薄膜材料的表征方法
薄膜光学与制作_第08章 薄膜的表征方法

薄膜的表征方法
2. 化学态的分析
依据:化学位移和各种终态效应以及价电子能带结构等
XPS主要通过测定内壳层电子能级谱的化学位移可以推知 原子结合状态和电子分布状态
一定元素的电子结合能会随着原子的化学态发生变化-化 学位移。这一化学位移的信息是元素状态分析与相关结构 分析的主要依据
在XPS中,除光电子谱线外,还存在X射线产生的俄歇峰。 这是由于用能量100~3000eV的X射线激发,绝大部分元素 处有光电子发射外,还可发射俄歇电子
薄膜的表征方法
四、定量分析
在表面分析研究中,我们不仅需要定性地确定试样的元 素种类及其化学状态,而且希望能测得它们的含量,对 谱线强度作出定量解释,XPS定量分析的关键是要把所 观测到的信号强度转变成元素的含量,即将谱峰面积转 变成相应元素的含量
薄膜的表征方法
薄膜的表征方法
Intensity / cps
数s (3) 自由电子的动能Ek
则 h= Eb+ Ek + s
薄膜的表征方法
当样品置于仪器中的样品架上时,样品与仪器样品架材料 之间将产生接触电势差A- s (A :分析器材料层逸出功) 进入分析器光电子动能为:
则 Ek = h - Eb - A
薄膜的表征方法
各种原子、分子轨道的电子结合能是一定的,据此可鉴别各 种原子和分子,即可进行定性分析
at 200 V
薄膜的表征方法
4000 3000
Ti4+ 2p2/3
Intensity / cps
2000 1000
Ti3+ 2p2/3 Ti2+ 2p2/3
0
470 468 466 464 462 460 458 456 454 452
薄膜材料的表征与应用前景

薄膜材料的表征与应用前景薄膜材料是一种厚度较薄的材料,具有广泛的应用领域。
在现代科学技术领域中,薄膜材料正变得越来越重要,例如电子器件、太阳能电池、光伏电池、光电子学、医学、生物传感器、防辐射、保护涂料等领域。
在这些领域中,薄膜材料都有着很重要的作用。
因此,如何进行薄膜材料的表征是非常重要的,下面将从表征方法、薄膜材料技术应用、应用前景三方面进行探讨。
一、薄膜材料的表征方法薄膜材料的表征方法主要有X射线衍射、透射电子显微镜、扫描电子显微镜、原子力显微镜等技术。
其中,X射线衍射属于一种常用的材料分析方法,可以得到薄膜的晶体结构、晶格常数、谱线宽度、拓扑结构等信息。
透射电子显微镜可以得到薄膜的显微组织结构,包括富含结构信息的多晶体薄膜、单晶薄膜以及异质结构。
扫描电子显微镜则可用来分析物质表面形态和组成,并且可对样品的形貌、大小、质量等进行观察和计量。
原子力显微镜则可以对样品的表面形貌进行观察,并能够创造分子层面的逼真图像,是一种非常常用的表征方法。
不同的薄膜材料在表征方法上存在很大的差异,例如,半导体薄膜材料需要更精确的表征技术,而对于金属薄膜材料则主要采用透射电子显微镜进行分析。
在分析时也需要注意用适当的方法。
二、薄膜材料技术应用薄膜材料的技术应用广泛,涉及到电子器件、太阳能电池、光伏电池、光电子学、医学、生物传感器、防辐射、保护涂料等领域。
其中,太阳能电池是薄膜材料的典型应用之一。
采用薄膜材料制造的太阳能电池,不仅可以提高转换效率,而且重量更轻、性能更佳。
此外,薄膜材料还可以用于生物传感器领域。
由于薄膜具有微观尺寸范围,因此具有内在的生物相容性和高灵敏度,并且还可以按照需要设计其结构或功能,如含有肝素和酶等的超薄膜,有利于抑制血栓形成和生物膜。
三、薄膜材料技术应用前景在各种新能源材料中,薄膜材料已经成为研究热点。
太阳能电池、燃料电池等的制造关键是新材料的开发,而在这些中,薄膜材料的开发将成为未来的重要方向。
薄膜材料的表征方法

图3-1 椭偏法测量y和Δ的原理图
椭偏仪一般包括以下几个部分:激光光源、起偏器、样品台、检偏器和光 电倍增管接收系统。图3-1所示是反射消光椭偏仪的原理图,激光光源发 出的光, 经过仪器的起偏器变成线偏振光, 通过补偿器1/4波片形成椭圆 偏振光, 然后投射到待测光学系统薄膜上,待测光学系统具有沿正交坐标 x和y轴的正交线性偏振态, 从待测光学系统射出的光, 偏振态已经发生 了变化(椭圆的方位和形状与原入射椭偏光不同) , 通过检偏器和探测器 就可以进行检测了。
(1)椭偏仪法测量的基本原理 椭圆偏振测量, 就是利用椭圆偏振光通过薄膜时, 其反射和 透射光的偏振态发生变化来测量和研究薄膜的光学性质。 椭偏仪法利用椭圆偏振光在薄膜表面反射时会改变偏振状 态的现象,来测量薄膜厚度和光学常数,是一种经典的测 量方法。 光波(电磁波)可以分解为两个互相垂直的线性偏振的S波 和P波,如果S波和P波的位相差不等于p/2的整数倍时,合 成的光波就是椭圆偏振光。当椭圆偏振光通过薄膜时,其 反射和透射的偏振光将发生变化,基于两种介质界面四个 菲涅耳公式和折射定律,可计算出光波在空气/薄膜/衬底多 次反射和折射的反射率R 和折射率T。
膜厚d 的计算
通常,光波的偏振状态由两个参数描述:振幅和相位。为方便 起见,在椭偏仪法中,采用Ψ 和△这两个参数描述光波反射时 偏振态的变化,它们的取值范围为: 0 ≤Ψ ≤π/ 2 ,0≤△< 2π。 (Ψ , △) 和( Rp , Rs) 的关系定义为总反射系数的比值,如下 式所示 Rp/Rs=tanyexp(iΔ) 式中, tgΨ 表示反射前后光波P、S 两分量的振幅衰减比, △=δp -δs 表示光波P、S 两分量因反射引起的相应变化之 差。 由此可见,Ψ 和△直接反映出反射前后光波偏振状态的变化。 在波长、入射角、衬底等确定的条件下,Ψ 和△是膜厚和薄 膜折射率( n) 的函数,写成一般函数式为Ψ = Ψ( d , n) , △= △( d , n) 结合公式,测量y和Δ,就可以求出薄膜折射率n和薄膜的 厚度d。
薄膜表征_薄膜材料与薄膜技术

6.2 薄膜形貌和结构的表征方法
依据尺度范围考虑,薄膜结构的研究分三个层次:
• 薄膜的宏观形貌:包括尺寸、形状、厚度、均匀性; • 薄膜的微观形貌:如晶粒及物相的尺寸大小和分布、
空洞和裂纹、界面扩散层及薄膜织构; • 薄膜的显微组织:包括晶粒的缺陷、晶界及外延界面
的完整性、位错组态等。
可采用的表征方法:
透明膜,数学分析复杂
需制备台阶
精度取决于薄膜密度 厚度较大时具有非线性
效应
(1)椭偏仪法
利用椭圆偏振光在薄膜表面反射时会改变偏振状态的现
象,来测量薄膜厚度和光学常数。当偏振光入射在具有
一定厚度h的薄膜上,处于入射面的偏振光分量p和垂直
Байду номын сангаас
入射面的偏振光分量s的反射系数R、透射系数T如下:
p
s
空气
0
薄膜 h
6.1薄膜厚度测量
方法
等厚干涉 法
等色干涉 法
椭偏仪法
表面粗糙 度仪 称重法
石英晶体 振荡器法
测量范围 精度 3-2000nm 1-3 nm
1-2000nm 0.2 nm
零点几纳米 0.1 nm 到数微米 大于2 nm 零点几 纳米 无限制 至数微米 0.1 nm
说明 需制备台阶和反射层
需制备台阶、反射层和 光谱仪
电磁透镜:使原来直径约为 50mm的束斑缩小成一个只有 数nm的细小束斑。
扫描线圈:提供入射电子束在 样品表面上和荧光屏上的同 步扫描信号。
样品室:样品台能进行三维空 间的移动、倾斜和转动。
(b)信号检测放大系统 检测样品在入射电子作用 下产生的物理信号,然后 经视频放大作为显像系统 的调制信号。
(3)吸收电子(absorption electrons, AE)
光学实验技术中的薄膜制备与表征指南

光学实验技术中的薄膜制备与表征指南在现代光学实验中,薄膜是一种广泛应用的材料,它具有许多独特的光学性质。
为了实现特定的光学设计要求,科学家们需要制备和表征各种薄膜。
本文将为您介绍光学实验技术中的薄膜制备与表征指南,帮助您更好地理解和应用薄膜技术。
一、薄膜制备技术1. 真空蒸发法真空蒸发法是一种常见的薄膜制备技术,它通常用于金属或有机材料的蒸发。
蒸发源材料通过加热,使其蒸发并沉积在基底表面上,形成薄膜。
真空蒸发法具有简单、灵活的优点,但由于材料的有机蒸发率不同,容易导致薄膜的成分非均匀性。
2. 磁控溅射法磁控溅射法是一种通过离子碰撞使靶材溅射,并沉积在基底上的技术。
这种方法可以获得高质量和均匀性的薄膜。
磁控溅射法通常用于金属、氧化物和氮化物等无机薄膜的制备。
3. 原子层沉积法原子层沉积法(ALD)是一种逐层生长薄膜的方法,通过交替地注入不同的前驱体分子,使其在基底表面上化学反应并沉积。
这种方法可以实现非常精确的厚度控制和成分均一性。
4. 溶胶凝胶法溶胶凝胶法是一种基于溶胶和凝胶的化学反应制备薄膜的方法。
通过溶胶中的物质分子在凝胶中发生凝胶化反应,形成薄膜。
这种方法适用于复杂的薄膜材料。
二、薄膜表征技术1. 厚度测量薄膜的精确厚度对于光学性能至关重要。
常用的测量方法包括激光干涉法、原位椭圆偏振法和扫描电子显微镜等。
激光干涉法通过测量反射光的相位差来确定薄膜厚度,原位椭圆偏振法则通过测量反射光的椭圆偏振状态来推断厚度。
2. 光学性能表征光学性能包括反射率、透过率、吸收率等。
常用的表征方法有紫外可见近红外分光光度计和激光光谱仪。
通过测量样品在不同波长下的吸收或透过光强度,可以得到其光学性能。
3. 表面形貌观察表面形貌对薄膜的光学性能和功能具有重要影响。
扫描电子显微镜和原子力显微镜是常用的表面形貌观察工具。
扫描电子显微镜可以获得样品表面的高分辨率图像,原子力显微镜则可以实现纳米级表面形貌的观察。
4. 结构分析薄膜的结构分析是了解其晶体结构和晶格形貌的重要手段。
薄膜材料的表征方法

6.2 薄膜形貌的表征方法 电子束与固体样品作用时产生的信号
6.2 薄膜形貌的表征方法
➢ 二次电子:外层价电子激发SEM ➢ 背散射电子:被反弹回来的一部分入射电子 S
EM ➢ 透射电子TEM
➢ 俄歇电子:内层电子激发AES,表面层成分分析
6.2 薄膜形貌的表征方法
6.3 薄膜结构的表征方法
6.3.1 X射线衍射法 -- 物相定性分析
材料的成份和组织结构是决定其性能的基本因素,化学分析能给 出材料的成份,金相分析能揭示材料的显微形貌,而X射线衍射分 析可得出材料中物相的结构及元素的存在状态.因此,三种方法不 可互相取代.
物相分析不仅能分析化学组成,更重要的是能给出元素间化学结 合状态和物质聚集态结构.
质量的方法,甚至可以将薄膜厚度的测量精度提高至低于一个 原子层的高水平.
6.1.2 薄膜厚度的机械测量方法
6.1.2.2 石英晶体振荡器法 基于适应晶体片的固有振动频率随其质量的变化而变化的物
理现象. 使用石英晶体振荡器测量薄膜厚度需要注意两个问题:
一,石英晶体的温度变化会造成其固有频率的漂移; 二,应采用实验的方法事先对实际的沉积速度进行标定. 在大多数的情况下,这种方法主要是被用来测量沉积速度. 将其与电子技术相结合,不仅可实现沉积速度、厚度的检测,还 可反过来控制物质蒸发或溅射的速率,从而实现对于薄膜沉积 过程的自动控制.
垂直入射的单色光的反射率随着薄膜的光学厚度n1h的变化而发 生振荡.
当n1> n2n2=1.5,相当于玻璃时,反射极大的位置: h = 2m+1λ/4n1
对于n1< n2,反射极大的条件变为: h = m+1λ/2n1
薄膜材料的制备和表征分析

薄膜材料的制备和表征分析近年来,薄膜材料的制备和表征分析已经成为了一个热门的研究领域。
薄膜材料,指的是厚度在几纳米到几百微米之间的材料,由于其极小的尺寸和高比表面积,具有很多独特的物理、化学和材料特性。
这种材料近年来被广泛应用于复杂的电子器件、生物医学、分析化学等领域。
因此,对薄膜材料的制备方法和表征分析技术进行深入的研究和探究,有助于更好地开发和应用这种材料。
一、薄膜材料制备技术薄膜材料的制备技术有很多种类。
常见的制备方法包括物理气相沉积、化学气相沉积、溅射镀膜、离子束镀膜、分子束外延以及涂覆法等。
其中,物理气相沉积通常使用的设备是真空蒸发装置。
在它的内部,材料样品被放在坩埚中。
而且通过高压电弧,材料样品被化为离子状态和粒子状态的气体。
这些气体以极高浓度流被导入真空室中,使其射到表面上,从而形成薄膜。
化学气相沉积是一个沉淀对应物质的方法,它是一种将气态物质化为固态物质的方法。
其核心原理是在气相沉积过程中,物质原子或分子通过化学反应,形成薄膜。
溅射镀膜是利用氩离子轰击靶材使材料离开靶材沉积在基板表面上形成薄膜。
离子束镀膜和分子束外延则是利用起始物质,通过强气流、热电子和离子的束束出射,碰撞到物质的靶材,然后使其形成薄膜。
涂覆法比较简单,通常是一种在基板表面上涂覆薄膜溶液或者膜浆,然后通过烘干、烘烤等处理过程形成自臻的薄膜。
此外,近年来又兴起了一种被称为“自组装”的制备方法,如自组装膜、自组装量子点等,这种方法利用材料分子之间的相互作用力,通过自发的方式组装形成薄膜。
二、薄膜材料表征分析技术表征分析技术是研究薄膜材料特性的重要手段,它可以为薄膜材料的使用和进一步研究提供基础性数据和依据。
常见的表征分析技术包括扫描电镜成像、X射线衍射、拉曼光谱、电子能谱等。
扫描电镜是一种利用电子束照射样品表面,通过检测样品电子信息制成图片或场景的技术。
它可以提供材料表面的拓扑形态,包括结构、相貌和纹理等特征。
X射线衍射技术通过探测材料的晶体结构,实现快速精确地分析材料的进化、物性与性能等方面的问题。
薄膜的物理性能与表征研究

薄膜的物理性能与表征研究随着科技的不断发展,许多新技术如微纳电子技术、纳米制造技术、光电子技术等得到了广泛应用。
在这些技术中,薄膜技术作为一个重要的领域,引起人们的广泛关注。
薄膜是一种具有厚度微小、面积广阔的材料,其厚度范围可以从几纳米到几百微米。
由于其独特的物理性质,薄膜广泛应用于太阳能光伏、涂层、纳米器件等领域。
因此,对薄膜的物理性能进行研究和表征,对于促进薄膜技术的进一步发展具有重要的意义。
1. 薄膜的物理性质薄膜具有独特的物理性质,其中最具代表性的是量子效应、表面效应和热传导效应。
量子效应是指当材料的尺寸缩小到纳米尺度时,由于量子效应的影响,材料的性质将会发生根本性的变化。
例如,由于量子限制效应的存在,纳米薄膜具有更高的透明度和导电性。
此外,量子隧穿效应也会影响薄膜的输运和光学性能。
表面效应是指由于表面活性、表面束缚和表面散射等因素,薄膜表面具有特殊的性质。
薄膜表面的活性可以使其吸附分子或离子,进而改变其光学、电学、传热等性能。
此外,薄膜表面散射和束缚效应还会影响其光学和声学性能。
热传导效应是指薄膜在热传导过程中具有独特的性质。
由于薄膜的限制几何尺寸、界面散射和晶体结构等因素,其热传导性能会与母材料发生显著变化。
2. 薄膜的表征方法为了对薄膜的物理性质进行研究,需要对其进行表征。
目前,对薄膜进行表征的常用方法包括:扫描电镜(SEM)、透射电镜(TEM)、光学谱学、拉曼光谱学、原子力显微镜(AFM)等。
扫描电镜(SEM)是一种通过扫描电子束对样品表面进行高分辨率成像的方法。
对于薄膜的表征,SEM可以提供样品表面形貌和结构信息,并可以通过透过散射电子进行元素分析。
透射电镜(TEM)是一种将电子束直接透过样品进行成像的方法。
对于薄膜的表征,TEM可以提供材料的局部成分、晶体结构和微观形貌信息。
光学谱学是通过测量薄膜的光学特性,如吸收、透射、反射等来分析材料的性质。
这种表征方法可以提供薄膜的光学指数、厚度、透射率等信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、称重法 如果薄膜的面积A、密度ρ和质量m可以被精确测定的话,由公式
m d A
就可以计算出薄膜的厚度d。 缺点:它的精度依赖于薄膜的密度ρ以及面积A的测量精度。
3 石英晶体振荡器法
将石英晶体沿其线膨胀系数最小的方向切割成片,并在两端面上沉积上金属 电极。由于石英晶体具有压电特性,因而在电路匹配的情况下,石英片上将产生 固有频率的电压振荡。将这样一只石英振荡器放在沉积室内的衬底附近,通过与 另一振荡电路频率的比较,可以很精确地测量出石英晶体振荡器固有频率的微小 变化。在薄膜沉积的过程中,沉积物质不断地沉积到晶片的一个端面上,监测振 荡频率随着沉积过程的变化,就可以知道相应物质的沉积质量或薄膜的沉积厚度。
返回
第二节
一、简 介
薄膜结构的表征方法
二、扫描电子显微镜 三、透射电子显微镜 四、X射线衍射方法 五、低能电子衍射(LEED)和反射式高能电子衍射 (RHEED)
六、扫描隧道显微镜(STM)
七、原子力显微镜(AFM)
返回
一、简
介
薄膜的性能取决于薄膜的结构和成分。其中薄膜结构的研究可以依所研究的尺度 范围被划分为以下三个层次: (1)薄膜的宏观形貌,包括薄膜尺寸、形状、厚度、均匀性等; (2)薄膜的微观形貌,如晶粒及物相的尺寸大小和分布、孔洞和裂纹、界面扩 散层及薄膜织构等; (3)薄膜的显微组织,包括晶粒内的缺陷、晶界及外延界面的完整性、位错组 态等。 针对研究的尺度范围,可以选择不同的研究手段。
返回
fcc-FeNi3
Intensity (arb.unit)
Ta=500 C Ta=400 C Ta=300 C Ta=200 C as-deposited
Ni3C
o o o
o
20
30
40
50
60 70 o 2 ( )
80
90 100
五、低能电子衍射(LEED)和反射式高能电子衍射(RHEED)
返回
Solid State Laboratory
返回
Байду номын сангаас
四、X射线衍射方法
特定波长的X射线束与晶体学平面发生相互作用时会发生X射线的衍射,衍射 现象发生的条件即是布拉格公式
2d sin n
其中,λ为入射的X射线波长,d为相应晶体学面的面 间距,θ为入射X射线与相应晶面的夹角,如图所示, 而n为任意自然数。上式表明,当晶面与X射线之间满 足上述几何关系时,X射线的衍射强度将相互加强。 因此,采取收集入射和衍射X射线的角度信息及强度 分布的方法,可以获得晶体点阵类型、点阵常数、晶 体取向、缺陷和应力等一系列有关的材料结构信息。 解决薄膜衍射强度偏低问题的途径可以有以下三条: (1)采用高强度的X射线源。 (2)延长测量时间。 (3)采用掠角衍射技术。
I Vb exp( A 2 S )
Vb是加在针尖和样品之间的偏臵电压,A是常数。 由上式可知,隧道电流强度对针尖与样品表 面之间距非常敏感,如果距离S减小0.1nm,隧道 电流I将增加一个数量级。因此利用电子反馈线路 控制隧道电流的恒定,并用压电陶瓷材料控制针 尖在样品表面的扫描,则探针在垂直于样品方向 上高低的变化就反映出样品表面的起伏,如图 (a)。将针尖在样品表面扫描时运动的轨迹直接 在荧光屏或记录纸上显示出来,就得到了样品表 恒电流模式 面态密度的分布或原子排列的图象。 S为针尖与样品间距,I、Vb为隧道电流和偏臵
第六章 薄膜材料的表征方法
第一节 薄膜厚度测量技术
第二节 薄膜结构的表征方法 第三节 薄膜成分的表征方法
第一节 薄膜厚度测量技术
一、薄膜厚度的光学测量方法 二、薄膜厚度的机械测量方法
一、薄膜厚度的光学测量方法
1、光的干涉条件
n( AB BC ) AN 2nd cos N
sin n sin
2、背反射电子像 如图(b)所示,除了二次电子之外,样品表面还会将相当一部分 的入射电子反射回来。这部分被样品表面直接反射回来的电子具有与入 射电子相近的高能量,被称为背反射电子。接收背反射电子的信号,并 用其调制荧光屏亮度而形成的表面形貌被称为背反射电子像。
3、扫描电子显微镜提供的其他信号形式 扫描电子显微镜除了可以提供样品的二次电子和背反射电子形貌以外, 同时还可以产生一些其他的信号,例如电子在与某一晶体平面发生相互作用 时会被晶面所衍射产生通道效应,原子中的电子会在受到激发以后从高能态 回落到低能态,同时发出特定能量的X射线或俄歇电子等。接收并分析这些 信号,可以获得另外一些有关样品表层结构及成分的有用信息。
返回
六、扫描隧道显微镜(Scanning Tunneling Microscope-STM)
扫描隧道显微镜的基本原理是利用量子理论中的隧道效应。 将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的 距离非常接近时(通常小于1nm),在外加电场的作用下,电子会穿过两个电极 之间的势垒流向另一电极,这种现像即是隧道效应。 隧道电流I是电子波函数重叠的量度,与针尖和样品之间距离S和平均功函数 1 Φ有关:
由2dsinθ=nλ可知,要想对薄膜的表面进行研究,可以采取两种方法。 1、采用波长较长的电子束,对应的电子束入射角和衍射角均比较大。由于这时 的电子能量较低,因而电子束对样品表面的穿透深度很小。 2、采用波长远小于晶体点阵原子面间距的电子束。这时,对应的电子入射角和 衍射角均较小,因而穿透深度也只限于薄膜的表层。 下图分别对应低能及高能电子的衍射方法。
4n1
为了能够利用上述关系实现对于薄膜厚度的测量,需要设计出强振荡关系的具体 测量方法。 (1)利用单色光入射,但通过改变入射角度(及反射角度)的方法来满足干涉条 件的方法被称为变角度干涉法(VAMFO),其测量装臵原理图如图。 (2)使用非单色光入射薄膜表面,在固定光的入射角度的情况下,用光谱仪分析 光的干涉波长,这一方法被称为等角反射干涉法(CARIS)。
电压,Vz为控制针尖在z方向高度的反馈电压。
对于起伏不大的样品表面,可以控制针尖高度守恒扫描,通过记录隧道电流 的变化亦可得到表面态密度的分布,如图(b)。这种扫描方式的特点是扫描速度 快,能够减少噪音和热漂移对信号的影响,但一般不能用于观察表面起伏大于 1nm的样品。
恒高度模式
任何借助透镜来对光或其它辐射进行聚焦的显微镜都不可避免的受到一条根 本限制:光的衍射现象。由于光的衍射,尺寸小于光波长一半的细节在显微镜下 将变得模糊。而STM则能够轻而易举地克服这种限制,因而可获得原子级的高分 辨率。 从STM的工作原理可知,在STM观测样品表面的过程中,扫描探针的结构所 起的作用是很重要的。如针尖的曲率半径是影响横向分辨率的关键因素;针尖的 尺寸、形状及化学同一性不仅影响到STM图象的分辨率,而且还关系到电子结构 的测量。 返回
2、透射电子显微像衬度形成
用物镜光栅取透射电子束或衍射电子束之中的一束就可以构成样品的形貌像。 这是因为,样品中任何的不均匀性都将反映在其对入射电子束的不同的衍射本领 上。对使用透射束成像的情况来讲,空间的不均匀性将使得衍射束的强度随位臵 而变化,因而透射束的强度也随着发生相应的变化。即不论是透射束还是衍射束, 都携带了样品的不同区域对电子衍射能力的信息。将这一电子束成像放大之后投 影在荧光屏上,就得到了样品组织的透射像。 电子束成像的方式可以被进一步细分为三种: (1)明场像 即只使用透射电子束,而用光栅档掉所有衍射束的成像方式。 (2)暗场像 透射的电子束被光栅档掉,而用一束衍射束来作为成像光源。 (3)相位衬度 允许两束或多束电子参与成像。 右图是Au薄膜的高分辨率点阵 像,从其中已可以分辨出一个 个Au原子的空间排列。
C60
七、原子力显微镜(AFM)
AFM的工作原理如图,将一个对微弱力极敏感的微悬臂一端固定,另一端有 一微小的针尖,针尖与样品表面轻轻接触。由于针尖尖端原子与样品表面原子间 存在极微弱的排斥力(10-8~10-6N),通过在扫描时控制这种力的恒定,带有针 尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表 面方向起伏运动。利用光学检测法或隧道电流检测法,可测得微悬臂对应于扫描 各点的位臵变化,从而可以获得样品表面形貌的信息。
返回
二、扫描电子显微镜Scanning Electronic Microscope (SEM)
工作原理:由炽热的灯丝阴极发射出的电子在阳极电压的加 速下获得一定的能量。其后,加速后的电子将进 入由两组同轴磁场构成的透镜组,并被聚焦成直 径只有5nm左右的电子束。装臵在透镜下面的磁场 扫描线圈对这束电子施加了一个总在不断变化的 偏转力,从而使它按一定的规律扫描被观察的样 品表面的特定区域上。 优点:提供清晰直观的形貌图像,分辨率高,观察景深长, 可以采用不同的图像信息形式,可以给出定量或半定量 的表面成分分析结果等。 1、二次电子像 二次电子是入射电子从样品表层激发出来的能量 最低的一部分电子。二次电子低能量的特点表明,这 部分电子来自样品表面最外层的几层原子。用被光电 倍增管接收下来的二次电子信号来调制荧光屏的扫描 亮度。由于样品表面的起伏变化将造成二次电子发射 的数量及角度分布的变化,如图(c),因此,通过保持屏幕扫描与样品表面电子 束扫描的同步,即可使屏幕图像重现样品的表面形貌,而屏幕上图像的大小与实 际样品上的扫描面积大小之比即是扫描电子显微镜的放大倍数。
场发射扫描电子显微镜 Field Emission SEM (FESEM) 分辨率可达1-2 nm
返回
三、透射电子显微镜 Transmission Electronic Microscope
特点:电子束一般不再采取扫描方式对样品的一定区域 进行扫描,而是固定地照射在样品中很小的一个 区域上;透射电子显微镜的工作方式是使被加速 的电子束穿过厚度很薄的样品,并在这一过程中 与样品中的原子点阵发生相互作用,从而产生各 种形式的有关薄膜结构和成分的信息。 透射电子显微镜的基本工作模式有两种:影像模式和衍射模式。 两种工作模式之间的转换主要依靠改变物镜光栅 及透镜系统电流或成像平面位臵来进行。 1、透射电子显微镜的衍射工作模式 在衍射工作模式下,电子在被晶体点阵衍射以后又 被分成许多束,包括直接透射的电子束和许多对应于不 同晶体学平面的衍射束。 右图是不同薄膜材料在透射电子显微镜下的电子衍射谱, 通过对它的分析可以得到如下一些薄膜的结构信息: (1)晶体点阵的类型和点阵常数; (2)晶体的相对方位; (3)与晶粒的尺寸大小、孪晶等有关的晶体缺陷的显微结构方面的信息。