一张三角形纸片ABC ,∠C=90°,AC=8cm ,BC=6cm .现将纸片折叠:使点A 与点B 重合,那么折痕长等于 cm .17.若a ,b 互为相反数,则22a b ab +=________.18.已知扇形AOB 的半径为4cm ,圆心角∠AOB 的度数为90°,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面半径为________cm19.农科院新培育出A 、B 两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下: 种子数量 100 200 500 1000 2000 A出芽种子数961654919841965发芽率0.960.830.980.980.98出芽种子数961924869771946B发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;②随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98;③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是__________(只填序号).x 在实数范围内有意义,则x的取值范围是_____.20.若式子3三、解答题21.为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:(1)在这次调查中,一共调查了名市民,扇形统计图中,C组对应的扇形圆心角是 °;(2)请补全条形统计图;(3)若甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.22.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?23.如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E 是OB 上一点,且,CE 的延长线交DB 的延长线于点F ,AF 交⊙O 于点H ,连接BH .(1)求证:BD 是⊙O 的切线;(2)当OB =2时,求BH 的长.24.如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1cm/s 的速度运动,当D 不与点A 重合时,将ACD ∆绕点C 逆时针方向旋转60°得到BCE ∆,连接DE. (1)如图1,求证:CDE ∆是等边三角形;(2)如图2,当6<t<10时,DE 是否存在最小值?若存在,求出DE 的最小值;若不存在,请说明理由.(3)当点D 在射线OM 上运动时,是否存在以D ,E ,B 为顶点的三角形是直角三角形?若存在,求出此时t 的值;若不存在,请说明理由.25.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y (元)与绿化面积x (平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元. (1)求如图所示的y 与x 的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据旋转中心的确认方法,作对应点连线的垂直平分线,再找到交点即可得到.【详解】解:∵△MNP绕某点旋转一定的角度,得到△M1N1P1,∴连接PP1、NN1、MM1,作PP1的垂直平分线过B、D、C,作NN1的垂直平分线过B、A,作MM1的垂直平分线过B,∴三条线段的垂直平分线正好都过B,即旋转中心是B.故选:B.【点睛】此题主要考查旋转中心的确认,解题的关键是熟知旋转的性质特点.2.A解析:A【解析】【分析】运用矩形的判定定理,即可快速确定答案.【详解】解:A.有一个角为直角的平行四边形是矩形满足判定条件;B四条边都相等的四边形是菱形,故B错误;C有一组邻边相等的平行四边形是菱形,故C错误;对角线相等且相互平分的四边形是矩形,则D错误;因此答案为A.【点睛】本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的平行四边形是矩形.3.A【解析】 【分析】直接根据“上加下减,左加右减”的原则进行解答即可. 【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A .4.A解析:A 【解析】分析:先根据平均数的定义确定出x 的值,再根据方差公式进行计算即可求出答案. 详解:根据题意,得:67955x ++++=2x解得:x=3,则这组数据为6、7、3、9、5,其平均数是6, 所以这组数据的方差为15[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4, 故选A .点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.5.D解析:D 【解析】 【分析】 【详解】解:A 选项中,根据对顶角相等,得1∠与2∠一定相等; B 、C 项中无法确定1∠与2∠是否相等;D 选项中因为∠1=∠ACD ,∠2>∠ACD ,所以∠2>∠1. 故选:D6.C解析:C 【解析】 【分析】依据∠1=25°,∠BAC =90°,即可得到∠3=65°,再根据平行线的性质,即可得到∠2=∠3=65°. 【详解】如图,∵∠1=25°,∠BAC =90°, ∴∠3=180°-90°-25°=65°,∴∠2=∠3=65°,故选C.【点睛】本题考查的是平行线的性质,运用两直线平行,同位角相等是解答此题的关键.7.D解析:D【解析】【分析】根据平行四边形、矩形、菱形、正方形的判定定理进行判断即可.【详解】对角线互相垂直且平分的四边形是菱形,故A是假命题;对角线互相垂直平分且相等的四边形是正方形,故B是假命题;对角线相等且平分的四边形是矩形,故C是假命题;对角线互相平分的四边形是平行四边形,故D是真命题.故选D.【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.B解析:B【解析】【分析】由AB∥CD,根据两直线平行,同旁内角互补可得∠CAB=110°,再由角平分线的定义可得∠CAE=55°,最后根据三角形外角的性质即可求得答案.【详解】∵AB∥CD,∴∠BAC+∠C=180°,∵∠C=70°,∴∠CAB=180°-70°=110°,又∵AE平分∠BAC,∴∠CAE=55°,∴∠AED=∠C+∠CAE=125°,故选B.本题考查了平行线的性质,角平分线的定义,三角形外角的性质,熟练掌握相关知识是解题的关键.9.D解析:D【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:去分母得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,分式方程无解.故选D.点睛:本题考查了分式方程的解,始终注意分母不为0这个条件.10.B解析:B【解析】【分析】在两个直角三角形中,分别求出AB、AD即可解决问题;【详解】在Rt△ABC中,AB=AC sinα,在Rt△ACD中,AD=AC sinβ,∴AB:AD=ACsinα:ACsinβ=sinsinβα,故选B.【点睛】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题.11.A解析:A【解析】从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近,故选A.12.C解析:C【解析】【分析】【详解】解:根据题意易证BE=DE,设ED=x,则AE=8﹣x,在△ABE中根据勾股定理得到关于线段AB、AE、BE的方程x2=42+(8﹣x)2,解方程得x=5,即ED=5故选C.【点睛】本题考查翻折变换(折叠问题);勾股定理;方程思想.二、填空题13.36°或37°【解析】分析:先过E作EG∥AB根据平行线的性质可得∠AEF=∠BAE+∠DFE再设∠CEF=x则∠AEC=2x根据6°<∠BAE<15°即可得到6°<3x-60°<15°解得22°<解析:36°或37°.【解析】分析:先过E作EG∥AB,根据平行线的性质可得∠AEF=∠BAE+∠DFE,再设∠CEF=x,则∠AEC=2x,根据6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x <25°,进而得到∠C的度数.详解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度数为整数,∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案为:36°或37°.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.14.【解析】分析:在图形左侧添加正方形网格分别延长ABAC连接它们延长线所经过的格点可构成直角三角形利用正切的定义即可得出答案详解:如图所示由图形可知∴tan∠BAC=故答案为点睛:本题考查了锐角三角函解析:13 【解析】分析:在图形左侧添加正方形网格,分别延长AB 、AC ,连接它们延长线所经过的格点,可构成直角三角形,利用正切的定义即可得出答案.详解:如图所示,由图形可知,90AFE ∠=︒,3AF AC =,EF AC =,∴tan ∠BAC =133EF AC AF AC ==. 故答案为13. 点睛:本题考查了锐角三角函数的定义. 利用网格构建直角三角形进而利用正切的定义进行求解是解题的关键.15.60°【解析】试题解析:∵∠ACB=90°∠ABC=30°∴∠A=90°-30°=60°∵△ABC 绕点C 顺时针旋转至△A′B′C 时点A′恰好落在AB 上∴AC=A′C ∴△A′AC 是等边三角形∴∠ACA解析:60°【解析】试题解析:∵∠ACB=90°,∠ABC=30°,∴∠A=90°-30°=60°,∵△ABC 绕点C 顺时针旋转至△A′B′C 时点A′恰好落在AB 上,∴AC=A′C ,∴△A′AC 是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故答案为60°. 16.cm 【解析】试题解析:如图折痕为GH 由勾股定理得:AB==10cm 由折叠得:AG=BG=AB=×10=5cmGH ⊥AB ∴∠AGH=90°∵∠A=∠A ∠AGH=∠C=90°∴△ACB ∽△AGH ∴∴∴G解析:cm .【解析】试题解析:如图,折痕为GH ,由勾股定理得:AB==10cm , 由折叠得:AG=BG=AB=×10=5cm ,GH ⊥AB ,∴∠AGH=90°, ∵∠A=∠A ,∠AGH=∠C=90°,∴△ACB ∽△AGH , ∴, ∴, ∴GH=cm .考点:翻折变换17.0【解析】【分析】先提公因式得ab (a+b )而a+b=0任何数乘以0结果都为0【详解】解:∵=ab (a+b )而a+b=0∴原式=0故答案为0【点睛】本题考查了因式分解和有理数的乘法运算注意掌握任何数解析:0【解析】【分析】先提公因式得ab (a+b ),而a+b=0,任何数乘以0结果都为0.【详解】解:∵22a b ab = ab (a+b ),而a+b=0,∴原式=0.故答案为0,【点睛】本题考查了因式分解和有理数的乘法运算,注意掌握任何数乘以零结果都为零.18.1【解析】试题分析:根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长和弧长公式可设圆锥的底面圆的半径为rcm 根据题意得2πr=解得r=1故答案为:1点睛:本题考查了圆锥的计算:圆锥的侧面解析:1【解析】试题分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式,可设圆锥的底面圆的半径为rcm,根据题意得2πr=904180π⨯,解得r=1.故答案为:1.点睛:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.19.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确解析:②③【解析】分析:根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以②中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.故答案为:②③.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键.20.x≥﹣3【解析】【分析】直接利用二次根式的定义求出x的取值范围【详解】解:若式子在实数范围内有意义则x+3≥0解得:x≥﹣3则x的取值范围是:x≥﹣3故答案为:x≥﹣3【点睛】此题主要考查了二次根式解析:x≥﹣3【解析】【分析】直接利用二次根式的定义求出x的取值范围.【详解】.在实数范围内有意义,则x+3≥0,解得:x≥﹣3,则x的取值范围是:x≥﹣3.故答案为:x≥﹣3.【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.三、解答题21.(1)2000,108;(2)作图见解析;(3).【解析】试题分析:(1)根据B组的人数以及百分比,即可得到被调查的人数,进而得出C组的人数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;(2)根据C组的人数,补全条形统计图;(3)根据甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种画树状图或列表,即可运用概率公式得到甲、乙两人恰好选择同一种交通工具上班的概率.试题解析:(1)被调查的人数为:800÷40%=2000(人),C组的人数为:2000﹣100﹣800﹣200﹣300=600(人),∴C组对应的扇形圆心角度数为:×360°=108°,故答案为:2000,108;(2)条形统计图如下:(3)画树状图得:∵共有16种等可能的结果,甲、乙两人选择同一种交通工具的有4种情况,∴甲、乙两人选择同一种交通工具上班的概率为:=.考点:列表法与树状图法;扇形统计图;条形统计图.22.答案见解析【解析】试题分析:(1)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y甲关于x的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y乙关于x的函数关系式;(2)分0<x≤1和x>1两种情况讨论,分别令y甲<y乙、y甲=y乙和y甲>y乙,解关于x的方程或不等式即可得出结论.试题解析:(1)由题意知:当0<x≤1时,y甲=22x;当1<x时,y甲=22+15(x﹣1)=15x+7.y乙=16x+3;∴22?(01){157?(1)x xyx x甲<<=+>,=163y x+乙;(2)①当0<x≤1时,令y甲<y乙,即22x<16x+3,解得:0<x<12;令y甲=y乙,即22x=16x+3,解得:x=12;令y甲>y乙,即22x>16x+3,解得:12<x≤1.②x>1时,令y甲<y乙,即15x+7<16x+3,解得:x>4;令y甲=y乙,即15x+7=16x+3,解得:x=4;令y甲>y乙,即15x+7>16x+3,解得:0<x<4.综上可知:当12<x<4时,选乙快递公司省钱;当x=4或x=12时,选甲、乙两家快递公司快递费一样多;当0<x<12或x>4时,选甲快递公司省钱.考点:一次函数的应用;分段函数;方案型.23.(1)证明见解析;(2)BH=.【解析】【分析】(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.【详解】(1)连接OC,∵AB是⊙O的直径,点C是的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵点B在⊙O上,∴BD是⊙O的切线;(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴,∵OB=2,∴OC=OB=2,AB=4,,∴,∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=AB•BF=AF•BH,∴AB•BF=AF•BH,∴4×3=5BH,∴BH=.【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.24.(1)详见解析;(2)存在,3;(3)当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.【解析】试题分析:(1)由旋转的性质结合△ABC是等边三角形可得∠DCB=60°,CD=CE,从而可得△CDE 是等边三角形;(2)由(1)可知△CDE是等边三角形,由此可得DE=CD,因此当CD⊥AB时,CD最短,则DE最短,结合△ABC是等边三角形,AC=4即可求得此时DE=CD=23(3)由题意需分0≤t<6,6<t<10和t>10三种情况讨论,①当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,由此可知:此时若△DBE是直角三角形,则∠BED=90°;②当6<t<10s时,由性质的性质可知∠DBE=120°>90°,由此可知:此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,结合∠CDE=60°可得∠BDE=∠CDE+∠BDC=60°+∠BDC>60°,由此可得∠BED<60°,由此可知此时若△BDE 是直角三角形,则只能是∠BDE=90°;这样结合已知条件即可分情况求出对应的t的值了.试题解析:(1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由(1)知,△CDE是等边三角形,∴DE=CD,由垂线段最短可知,当CD⊥AB时,CD最小,此时∠ADC=90°,又∵∠ACD=60°,∴∠ACD=30°,∴ AD=12AC=2,∴ CD=22224223AC AD-=-=,∴ DE=23(cm);(3)存在,理由如下:①当0s≤t<6s时,由旋转可知,∠ABE=60°,∠BDE<60°,∴此时若△DBE是直角三角形,则∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEC=60°,∴∠CEB=∠BED-∠DEC=30°,∴∠CDA=∠CEB=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2(s);②当6s<t<10s时,由性质的性质可知∠DBE=120°>90°,∴此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14(s);综上所述:当t=2s或14s时,以D、E、B为顶点的三角形是直角三角形.点睛:(1)解第2小题的关键是:抓住点D在运动过程中,△DBE是等边三角形这一点得到DE=CD,从而可知当CD⊥AB时,CD最短,则DE最短,由此即可由已知条件解得DE的最小值;(2)解第3小题的关键是:根据点D的不同位置分为三段时间,结合已知条件首先分析出在每个时间段内△BDE中哪个角能够是直角,然后再结合已知条件进行解答即可求得对应的t的值了.25.(1)y=5x+400.(2)乙.【解析】试题分析:(1)利用待定系数法即可解决问题;(2)绿化面积是1200平方米时,求出两家的费用即可判断;试题解析:(1)设y=kx+b,则有400100900bk b=⎧⎨+=⎩,解得5400kb=⎧⎨=⎩,∴y=5x+400.(2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元,∵6300<6400∴选择乙公司的服务,每月的绿化养护费用较少.。
2022年福建厦门中考数学试题【含答案】

2022年福建厦门中考数学试题一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1. -11的相反数是( )A. -11B. C. D. 11111-111D 2. 如图所示的圆柱,其俯视图是()A. B.C.D.A 3. 5G 应用在福建省全面铺开,助力千行百业迎“智”变,截止2021年底,全省5G 终端用户达1397.6万户,数据用科学记数法表示为()A. B. C. D. 31397610⨯41397.610⨯71.397610⨯80.1397610⨯C4. 美术老师布置同学们设计窗花,下列作品为轴对称图形的是( )A. B.C.D.A 5. 如图,数轴上的点P 表示下列四个无理数中的一个,这个无理数是()A.D. πB 6. 不等式组的解集是( )1030x x ->⎧⎨-≤⎩A. B. C. D. 1x >13x <<13x <≤3x ≤C7. 化简的结果是( )()223a A.B. C. D. 29a26a 49a 43a C8. 2021年福建省的环境空气质量达标天数位居全国前列,下图是福建省10个地区环境空气质量综合指数统计图.综合指数越小,表示环境空气质量越好.依据综合指数,从图中可知环境空气质量最好的地区是( )A.B. C. D. 1F F 67F 10F D9. 如图所示的衣架可以近似看成一个等腰三角形ABC ,其中AB =AC ,,BC =44cm ,则高AD 约为( )(参考数据:,27ABC ∠=︒sin 270.45︒≈,)cos 270.89︒≈tan 270.51︒≈ A. 9.90cmB. 11.22cmC. 19.58cmD.22.44cmB 10. 如图,现有一把直尺和一块三角尺,其中,,AB =8,点90ABC ∠=︒60CAB ∠=︒A 对应直尺的刻度为12.将该三角尺沿着直尺边缘平移,使得△ABC 移动到,点A B C ''' 对应直尺的刻度为0,则四边形的面积是( )A 'ACC A ''A. 96B.C. 192D.B二、填空题:本题共6小题,每小题4分,共24分.11. 四边形的外角和等于_______.360°.12. 如图,在△ABC 中,D ,E 分别是AB ,AC 的中点.若BC =12,则DE 的长为______.613. 一个不透明的袋中装有3个红球和2个白球,这些球除颜色外无其他差别.现随机从袋中摸出一个球,这个球是红球的概率是______.3514. 已知反比例函数的图象分别位于第二、第四象限,则实数k 的值可以是k y x =______.(只需写出一个符合条件的实数)-5(答案不唯一 负数即可)15. 推理是数学的基本思维方式、若推理过程不严谨,则推理结果可能产生错误.例如,有人声称可以证明“任意一个实数都等于0”,并证明如下:设任意一个实数为x ,令,x m =等式两边都乘以x ,得.①2x mx =等式两边都减,得.②2m 222x m mx m -=-等式两边分别分解因式,得.③()()()x m x m m x m +-=-等式两边都除以,得.④x m -x m m +=等式两边都减m ,得x =0.⑤所以任意一个实数都等于0.以上推理过程中,开始出现错误的那一步对应的序号是______.④16. 已知抛物线与x 轴交于A ,B 两点,抛物线与x 轴交22y x x n =+-22y x x n =--于C ,D 两点,其中n >0,若AD =2BC ,则n 的值为______.8三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17..012022--【详解】解:原式.211=+--=18. 如图,点B ,F ,C ,E 在同一条直线上,BF =EC ,AB =DE ,∠B =∠E .求证:∠A =∠D .见解析【详解】证明:∵BF =EC ,∴,即BC =EF .BF CF EC CF +=+在△ABC 和△DEF 中,,AB DE B EBC EF =⎧⎪∠=∠⎨⎪=⎩∴,ABC DEF ≌△△∴∠A =∠D .19. 先化简,再求值:,其中.2111a a a -⎛⎫+÷ ⎪⎝⎭1a =+.11a -【详解】解:原式()()111a a a a a +-+=÷()()111a a a a a +=⋅+-.11a =-当时,原式.1a =+==20. 学校开展以“劳动创造美好生活”为主题的系列活动,同学们积极参与主题活动的规划、实施、组织和管理,组成调查组、采购组、规划组等多个研究小组.调查组设计了一份问卷,并实施两次调查.活动前,调查组随机抽取50名同学,调查他们一周的课外劳动时间t (单位:h ),并分组整理,制成如下条形统计图.活动结束一个月后,调查组再次随机抽取50名同学,调查他们一周的课外劳动时间t (单位:h ),按同样的分组方法制成如下扇形统计图,其中A 组为,B 组为,C 组为,01t ≤<12t ≤<23t ≤<D 组为,E 组为,F 组为.34t ≤<45t ≤<5t ≥(1)判断活动前、后两次调查数据的中位数分别落在哪一组;(2)该校共有2000名学生,请根据活动后的调查结果,估计该校学生一周的课外劳动时间不小于3h 的人数.(1)活动前调查数据的中位数落在C 组;活动后调查数据的中位数落在D 组(2)1400人【小问1详解】活动前,一共调查了50名同学,中位数是第25和26个数据的平均数,∴活动前调查数据的中位数落在C 组;活动后,A 、B 、C 三组的人数为(名),50(6%8%16%)15⨯++=D 组人数为:(名),15+15=30(名)5030%15⨯=活动后一共调查了50名同学,中位数是第25和26个数据的平均数,∴活动后调查数据的中位数落在D 组;【小问2详解】一周的课外劳动时间不小于3h 的比例为,30%24%16%70%++=(人);200070%1400⨯=答:根据活动后的调查结果,估计该校学生一周的课外劳动时间不小于3h 的人数为1400人.21. 如图,△ABC 内接于⊙O ,交⊙O 于点D ,交BC 于点E ,交⊙O AD BC ∥DF AB ∥于点F ,连接AF ,CF .(1)求证:AC =AF ;(2)若⊙O 的半径为3,∠CAF =30°,求的长(结果保留π).AC (1)见解析(2)52π【小问1详解】∵,,AD BC ∥DF AB ∥∴四边形ABED 是平行四边形,∴∠B =∠D .又∠AFC =∠B ,∠ACF =∠D ,∴,AFC ACF ∠=∠∴AC =AF .【小问2详解】连接AO ,CO .由(1)得∠AFC =∠ACF ,又∵∠CAF =30°,∴,18030752AFC ︒-︒∠==︒∴.2150AOC AFC ∠=∠=︒∴的长.AC 150351802l ππ⨯⨯==22. 在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰,问可购买绿萝和吊兰各多少盆?(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.(1)购买绿萝38盆,吊兰8盆(2)369元【小问1详解】设购买绿萝盆,购买吊兰盆x y ∵计划购买绿萝和吊兰两种绿植共46盆∴46x y +=∵采购组计划将预算经费390元全部用于购买绿萝和吊兰,绿萝每盆9元,吊兰每盆6元∴96390x y +=得方程组4696390x y x y +=⎧⎨+=⎩解方程组得388x y =⎧⎨=⎩∵38>2×8,符合题意∴购买绿萝38盆,吊兰8盆;【小问2详解】设购买绿萝盆,购买吊兰吊盆,总费用为x y z∴,46x y +=96z x y=+∴4143z y=-∵总费用要低于过390元,绿萝盆数不少于吊兰盆数的2倍∴41433902y x y -<⎧⎨≥⎩将代入不等式组得46x y =-4143390462y y y -<⎧⎨-≥⎩∴4683y <≤∴的最大值为15y ∵为一次函数,随值增大而减小3414z y =-+y ∴时,最小15y =z ∴4631x y =-=∴元96369z x y =+=故购买两种绿植最少花费为元.36923. 如图,BD 是矩形ABCD 的对角线.(1)求作⊙A ,使得⊙A 与BD 相切(要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,设BD 与⊙A 相切于点E ,CF ⊥BD ,垂足为F .若直线CF 与⊙A 相切于点G ,求的值.tan ADB ∠(1)作图见解析(2【小问1详解】解:如图所示,⊙A 即为所求作:【小问2详解】解:根据题意,作出图形如下:设,⊙A 的半径为r ,ADB α∠=∵BD 与⊙A 相切于点E ,CF 与⊙A 相切于点G ,∴AE ⊥BD ,AG ⊥CG ,即∠AEF =∠AGF =90°,∵CF ⊥BD ,∴∠EFG =90°,∴四边形AEFG 是矩形,又,AE AG r ==∴四边形AEFG 是正方形,∴,EF AE r ==在Rt △AEB 和Rt △DAB 中,,,90BAE ABD ∠+∠=︒90ADB ABD ∠+∠=︒∴,BAE ADB α∠=∠=在Rt △ABE 中,,tan BAE BE AE ∠=∴,tan BE r α=∵四边形ABCD 是矩形,∴,AB =CD ,AB CD ∥∴,又,ABE CDF ∠=∠90AEB CFD ∠=∠=︒∴,C ABE DF ≌△△∴,tan BE DF r α==∴,tan DE DF EF r r α=+=+在Rt △ADE 中,,即,tan AE ADE DE ∠=tan DE AE α⋅=∴,即,()tan tan r r r αα+=2tan tan 10αα+-=∵,tan 0α>∴tan∠ADB .tan α=24. 已知,AB =AC ,AB >BC .ABC DEC ≌△△(1)如图1,CB 平分∠ACD ,求证:四边形ABDC 是菱形;(2)如图2,将(1)中的△CDE 绕点C 逆时针旋转(旋转角小于∠BAC ),BC ,DE 的延长线相交于点F ,用等式表示∠ACE 与∠EFC 之间的数量关系,并证明;(3)如图3,将(1)中的△CDE 绕点C 顺时针旋转(旋转角小于∠ABC ),若,求∠ADB 的度数.BAD BCD ∠=∠(1)见解析(2),见解析180ACE EFC ∠+∠=︒(3)30°【小问1详解】∵,ABC DEC ≌△△∴AC =DC ,∵AB =AC ,∴∠ABC =∠ACB ,AB =DC ,∵CB 平分∠ACD ,∴,ACB DCB ∠=∠∴,ABC DCB ∠=∠∴,AB CD ∥∴四边形ABDC 是平行四边形,又∵AB =AC ,∴四边形ABDC 是菱形;【小问2详解】结论:.180ACE EFC ∠+∠=︒证明:∵,ABC DEC ≌△△∴,ABC DEC ∠=∠∵AB =AC ,∴,A ABC CB =∠∠∴,ACB DEC ∠=∠∵,180ACB ACF DEC CEF ∠+∠=∠+∠=︒∴,ACF CEF ∠=∠∵,180CEF ECF EFC ∠+∠+∠=︒∴,180ACF ECF EFC ∠+∠+∠=︒∴;180ACE EFC ∠+∠=︒【小问3详解】在AD 上取一点M ,使得AM =CB ,连接BM ,∵AB =CD ,,BAD BCD ∠=∠∴,ABM CDB △△≌∴BM =BD ,,MBA BDC ∠=∠∴,ADB BMD ∠=∠∵,BMD BAD MBA ∠=∠+∠∴,ADB BCD BDC ∠=∠+∠设,,则,BCD BAD α∠=∠=BDC β∠=ADB αβ∠=+∵CA =CD ,∴,2CAD CDA αβ∠=∠=+∴,2BAC CAD BAD β∠=∠-∠=∴,()1180902ACB BAC β∠=︒-∠=︒-∴,()90ACD βα∠=︒-+∵,180ACD CAD CDA ∠+∠+∠=︒∴,()()9022180βααβ︒-+++=︒∴,即∠ADB =30°.30αβ+=︒25. 在平面直角坐标系xOy 中,已知抛物线经过A (4,0),B (1,4)两2y ax bx =+点.P 是抛物线上一点,且在直线AB 的上方.(1)求抛物线的解析式;(2)若△OAB 面积是△PAB 面积的2倍,求点P 的坐标;(3)如图,OP 交AB 于点C ,交AB 于点D .记△CDP ,△CPB ,△CBO 的面积分PD BO ∥别为,,.判断是否存在最大值.若存在,求出最大值;若不存在,请1S 2S 3S 1223S S S S +说明理由.(1)241633y x x =-+(2)存在,或(3,4)162,3⎛⎫ ⎪⎝⎭(3)存在,98【小问1详解】解:(1)将A (4,0),B (1,4)代入,2y ax bx =+得,16404a b a b +=⎧⎨+=⎩解得.43163a b ⎧=-⎪⎪⎨⎪=⎪⎩所以抛物线的解析式为.241633y x x =-+【小问2详解】设直线AB 的解析式为,()0y kx t k =+≠将A (4,0),B (1,4)代入,y kx t =+得,404k t k t +=⎧⎨+=⎩解得.43163k t ⎧=-⎪⎪⎨⎪=⎪⎩所以直线AB 的解析式为.41633y x =-+过点P 作PM ⊥x 轴,垂足为M ,PM 交AB 于点N .过点B 作BE ⊥PM ,垂足为E .所以PAB PNB PNAS S S =+△△△1122PN BE PN AM =⨯+⨯()12PN BE AM =⨯+.32PN =因为A (4,0),B (1,4),所以.14482OAB S =⨯⨯=△因为△OAB 的面积是△PAB 面积的2倍,所以,.3282PN ⨯=83PN =设,则.()()2416,1433P m m m m -+<<()416,33N m m -+所以,()()2416416833333PN m m m =-+--+=即,24201683333m m -+-=解得,.12m =23m =所以点P 的坐标为或(3,4).162,3⎛⎫ ⎪⎝⎭【小问3详解】PD BO ∥OBC PDC ∴ ∽CD PD PC BC OB OC ∴==记△CDP ,△CPB ,△CBO 的面积分别为,,.则1S 2S 3S 1223S S CD PC S S BC OC +=+2PD OB =如图,过点分别作轴的垂线,垂足分别,交于点,过作的平行,B P x ,F E PE AB Q D x 线,交于点PEG,()1,4B ()1,0F ∴1OF ∴=,PD OB DGOF∥∥ DPG OBF ∴ ∽,PD PG DG OB BF OF ∴==设()()2416,1433P m m m m -+<<直线AB 的解析式为. 41633y x =-+设,则()416,33D n n -+416,33G m n ⎛⎫-+ ⎪⎝⎭24164163333PG m m n =-++-()24443m m n =--+DG m n=-24(44)341m m n m n +∴---=整理得244n m m =-+∴1223S S CD PC S S BC OC +=+2PD OB =2DG OF=()2m n =-2424m m m ⎛⎫-+=- ⎪⎝⎭()21542m m =--+2159228m ⎛⎫=--+ ⎪⎝⎭时,取得最大值,最大值为52m ∴=1223S S S S +98。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模拟试卷一、选择题(本大题有7小题,每小题3分,共21分。
每小题都有四个选项,其中有且只有一个选项是正确的) 1.化简|2|-等于( )A .2B . 2-C .2±D .122.下列事件中,必然事件是( )A .掷一枚普通的正方体骰子,骰子停止后朝上的点数是1B . 掷一枚普通的正方体骰子,骰子停止后朝上的点数是偶数C . 掷一枚普通的硬币,掷得的结果不是正面就是反面D . 从99个红球和一个白球的布袋中随机取出一个球,这个球是红球 3.下列物体中,俯视图为矩形的是( )A .B .C .D . 4.下列计算结果正确的是( )A .2a a a ⋅=B .22(3)6a a = C .22(1)1a a +=+ D .2a a a +=5.如图1,在正方形网格中,将△ABC 绕点A 旋转后得到△ADE ,则下列旋转方式中,符合题意的是( )A .顺时针旋转90°B .逆时针旋转90°C .顺时针旋转45°D .逆时针旋转45° 6.已知⊙O 1,和⊙O 2的半径分别为5和2,O 1 O 2=3,则⊙O 1,和⊙O 2的位置关系是( ) A .外离 B .外切 C .相交 D .内切7. 如图2,铁道口的栏杆短臂OA 长1m ,长臂OB 长8m ,当短臂外端A 下降0.5m 时,长臂外端B 升高( )A .2mB .4mC .4.5D .8m图1 图2 二、填空题(本大题有10小题,每小题4分,共40分)8.13的相反数是。
9.若∠A=30°,则∠A的补角是。
10.将1 200 000用科学记数法表示为。
11.某年6月上旬,厦门市日最高气温气温如下表所示:那么这些日最高气温的众数为℃12.一个n边行的内角和是720°,则边数n= 。
13.如图3,⊙O的直径CD垂直于弦AB,垂足为E,若AB=6cm,则AE= cm.14.Rt△ABC中,若∠C=90°,AC=1,AB=5,则sin B= .15.已知一个圆锥的底面半径长为3cm,母线长为6cm,则圆锥的侧面积是cm2.16.如图4,正方形网格中,A、D、B、C都在格点上,点E是线段AC上的任意一点,若AD=1,那么AE= 时,以点A、D、E为顶点的三角形与△ABC相似。
17.如图5中的一系列“黑色梯形”,是由x轴、直线y=x和过x轴上的正奇数1,3,5,7,9,……所对应的点且与y 轴平行的直线围成的。
从左到右将面积依次记为S 1 ,S 2 ,S 3 ,…S n ,…,则S 1= ; S n = 。
11975397531O图 3 图 4图5三、解答题(本大题有9小题,共89分) 18.(本题满分18分)(1)计算:213(2)-+⨯--(2)解不等式组:12,13x x +>⎧⎨-<⎩;(3)化简:2224()222a a a a a a ⋅-+--。
19.(本题满分8分)甲袋中有三个红球,分别标有数字1,2,3;乙袋中有3个白球,分别标有数字2,3,4。
这些球除颜色和数字外完全相同,小明先从甲袋中随机摸出一个红球,再从乙袋中随机摸出一个白球,记红球的数字x ,白球的数字为y ,求摸得的两球数字符合x ky =,k 为偶数的概率。
20.(本题满分8分)已知:如图,矩形ABCD 中,E 为AD 中点。
求∠EBC =∠ECB .求证:∠EBC =∠ECB 。
21. (本题满分8分)甲、乙两辆汽车同时分别从A、B两城沿同一条高速公路匀速驶向C城。
已知A、C 两城的路程为360千米,B、C两城的路程为320千米,甲车比乙车的速度快10千米/小时,结果两辆车同时到达C城。
若设乙车的速度为x千米/时。
(1)根据题意填写下表:(2)求甲、乙两车的速度。
22. (本题满分8分)已知一次函数y kx b =+与反比例函数4y x=的图象相交于点A (-1,m )、B (-4,n ). (1)求一次函数的关系式;(2)在给定的直角坐标系中画出这两个函数的图象,并根据图象回答:当x 为何值时,一次函数的值大于反比例函数的值?23.(本题满分8分)(11厦门0 已知:如图,⊙O 为△ABC 的外接圆,BC 为⊙O 的直径,BA 平分∠CBE ,AD ⊥BE ,垂足为D .(1)求证:AD 为⊙O 的切线;(2)若AC =∠ABD =2,求⊙O 的直径。
24(本题满分10分)已知关于x 的方程2220x x n --=有两个不相等的实数根。
(1)求n 的取值范围;(2)若n <5,且方程的两个根都是整数,求n 的值。
25.(本题满分10分)已知:如图,四边形ABCD中,∠BAC=∠ACD=90°,∠B =∠D。
(1)求证:四边形ABCD是平行四边形;(2)若AB=3厘米,BC=5厘米,AE=13AB,点P从B点出发,以1厘米/秒的速度沿边BC→CD→DA运动至A点停止。
从运动开始,经过多少时间,以点E、B、P为顶点的三角形成为等腰三角形D B26.(本题满分11分)已知抛物线2222y x mx m =-+-+的顶点A 在第一象限,过点A 作AB ⊥y 轴,垂足为B ,C 是线段AB 上一点(不与端点A 、B 重合),过C 作CD ⊥x 轴,垂足为D ,并交抛物线于点P 。
(1)若点C (1,a )是线段AB 的中点,求点P 的坐标;(2)若直线AP 交y 轴的正半轴于点E ,且AC =CP ,求△OPE 的面积S 的取值范围。
2011厦门市中考数学答案一、选择题:选择题(本答题有7题,每小题3分,共21分)二、填空题(本大题有10小题,每小题4分,共40分)8.13- 9. 150° 10.1.2×106 11. 3012. 6 13. 3 14. 1 515. 18π 16.; 8n-4三、解答题(本题有9题,共89分)18.(本题满分18分)(1)原式= -1+3×4-4 ……………………………………2′= 12-5 ……………………………………4′= 7 ……………………………………6′(2)由x + 1 > 2得x > 1 ……………………………………2′由x – 1 < 3 得x < 4 ……………………………………4′ ∴原不等式的解集为:1 < x < 4 ……………………………………6′(3)原式 = 224(2)2a a a a a -⋅+- ……………………………………2′= 2(2)(2)(2)2a a a a a a +-⋅+- ……………………………………4′= a ……………………………………6′19.(本题满分8分)解:树状图表示如下:234234432321P (两球数字相同)= 2920.(本题满分8分)证:∵ E 为AD 中点,即AE = ED , 矩形ABCD 中,∠A =∠D ,AB =AC ∴ △ABE ≌ △DCE (SAS ) ∴ BE = CE ∴∠EBC =∠ECB .21. (本题满分8分) 解(1)(2)依题意可得:36010x + = 320x ,解得 x = 80则x + 10 = 90 ,所以甲的速度为90千米/时,乙的速度为80千米/时。
22. (本题满分8分)已知一次函数y kx b =+与反比例函数4y x=的图象相交于点A (-1,m )、B (-4,n ). 解:(1)∵y kx b =+与4y x=的图象相交于点A (-1,m )、B (-4,n ) ∴将A 、B 分别代入4y x=得 m = -4,n = -1,即A (-1,-4)、B (-4,-1)又A 、B 在一次函数y kx b =+图象上,代入得方程组:4(1)1(4)k b k b -=⋅-+⎧⎨-=⋅-+⎩ 解得:15k b =-⎧⎨=-⎩∴一次函数关系式为5y x =--(2)如下图所示:x < -4 或 -1< x < 0 时,一次函数值大于反比例函数值。
23.(本题满分8分)(11厦门解:(1)连结AO,∵BA平分∠CBE,∠DBA =∠ABO ∵∠DAB ∠DBA = 90°∴∠DAB ∠ABO = 90°又∵∠ABO =∠BAO∴∠DAO =∠DAB ∠BAO = 90°,OA为⊙O半径∴AD为⊙O切线(2) ∵ ∠ABD =∠ABC ,AC= ∴ tan ∠ABD = tan ∠ABC = ACAB= 2 ∴ AB =2AC∴ ⊙O 的直径BC= =524(本题满分10分)解:(1)∵ 方程有两个不相等的实数根。
∴ 480n ∆=+> ………………………………2′ ∴ 12n >- ………………………………3′ (2)依题意有:2222(1)1n x x x =-=-- ∵ 152n -<< ,即1210n -<< ∴ 20(1)2111x n <-=+< ………………………………4′ 又因为方程的两根都是整数,即x 为整数∴2(1)x -值为1或4或9 ………………………………5′ 故n 的值可为:0,32,4 ………………………………6′25.(本题满分10分)(1)证明:在△ABC 与△CDA 中∵ ∠B =∠D ,∠BAC =∠ACD =90°,AC =AC ∴ △ABC ≌△CDA∴ AB = CD ,AD = BC∴ 四边形ABCD 是平行四边形。
(2)∵AB =3,BC =5,∠BAC =90°,AE =13AB ∴AE = 1,BE = 2,AC = 4,cos B =35,sin B = 45.<1> 若EP = EB = 2,过点E作MN垂直BC交BC于点M,交AD的延长线于点N①点P在BC上时112 22cos5BP BM BE B==⋅=,∴112 5t=②点P在AD上时,12sin5MN AB B=⋅=,8sin5EM BE B=⋅=。
∴1284555NE MN ME=-=-=,35AN===∵22EP=∴2NP===∴2235 AP NP AN=-=∴22535 t BC DC AD AP=++-=++<2>若BE = BP = 2时,则32t=<3>若PE = BP,过点P作PH⊥AB,则BH = EH = 1,∴45 cos3 BHt BPB ===综上所述,存在当112 5t=s,2685t-=s,32t=s,453t=s时,△BEP为等腰三角形。
3DB4D 26.(本题满分11分)解:(1)∵AB ⊥y 轴,C (1,a )是线段AB 的中点 ∴A (2,a ),设P (1,t )又点A 是抛物线2222y x mx m =-+-+的顶点 ∴对称轴:22bx m a=-== ∴抛物线解析式为:242y x x =-+- 将P (1,t )代入得1t =,即P (1,1)(2)抛物线可化为顶点式:2()2y x m =--+,则顶点为A (m ,2) ∵AC = CP ,设AC = CP = t ,则P (m -t ,2-t )将P 点坐标代入2()2y x m =--+得:2t t =,解得10t =(舍去),21t = ∴P (m -1,1)又直线AP 交y 轴的正半轴于点E∴P 在第一象限,所以m 1 > 0,即m > 1∵∠EAB = 45°,AB = m ,OB = 2∴OE = OB -BE =2-m > 0,即m < 2. ∴ 1<m <2∴△OPE 的面积211131(2)(1)()22228P S OE x m m m =⋅=--=--+ ∴108S <≤。