中学七年级数学上期末总复习

合集下载

浙江省宁波市奉化区实验中学2020-2021学年七年级(上)期末数学复习试卷

浙江省宁波市奉化区实验中学2020-2021学年七年级(上)期末数学复习试卷

2020-2021学年浙江省宁波市奉化区实验中学七年级(上)期末数学复习试卷一.选择题(共5小题)1.设a,b是实数,定义@的一种运算如下:a@b=a+b+ab,则下列结论:①若a=1,b =﹣2,则a@b=﹣3②若(﹣2)@x=﹣3,则x=1③a@b=b@a④a@(b@c)=(a@b)@c,其中正确的是()A.①②③B.①③④C.②③④D.①②③④2.在长方形ABCD中放入六个长、宽都相同的小长方形,所标尺寸如图所示,求小长方形的宽AE.若设AE=x(cm),则由题意,得方程()A.14﹣3x=6B.14﹣3x=6+2xC.6+2x=x+(14﹣3x)D.6+2x=14﹣x3.某商场年收入由餐饮、零售两类组成.已知2018年餐饮类收入是零售类收入的2倍,2019年因商场运营调整,餐饮类收入减少了10%,零售类收入增加了18%,若该商场2019年零售类收入为708万元,则该商场2019的年收入比2018年()A.增加12万元B.减少12万元C.增加24万元D.减少24万元4.图中有4根绳子,在绳的两端用力拉,有一根绳子是能打成结的,请问是哪一根?()A.B.C.D.5.设一列数a1,a2,a3,…,a2015,…中任意三个相邻的数之和都是20,已知a2=2x,a18=9+x,a65=6﹣x,那么a2020的值是()A.2B.3C.4D.5二.填空题(共12小题)6.若∠1与∠2互为补角,∠1=m°,∠2=n°,且m<n,则∠1的余角的度数是_度.(结果用同时含m,n的代数式表示)7.已知2a﹣1的平方根是±3,b+2的立方根是2,则b﹣a的算术平方根是.8.如图,一个点表示一个数,不同位置的点表示不同的数,每行各点所表示的数自左向右从小到大,且相邻两个点所表示的数相差1,每行数的和等于右边相应的数字.那么,表示2020的点在第行,从左向右第个位置.9.如图,点O在直线AB上,∠AOD=120°,CO⊥AB,OE平分∠BOD,则图中一共有对互补的角.10.数a,b在数轴上的位置如图所示,化简:|2a﹣b|﹣|b﹣a|+|b|=.11.“格子乘法”作为两个数相乘的一种计算方法最早在15世纪由意大利数学家帕乔利提出,在明代的《算法统宗》一书中被称为“铺地锦”.如图1,计算47×51,将乘数47计入上行,乘数51计入右行,然后以乘数47的每位数字乘以乘数51的每位数字,将结果计入相应的格子中,最后按斜行加起来,得2397.(1)如图2,用“格子乘法”表示25×81,则m的值为.(2)如图3,用“格子乘法”表示两个两位数相乘,则a的值为.12.如图,有一个盛有水的正方体玻璃容器,从内部量得它的棱长为30cm,容器内的水深为8cm,现把一块长,宽,高分别为15cm,10cm,10cm的长方体实心铁块平放进玻璃容器中,容器内的水将升高cm.13.已知点A,B,C都在直线l上,点P是线段AC的中点.设AB=a,PB=b,则线段BC的长为(用含a,b的代数式表示).14.数学实践课中:一张纸片,第一次将其撕成四小片,以后每次都将其中一片撕成更小的四片,如此进行下去,撕到第2次手中共有7张纸片,问撕到第4次时,手中共有张,撕到第n次时,手中共有(用含有n的代数式表示)张.15.甲、乙、丙三人有相同数量的小球.如果甲给乙2颗,丙给甲5颗,然后乙再给丙一些球,所给的数量与丙还有的球数量相同,那么乙最后剩下颗球.16.已知关于x的一元一次方程x+2﹣x=m的解是x=71,那么关于y的一元一次方程y+3﹣(y+1)=m的解是.17.已知关于x的一元一次方程+3=2019x+m的解为x=2,那么关于y的一元一次方程+2019(y﹣1)=m﹣3的解y=.三.解答题(共9小题)18.(1)化简或计算下列两题:①已知x2﹣5=2y,求﹣5(x2﹣2xy)+(2x2﹣10xy)+6y的值.②已知x=2是关于x的一元一次方程(3a﹣1)x=2b+4的解,求6﹣3a+b的值.(2)写出上述①、②题共同体现的数学思想.19.已知,P是线段AB的中点,点C是线段AB的三等分点,线段CP的长为4cm.(1)求线段AB的长.(2)若点D是线段AC的中点,求线段DP的长.20.如图,甲、乙两个圆柱形玻璃容器各盛有一定量的液体,甲、乙容器的内底面半径分别为6cm和4cm,现将一个半径为2cm的圆柱形玻璃棒(足够长)垂直触底插入甲容器,此时甲、乙两个容器的液面高均为hcm(如图①),再将此玻璃棒垂直触底插入乙容器(液体损耗忽略不计),此时乙容器的液面比甲容器的液面高3cm(如图②).(1)求甲、乙两个容器的内底面面积.(2)求甲容器内液体的体积(用含h的代数式表示).(3)求h的值.21.将大小不一的正方形纸片①、②、③、④放置在如图所示的长方形ABCD内(相同纸片之间不重叠),其中AB=a.小明发现:通过边长的平移和转化,阴影部分⑤的周长与正方形①的边长有关.(1)根据小明的发现,用代数式表示阴影部分⑥的周长.(2)阴影部分⑥与阴影部分⑤的周长之差与正方形(填编号)的边长有关,请计算说明.22.列方程解应用题:已知A,B两地相距60千米,甲骑自行车,乙骑摩托车都沿一条笔直的公路由A地匀速行驶到B地,乙每小时比甲多行30千米,甲比乙早出发3小时,乙出发1小时后刚好追上甲.(1)求甲的速度;(2)问乙出发之后,到达B地之前,何时甲乙两人相距6千米;(3)若丙骑自行车与甲同时出发,沿着这条笔直的公路由B地匀速行驶到A地,经过小时与乙相遇,求此时甲、丙两人之间距离.23.已知,直线AB与直线CD相交于点O,OB平分∠DOF.(1)如图,若∠BOF=40°,求∠AOC的度数;(2)作射线OE,使得∠COE=60°,若∠BOF=x°(0<x<90),求∠AOE的度数.(用含x的代数式表示)24.在数轴上点A表示整数a,且<a<,点B表示a的相反数.(1)画数轴,并在数轴上标出点A与点B;(2)点P,Q在线段AB上,且点P在点Q的左侧,若P,Q两点沿数轴相向匀速运动,出发后经4秒两点相遇.已知在相遇时点Q比点P多行驶了3个单位,相遇后经1秒点Q到达点P的起始位置.问点P,Q运动的速度分别是每秒多少个单位;(3)在(2)的条件下,若点P从整数点出发,当运动时间为t秒时(t是整数),将数轴折叠,使A点与B点重合,经过折叠P点与Q点也恰好重合,求P点的起始位置表示的数.25.直线AB与直线CD相交于点O,OE平分∠BOD.(1)如图①,若∠BOC=130°,求∠AOE的度数;(2)如图②,射线OF在∠AOD内部.①若OF⊥OE,判断OF是否为∠AOD的平分线,并说明理由;②若OF平分∠AOE,∠AOF=∠DOF,求∠BOD的度数.26.【阅读理解】射线OC 是∠AOB 内部的一条射线,若∠COA =∠BOC ,则我们称射线OC 是射线OA 的伴随线.例如,如图1,∠AOB =60°,∠AOC =∠COD =∠BOD =20°,则∠AOC=∠BOC ,称射线OC 是射线OA 的伴随线;同时,由于∠BOD =∠AOD ,称射线OD 是射线OB 的伴随线.【知识运用】(1)如图2,∠AOB =120°,射线OM 是射线OA 的伴随线,则∠AOM =°,若∠AOB 的度数是α,射线ON 是射线OB 的伴随线,射线OC 是∠AOB 的平分线,则∠NOC 的度数是.(用含α的代数式表示)(2)如图3,如∠AOB =180°,射线OC 与射线OA 重合,并绕点O 以每秒3°的速度逆时针旋转,射线OD 与射线OB 重合,并绕点O 以每秒5°的速度顺时针旋转,当射线OD 与射线OA 重合时,运动停止.①是否存在某个时刻t (秒),使得∠COD 的度数是20°,若存在,求出t 的值,若不存在,请说明理由.②当t 为多少秒时,射线OC 、OD 、OA 中恰好有一条射线是其余两条射线的伴随线.2020-2021学年浙江省宁波市奉化区实验中学七年级(上)期末数学复习试卷参考答案与试题解析一.选择题(共5小题)1.【分析】根据a@b=a+b+ab,以及实数的运算方法,逐项判断,判断出正确的结论有哪几个即可.【解答】解:①:a@b=1+(﹣2)+1×(﹣2)=﹣3,故①正确.②:﹣2@x=﹣2+x+(﹣2)x=﹣2﹣x=﹣3解得x=1,故②正确.③:a@b=a+b+ab b@a=b+a+ab所以a@b=b@a,故③正确.④:a@(b@c)=a@(b+c+bc)=a+(b+c+bc)+a(b+c+bc)=a+b+c+bc+ab+ac+abc(a@b)@c=(a+b+ab)@c=(a+b+ab)+c+(a+b+ab)c=a+b+c+bc+ab+ac+abc 所以,a@(b@c)=(a@b)@c,故④正确.故选:D.【点评】此题主要考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.2.【分析】设AE=xcm,观察图形结合小长方形的长不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设AE为xcm,由题意得:6+2x=x+(14﹣3x)故选:C.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.3.【分析】设2018年零售类收入为x万元,餐饮类收入为2x万元,由“零售类收入增加了18%,若该商场2019年零售类收入为708万元”,列出方程可求x的值,即可求解.【解答】解:设2018年零售类收入为x万元,餐饮类收入为2x万元,由题意可得:x(1+18%)=708,解得:x=600,∴2x=1200万元,∴708+1200×(1﹣10%)﹣(600+1200)=﹣12万元,∴该商场2019的年收入比2018年减少了12万元,故选:B.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是本题的关键.4.【分析】根据绳子缠绕方式,以及上下叠压关系,可得出答案.【解答】解:根据绳子缠绕形式,以及上下关系,可得B选项能打成结,其它的直接拉成直线,故选:B.【点评】考查视图与投影,根据主视图以及缠绕叠压关系得出答案.5.【分析】由题可知,a1,a2,a3每三个循环一次,可得a18=a3,a65=a2,所以2x=6﹣x,即可求a2=4,a3=11,再由三个数的和是20,可求a2020=a1=5.【解答】解:由题可知,a1+a2+a3=a2+a3+a4,∴a1=a4,∵a2+a3+a4=a3+a4+a5,∴a2=a5,∵a4+a5+a6=a3+a4+a5,∴a3=a6,……∴a1,a2,a3每三个循环一次,∵18÷3=6,∴a18=a3,∵65÷3=21…2,∴a65=a2,∴2x=6﹣x,∴x=2,∴a2=4,a3=11,∵a1,a2,a3的和是20,∴a1=5,∵2020÷3=673…1,∴a2020=a1=5,故选:D.【点评】本题考查数字的变化规律;能够通过所给例子,找到式子的规律,利用有理数的运算解题是关键.二.填空题(共12小题)6.【分析】根据补角的定义可得m+n=180,得到=90,再根据余角的定义可得∠1的余角的度数.【解答】解:∵∠1与∠2互为补角,∠1=m°,∠2=n°,且m<n,∴m+n=180,∴=90,∴∠1的余角的度数是﹣m=.故答案为:.【点评】本题考查了余角和补角,掌握余角和补角的定义是解题的关键.7.【分析】根据2a﹣1的平方根是±3,b+2的立方根是2,得出2a﹣1=9,b+2=8,求出a=5,b=6,求出b﹣a的值,从而得出b﹣a的算术平方根.【解答】解:∵2a﹣1的平方根是±3,b+2的立方根是2,∴2a﹣1=9,b+2=8,∴a=5,b=6,∴b﹣a=6﹣5=1,∴b﹣a的算术平方根是1;故答案为:1.【点评】本题考查平方根、立方根与算术平方根;熟练掌握平方根、立方根、算术平方根的定义是解题的关键.8.【分析】观察不难发现,每一行的数字的个数为连续的奇数,且数字为相应的序数,然后求解即可.【解答】解:由图可知,前n行数的个数为1+3+5+…+2n﹣1==n2,∵452=2025,∴表示2020的点在第45行,从左向右第45×2﹣1﹣(2025﹣2020)=84个位置.故答案为:45;84.【点评】本题是对数字变化规律的考查,观察出每一行的数字的个数为连续的奇数,且数字为相应的序数是解题的关键.9.【分析】根据互补的定义进行解答,找到两个角之和为180°角的对数.【解答】解:∵∠AOD=120°,CO⊥AB于O,OE平分∠BOD,∴∠COD=∠DOE=∠EOB=30°,∴这三个角都与∠AOE互补.∵∠COE=∠DOB=60°,∴这两个角与∠AOD互补.另外,∠AOC和∠COB都是直角,二者互补.因此一共有6对互补的角.故答案为:6.【点评】本题主要考查余角和补角、角平分线的知识点,两角之和为90°,两角互余,两角之和为180°,两角互补,解答此题的关键是找全互补的角.10.【分析】先根据有理数的大小比较比较大小,再根据绝对值的化简解答即可.【解答】解:∵﹣2<b<﹣1<0<a<1,∴2a﹣b>0,b﹣a<0,b<0,∴|2a﹣b|﹣|b﹣a|+|b|=2a﹣b+b﹣a﹣b=a﹣b.故答案为:a﹣b.【点评】此题考查有理数的大小比较和绝对值的化简,解题的关键是根据数轴得出有关字母的大小进行解答.11.【分析】(1)利用“铺地锦”格子,求出m的值即可判断.(2)方法1:根据题意可得方程10(a﹣2)+(﹣a+5)=4a,解方程即可求解;方法2:设4a的十位数字是m,个位数字是n,列出符合条件的方程组即可求解.【解答】解:(1)如图2,m=0+0+2=2.(2)方法1:如图3,依题意有10(a﹣2)+(﹣a+5)=4a,10a﹣20﹣a+5=4a,5a=15,解得a=3.如图3,设4a的十位数字是m,个位数字是n,则,解得a=3.故答案为:2;3.【点评】本题考查新定义,三元一次方程组;能够理解新定义,4a的结果用各位数字正确表示出来是解题的关键.12.【分析】根据题意,得等量关系为:容器的底面积×容器中水的原来高度+实心铁块的底面积×(容器中水的高度+水增加的高度)=容器的底面积×(容器中水原来的高度+水增加的高度).【解答】解:设容器内的水将升xcm,根据题意得30×30×8+15×10×(8+x)=30×30×(8+x)或30×30×8+10×10×(8+x)=30×30×(8+x),解得x=1.6或x=1,即容器内的水将升1.6cm或1cm.故答案为:1.6或1【点评】本题主要考查了长方体的体积公式以及一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.13.【分析】根据点A,B,C都在直线l上,点P是线段AC的中点.设AB=a,PB=b,分三种情况即可求线段BC的长.【解答】解:∵点A,B,C都在直线l上,点P是线段AC的中点.设AB=a,PB=b,①如图BC=a+2b;②如图,BC=a﹣2b;③如图,BC=a﹣(2a﹣2b)=﹣a+2b.则线段BC的长为:a+2b或a﹣2b或﹣a+2b.当点B在点A左边时,BC=a+(b﹣a)+(b﹣a)=2b﹣a,当点A、点C位置互换时,讨论上面四种情况,BC长得出相同的结果;综上所述,则线段BC的长为:a+2b或a﹣2b或﹣a+2b.故答案为:a+2b或a﹣2b或﹣a+2b.【点评】本题考查了两点间的距离,解决本题的关键是分情况说明.14.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题的关键是弄清小王每撕一次,多出多少小纸片.【解答】解:由题目中的“每次都将其中﹣片撕成更小的四片”,可知:每撕一次,比上一次多增加3张小纸片.因此,当撕到第4次时,手中共有3×4+1=13(张).当撕到第n次时,手中共有(3n+1)张纸片.故答案是:13;(3n+1).【点评】此题考查规律型中的图形变化问题,注意每次都是把上一次中的一张撕成了4张,即在原来的基础上多3张.15.【分析】根据题意,可以表示出乙最后剩下的小球,本题得以解决.【解答】解:设甲、乙、丙原来有a颗小球,乙最后剩下的小球有:a+2﹣(a﹣5)=a+2﹣a+5=7,故答案为:7.【点评】本题考查了整式的加减,解答本题的关键是明确题意,找出所求问题需要的条件,求出乙最后剩下的球数.16.【分析】把x=71代入方程表示出m,进而确定出所求方程的解即可.【解答】解:把x=71代入方程得:m=73﹣,代入得:y+3﹣(y+1)=73﹣,解得:y=70,故答案为:y=70.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.17.【分析】方程+3=2019x+m可整理得:﹣2019x=m﹣3,则该方程的解为x=2,方程+2019(y﹣1)=m﹣3可整理得:﹣2019(1﹣y)=m﹣3,令n =1﹣y,则原方程可整理得:﹣2019n=m﹣3,则n=2,得到关于y的一元一次方程,解之即可.【解答】解:根据题意得:方程+3=2019x+m可整理得:﹣2019x=m﹣3,则该方程的解为x=2,方程+2019(y﹣1)=m﹣3可整理得:﹣2019(1﹣y)=m﹣3,令n=1﹣y,则原方程可整理得:﹣2019n=m﹣3,则n=2,即1﹣y=2,解得:y=﹣1.故答案为:﹣1.【点评】本题考查了一元一次方程的解,正确掌握转化思想是解题的关键.三.解答题(共9小题)18.【分析】(1)①原式去括号整理后,把已知等式代入计算即可求出值;②把x=2代入方程计算求出3a﹣b的值,原式变形后代入计算即可求出值;(2)写出上述共同体现的数学思想即可.【解答】解:(1)①∵x2﹣5=2y,∴x2﹣2y=5,原式=﹣5x2+10xy+2x2﹣10xy+6y=﹣3x2+6y=﹣3(x2﹣2y)=﹣15;②由题意得:2(3a﹣1)=2b+4,∴3a﹣b=3,原式=6﹣(3a﹣b)=3;(2)上述①、②题共同体现的数学思想是整体思想.【点评】此题考查了整式的加减﹣化简求值,以及一元一次方程的解,熟练掌握运算法则是解本题的关键.19.【分析】(1)根据线段中点的定义和线段三等分点的定义即可得到结论;(2)根据线段中点的定义即可得到结论.【解答】解:(1)∵P是线段AB的中点,∴AP=AB,∵点C是线段AB的三等分点,①当AC=AB时,∴AB﹣AB=4,∴AB=24;②当AC=AB时,AB﹣AB=4,∴AB=24;(2)∵点D是线段AC的中点,∴AD=CD=AC,①当AC=AB时,AC=8,∴AD=4;∴DP=8②当AC=AB时,AC=16,∴AD=8.∴DP=4.【点评】本题考查了两点间分距离,线段中点的定义,分类讨论思想的运用是解题的关键.20.【分析】(1)由甲、乙容器的内底面半径分别为6cm和4cm,可得甲、乙两个容器的内底面面积;(2)根据题意,即可得甲容器内液体的体积;(3)根据题意乙的液体体积不变,可列出方程即可求得h的值.【解答】解:(1)由甲、乙容器的内底面半径分别为6cm和4cm,所以甲、乙两个容器的内底面面积分别为:36πcm2,16πcm2.答:甲、乙两个容器的内底面面积分别为:36πcm2,16πcm2.(2)根据题意,得甲容器内液体的体积为:36πh﹣4πh=32πh(cm3).答:甲容器内液体的体积为32πh(cm3).(3)根据题意可知:乙的液体体积不变,可得16πh=(16π﹣4π)(+3)解得h=.答:h的值为.【点评】本题考查了认识立体图形、列代数式,解决本题的关键是根据立体图形所给数据列出代数式.21.【分析】(1)利用矩形正方形的性质即可解决问题.(2)设②的边长是m.用m,a表示出⑤的周长即可解决问题.【解答】解:(1)阴影部分⑥的周长=2AB=2a.(2)设②的边长是m.∴阴影部分⑤的周长是2(a﹣m),∴阴影部分⑥﹣阴影部分⑤=2a﹣2(a﹣m)=2m.故答案为②.【点评】本题考查正方形的性质,矩形的性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.22.【分析】(1)设甲速度为x千米/小时,则乙速度为(x+30)千米/小时,根据题意可得等量关系:甲4小时的路程=乙1小时的路程,根据等量关系列出方程,再解即可;(2)设乙出发后t小时甲乙相距6千米,则甲出发(t+3)小时,本题有两种情况需要进行分类讨论,一种是甲乙相遇前,一种是甲乙相遇后分别列出方程,再解即可;(3)设丙的速度为a千米/小时,丙与甲同时出发,所以丙行驶小时,乙行驶了﹣3=小时,根据题意可得两人相遇则行驶路程和为AB两地之间的距离60千米.然后列出方程可得丙的速度,再求甲、丙两人之间距离.【解答】解:(1)设甲速度为x千米/小时,则乙速度为(x+30)千米/小时由题意可列方程:4x=x+30解得:x=10所以,甲速度为10千米/时;(2)由(1)可知,甲速度为10千米/小时,乙速度为10+30=40千米/小时,设乙出发后t小时甲乙相距6千米,则甲出发(t+3)小时,相遇前:甲比乙多行驶6千米,可列方程10(t+3)﹣40t=6,解得:t=0.8,相遇后:乙比甲多行驶6千米,可列方程40t﹣10(t+3)=6,解得t=1.2,综上所述,乙出发0.8小时或1.2小时,甲乙相距6千米;(3)设丙的速度为a千米/小时,丙与甲同时出发,所以丙行驶小时,乙行驶了﹣3=(小时).根据题意可列方程a+×40=60,解得:a=10,所以丙的速度为10千米/小时,经过小时,丙行驶×10=36(千米),甲行驶×10=36(千米),所以两人相距36+36﹣60=12(千米).【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系.23.【分析】(1)根据角平分线的定义可得∠BOD的度数,再根据对顶角相等可得答案;(2)此题分两种情况,首先画出图形,再计算角度.【解答】解:(1)∵OB平分∠DOF,∴∠BOD=∠BOF=40°,∴∠AOC=40°;(2)∵OB平分∠DOF,∴∠BOD=∠BOF,∵∠BOF=x°,∴∠BOD=x°,∴∠AOC=∠BOD=x°,如图1,∵∠COE=60°,∴∠AOE=∠AOC+∠COE=(60+x)°(0<x<90);如图2,当0<x≤60时,∵∠COE=60°,∴∠AOE=∠COE﹣∠AOC=(60﹣x)°(0<x≤60),当60<x<90时,如图3中,∵∠COE=60°,∴∠AOE=∠AOC+∠COE=(x+60)°(60<x<90),或∠AOE′=∠AOC﹣∠COE′=(x﹣60)°综上所述:∠AOE的度数为(60+x)°或|60﹣x|°.【点评】此题主要考查了对顶角和角平分线定义,关键是掌握对顶角相等.24.【分析】(1)数轴上点A表示整数a,且<a<,即可求得a的值;(2)相遇时点Q比点P多行驶了3个单位,可得S Q=S P+3,根据出发后经4秒两点相遇,相遇后经1秒点Q到达点P的起始位置,得Q的速度是P的速度的4倍,可以设P 的速度为x单位/秒,则Q的速度为4x单位/秒,可得16x=4x+3进而求解;(3)由(2)可得:点P,Q运动的速度分别是每秒、1个单位,由题意,折叠A,B 重合,所以折点为AB的中点,根据P,Q运动t秒后,折叠重合,且折点为原点,P,Q 表示的数互为相反数,设P从y点出发,则Q从(y+5)出发,列方程即可求解.【解答】解:(1)数轴上点A表示整数a,且<a<,∵<<,∴a==8,∵点B表示a的相反数,∴b=﹣8,如图1所示,(2)如图2所示,∵相遇时点Q比点P多行驶了3个单位,∴得关系式:S Q=S P+3,∵出发后经4秒两点相遇,相遇后经1秒点Q到达点P的起始位置,∴Q的速度是P的速度的4倍,∴设P的速度为x单位/秒,则Q的速度为4x单位/秒,∴S P=4x,S Q=4×4x=16x,将S P=4x,S Q=4×4x=16x,代入关系式S Q=S P+3,得,16x=4x+3解得x=.则Q的速度为4×=1单位/秒.答:点P,Q运动的速度分别是每秒、1个单位.(3)由(2)可知:∵点P,Q运动的速度分别是每秒、1个单位,∴PQ=(1+)×4=5由题意,折叠A,B重合,所以折点为AB的中点,即=0,又∵P,Q运动t秒后,折叠重合,且折点为原点,∴P,Q表示的数互为相反数,设P从y点出发,则Q从(y+5)出发,则P:y+t,Q:y+5﹣t,∵P,Q互为相反数,∴y+t+y+5﹣t=0解得y=,∵y,t均为整数,且t>0,∴或.综上所述:P从﹣1或2出发满足条件.【点评】本题考查了估算无理数的大小、实数的性质、实数与数轴、一元一次方程的应用,解决本题的关键是根据题意正确画图.25.【分析】(1)根据∠BOC=130°,OE平分∠BOD即可求∠AOE的度数;(2)①根据OF⊥OE,OE平分∠BOD,即可判断OF是∠AOD的平分线;②根据OF平分∠AOE,∠AOF=∠DOF,即可求∠BOD的度数.【解答】解:(1)∵∠BOC=130°,∴∠AOD=∠BOC=150°,∠BOD=180°﹣∠BOC=50°∵OE平分∠BOD,∴∠DOE=25°∴∠AOE=∠AOD+∠DOE=155°.答:∠AOE的度数为155°(2)①OF是∠AOD的平分线,理由如下:∵OF⊥OE,∴∠EOF=90°∴∠BOE+∠AOF=90°∵OE平分∠BOD,∴∠BOE=∠DOE∴∠DOE+∠AOF=90°∠DOE+∠DOF=90°∴∠AOF=∠DOF∴OF是∠AOD的平分线;②∵∠AOF=∠DOF,设∠DOF=3x,则∠AOF=∠5x,∵OF平分∠AOE,∴∠AOF=∠EOF=5x∴∠DOE=2x∵OE平分∠BOD,∴∠BOD=4x5x+3x+4x=180°∴x=15°.∴∠BOD=4x=60°.答:∠BOD的度数为60°.【点评】本题考查了垂线、角平分线的定义、对顶角、邻补角,解决本题的关键是掌握角平分线定义.26.【分析】(1)根据伴随线定义即可求解;(2)①利用分类讨论思想,分相遇之前和之后进行列式计算即可;②利用分类讨论思想,分相遇之前和之后四个图形进行计算即可.【解答】解:(1)40°,;(2)射线OD与OA重合时,t==36(秒)①当∠COD的度数是20°时,有两种可能:若在相遇之前,则180﹣5t﹣3t=20,∴t=20;若在相遇之后,则5t+3t﹣180=20,∴t=25;所以,综上所述,当t=20秒或25秒时,∠COD的度数是20°.②相遇之前:(i)如图1,OC是OA的伴随线时,则∠AOC =∠COD 即3t =(180﹣5t﹣3t)∴t =(ii)如图2,OC是OD的伴随线时,则∠COD =∠AOC即180﹣5t﹣3t =3t∴t=相遇之后:(iii)如图3,OD是OC的伴随线时,则∠COD =∠AOD即5t+3t﹣180=(180﹣5t)∴t =(iv)如图4,OD是OA的伴随线时,则∠AOD =∠COD 即180﹣5t =(3t+5t﹣180)∴t=30所以,综上所述,当t=,,,30时,OC、OD、OA中恰好有一条射线是其余两条射线的伴随线.【点评】本题考查了角的计算,解决本题的关键是利用分类讨论思想.第15页(共15页)。

重庆市渝中区第二十九中学2020-2021学年第一学期七年级数学期末考试复习三

重庆市渝中区第二十九中学2020-2021学年第一学期七年级数学期末考试复习三

5.若关于 x 的方程 3x m x 2的解是 x 2,则 m 的值等于( )
A.6
B.0
C.2
D. 6
6.下面每个图片都是由 6 个大小相同的正方形组成的,其中不能折成正方体的是( )
A.
B.
C.
D.
7.如图,数轴上的点 A 表示的数为 a ,则 a 等于( )
A. 3
B.3
C. 1 3
重庆市渝中区第二十九中学 2020-2021 学年
七年级上数学期末复习三
一 、 单 选题
1.在数﹣ 1 ,0,4.5,|﹣9|,﹣6.79 中,属于正数的个数是( 2
A.2
B.3
C.4
) D.5
2.下列等式中,是一元一次方程的个数有( )
① 5 4x 11;② 3x 2x 1;③ 2x y 5;④ x2 5x 6 0 .
D. 1 3
8.某种商品进价为 800 元,标价 1 200 元,由于该商品积压,商店准备打折销售,但要保证利润率不低于 20%,
则至少可以打 ( )
A.6 折
B.7 折
C.8 折
D.9 折
9.如图,点为线 B 段 AC 上一点, AB 11cm, BC 7cm ,D、E 分别是 AB、AC 的中点,则 DE 的长为
三 、 解 答题 19.计算
(1)
1 2
2 3
1 4
24
(2)
22
5
15
3 5
32
第1页 共6页

第2页 共6页
20.解方程:
(1)10x 3(20 x) 3;
(2) 1 x 1 3x 10 .
3
2
23.将一副三角板叠放在一起:

四川省渠县中学2022-2023学年七年级上学期数学期末专题复习:数轴压轴题练习

四川省渠县中学2022-2023学年七年级上学期数学期末专题复习:数轴压轴题练习

四川省渠县中学2022-2023学年七年级上学期数学专题复习:数轴压轴题练习1、在数轴上,表示数m与n的点之间的距离可以表示为|m-n|.例如:在数轴上,表示数-3与2的点之间的距离是5=|-3-2|,表示数-4与-1的点之间的距离是3=|-4-(-1)|.利用上述结论解决如下问题:(1)若|x-5|=3,求x的值;(2)点A,B为数轴上的两个动点,点A表示的数是a,点B表示的数是b,且|a-b|=6(b>a),点C表示的数为-2.若A,B,C三个点中的某一个点是另两个点所连线段的中点,求a,b的值.2、数轴上两个质点A、B所对应的数为-8、4,A、B两点各自以一定的速度在上运动,且A点的运动速度为2个单位/秒.(1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CB:CA=1:2,若干秒钟后,C停留在-10处,求此时B点的位置?3、如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P从点O 出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.(1)当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm.(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求OB-AP/EF的值.4、已知数轴上三点A,O,B表示的数分别为6,0,﹣4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.5、在数轴上点A表示整数a,且√55<a<√65,点B表示a的相反数.(1)画数轴,并在数轴上标出点A与点B;(2)点P,Q在线段AB上,且点P在点Q的左侧,若P,Q两点沿数轴相向匀速运动,出发后经4秒两点相遇.已知在相遇时点Q比点P多行驶了3个单位,相遇后经1秒点Q到达点P的起始位置.问点P,Q运动的速度分别是每秒多少个单位;(3)在(2)的条件下,若点P从整数点出发,当运动时间为t秒时(t是整数),将数轴折叠,使A点与B 点重合,经过折叠P点与Q点也恰好重合,求P点的起始位置表示的数.6、如图,数轴上点A表示的数为a,点B表示的数为b,AB表示点A和B之间的距离,C是AB的中点,且a、b满足|a+3|+(b+3a)2=0.(1)求点C表示的数;(2)若点P从A点出发向右运动,点M为AP的中点,在点P到达点B之前,求证2BM﹣BP为定值;(3)点P从A点以每秒2个单位的速度向右运动,点Q同时从B点出发以每秒1个单位的速度向左运动,若AP+BQ=3PQ,求运动时间t.7、已知数轴上两点A、B表示的数分别为6,﹣4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是;(2)另一动点Q从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少时间追上点Q?(3)动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动,另一动点R从B出发,以每秒4个单位的速度沿数轴向右匀速运动,则运动多少时间点P到点B的距离是点R到点A的距离的2倍?8、已知,线段AB上有三个点C、D、E,AB=36,AC=2BC,D、E为动点(点D在点E的左侧),并且始终保持DE=16.(1)如图1,当E为BC中点时,求AD的长;(2)如图2.点F为线段BC的中点,AF=3AD,求AE的长;(3)若点D从A出发向右运动(当点E到达点B时立即停止),运动的速度为每秒2个单位长度,当运动时间t为多少秒时,使AD、BE两条线段中,一条的长度恰好是另一23.(10分)如图,点A,B,C,D 在数轴上,点A表示的数是﹣16,点C表示的数是18,AB=4(单位长度),CD=6(单位长度).(1)点B 表示的数是 ,点D 表示的数是 ,线段AD 等于 ;(2)若线段AB 以4个单位长度/秒的速度向右匀速运动,同时线段CD 以2个单位长度/秒的速度向左匀速运动,设运动时间为t 秒.①当BC =6(单位长度)时,求t 的值;②设M 为AC 的中点,N 为BD 的中点,当0<t <5时,求线段MN 的长.9、如图,已知数轴上点A 表示的数为8,B 是数轴上位于A 点左侧一点,且AB =14.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t 秒.(1)写出数轴上点B 表示的数 ,点P 表示的数 (用含t 的式子表示);(2)动点Q 从点B 出发,以每秒3个单位长度的速度向左匀速运动,且点P ,Q 同时出发.①问点P 运动多少秒时,BQ =BP ?②若M 为AP 的中点,在点P ,Q 运动的过程中,QP+QA QM 的值在某一个时间段t 内为定值.求出这个定值,并直接写出t 在哪一个时间段内.10、如图,在数轴上有A ,B 两点,其中点A 在点B 的左侧,已知点B 对应的数为4,点A 对应的数为a .(1)若a =76×(16−13)×314÷35×72,则线段AB 的长为 (直接写出结果).(2)若点C 在射线AB 上(不与A ,B 重合),且2AC ﹣3BC =6,求点C 对应的数(结果用含a 的式子表示).(3)若点M 在线段AB 之间,点N 在点A 的左侧(M 、N 均不与A 、B 重合),且AM ﹣BM =2.当AM AN =3,BN =6BM 时.求a 的值.11、已知线段AB上有若干个不重合的点,求出该线段上任意两点所确定的线段长度(包括线段AB),并记所有这些线段的长度总和为αAB.例如:图1中,AB=12,C为AB的中点,则αAB=AB+AC+CB=12+6+6=24.(1)如图2,线段AB上有C、D两点,其中AB=20,AC:CD:DB=2:3:5,求αAB;(2)如图3,线段AB上有C、D、E三点,其中C为AB的中点,E为DB的中点,且CE=5,αAB=74,求AB的长度;(3)线段AB上有C、D两点,线段上任意两点所确定的线段长度是整数,若αAB=51,且CD的长度为奇数,直接写出AB的长度.12、数轴上有A,B,C三点,A,B表示的数分别为m,n(m<n),点C在B的右侧,AC﹣AB=2.(1)如图1,若多项式(n﹣1)x3﹣2x7+m+3x﹣1是关于x的二次三项式,请直接写出m,n的值;(2)如图2,在(1)的条件下,长度为1的线段EF(E在F的左侧)在A,B之间沿数轴水平滑动(不与A,B重合),点M是EC的中点,N是BF的中点,在EF滑动过程中,线段MN的长度是否发生变化,请判断并说明理由;(3)若点D是AC的中点.①直接写出点D表示的数(用含m,n的式子表示);②若AD+2BD=4,试求线段AB的长.13、如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒).(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C 从开始运动到停止运动,行驶的路程是多少个单位长度?14、“幸福是奋斗出来的”,在数轴上,若C到A的距离刚好是3,则C点叫做A的“幸福点”,若C到A、B的距离之和为6,则C叫做A、B的“幸福中心”(1)如图1,点A表示的数为﹣1,则A的幸福点C所表示的数应该是;(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2,点C就是M、N的幸福中心,则C所表示的数可以是(填一个即可);(3)如图3,A、B、P为数轴上三点,点A所表示的数为﹣1,点B所表示的数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,当经过多少秒时,电子蚂蚁是A和B的幸福中心?15、如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于电子蚂蚁P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变.请判断哪个结论正确,并求出正确结论的值.。

初一上学期数学知识点总复习

初一上学期数学知识点总复习

初一上学期数学知识点总复习
1. 整数
- 正整数、零、负整数的概念
- 整数的加减法、乘除法
- 判断一个数的正负性
2. 分数
- 分数的概念和表示方法
- 分数的四则运算
- 分数与整数的相互转换
3. 小数
- 小数的概念和表示方法
- 小数的四则运算
- 小数与分数的相互转换
4. 百分数
- 百分数的概念和表示方法
- 百分数的换算
- 百分数与小数、分数的相互转换
5. 数据统计
- 数据的收集、整理和展示
- 平均数、中位数、众数的计算- 折线图、柱形图的绘制和分析
6. 几何图形
- 几何图形的概念和基本要素
- 直线、线段、射线的认识和绘制- 不同类型几何图形的性质和特点
7. 方程与不等式
- 方程的概念和解的意义
- 一元一次方程的解法
- 不等式的概念和解的意义
- 一元一次不等式的解法
8. 几何运动
- 直线运动与曲线运动的概念
- 单位速度、位移与时间的关系
- 运动图像的绘制和分析
9. 数据的处理
- 数据的分类和整理
- 求出简单统计指标
- 制作直方图和折线图
10. 三角形
- 三角形的概念和分类
- 三角形的性质和判定
- 三角形内角和外角的性质
以上是初一上学期数学的主要知识点总结,希望能对你的复有所帮助。

上海市西初级中学人教版七年级上册数学 压轴题 期末复习考试试卷及答案

上海市西初级中学人教版七年级上册数学 压轴题 期末复习考试试卷及答案

上海市西初级中学人教版七年级上册数学 压轴题 期末复习考试试卷及答案一、压轴题1.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ?2.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小;(2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.3.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC ,∠BOD 的平分线OM 、ON ,然后提出如下问题:求出∠MON 的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM 和ON 仍然是∠AOC 和∠BOD 的角平分线.其中,按图2方式摆放时,可以看成是ON 、OD 、OB 在同一直线上.按图3方式摆放时,∠AOC 和∠BOD 相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON 的度数为 °.图3中∠MON 的度数为 °.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC 和∠BOD 的和为90°,所以我们容易得到∠MOC 和∠NOD 的和,这样就能求出∠MON 的度数.小华:设∠BOD 为x °,我们就能用含x 的式子分别表示出∠NOD 和∠MOC 度数,这样也能求出∠MON 的度数.(2)请你根据他们的谈话内容,求出图1中∠MON 的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC 、∠BOD 的平分线OM 、ON ,他们认为也能求出∠MON 的度数. (3)你同意“智慧小组”的看法吗?若同意,求出∠MON 的度数;若不同意,请说明理由.4.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD .(1)如图1,当OB 、OC 重合时,求∠AOE ﹣∠BOF 的值;(2)如图2,当∠COD 从图1所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <10),在旋转过程中∠AOE ﹣∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF =14°时,t = 秒.5.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题: (1)数列-4,-3,1的最佳值为 (2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为 ,取得最佳值最小值的数列为 (写出一个即可);(3)将2,-9,a (a >1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a 的值.6.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______.(3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分.(5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.7.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .(1)分别求a,b,c的值;(2)若点A和点B分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t秒.i)是否存在一个常数k,使得3BC-k•AB的值在一定时间范围内不随运动时间t的改变而改变?若存在,求出k的值;若不存在,请说明理由.ii)若点C以每秒3个单位长度的速度向右与点A,B同时运动,何时点C为线段AB的三等分点?请说明理由.8.如图,在平面直角坐标系中,点M的坐标为(2,8),点N的坐标为(2,6),将线段MN向右平移4个单位长度得到线段PQ(点P和点Q分别是点M和点N的对应点),连接MP、NQ,点K是线段MP的中点.(1)求点K的坐标;(2)若长方形PMNQ以每秒1个单位长度的速度向正下方运动,(点A、B、C、D、E分别是点M、N、Q、P、K的对应点),当BC与x轴重合时停止运动,连接OA、OE,设运动时间为t秒,请用含t的式子表示三角形OAE的面积S(不要求写出t的取值范围);(3)在(2)的条件下,连接OB、OD,问是否存在某一时刻t,使三角形OBD的面积等于三角形OAE的面积?若存在,请求出t值;若不存在,请说明理由.9.在数轴上,图中点A表示-36,点B表示44,动点P、Q分别从A、B两点同时出发,相向而行,动点P、Q的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P到达原点O,动点Q到达点C,设运动的时间为t(t>0)秒.(1)求OC的长;(2)经过t秒钟,P、Q两点之间相距5个单位长度,求t的值;(3)若动点P到达B点后,以原速度立即返回,当P点运动至原点时,动点Q是否到达A点,若到达,求提前到达了多少时间,若未能到达,说明理由.10.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。

期末专题复习 角度的计算 四川省渠县中学2021-2022学年北师大版数学七年级上册

期末专题复习 角度的计算  四川省渠县中学2021-2022学年北师大版数学七年级上册

四川省渠县中学2021-2022学年七年级上学期数学期末专题复习:角度的计算1、如图,已知直线AB和CD相交于点O,∠COE是直角,OF平分∠AOE,∠COF=34°.求∠AOD的度数.2、如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)若∠AOB=42°,∠DOE=36°,求∠BOD的度数;(2)若∠AOD与∠BOD互补,且∠DOE=30°,求∠AOC的度数.3、如图,OD平分∠AOB,OE平分∠BOC,∠COD=20°,∠AOB=140°,求∠DOE的度数.4、如图,O为AB上一点,∠BOC=40°,OD平分∠AOC,∠DOE=90°,求∠AOE的度数.5、如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)若∠AOB=40°,∠DOE=30°,求∠BOD的度数;(2)若∠AOD与∠BOD互补,且∠DOE=35°,求∠AOC的度数.6、如图所示,O为直线上的一点,且∠COD为直角,OE平分∠BOD,OF平分∠AOE,∠BOC+∠FOD=117°,求∠BOE的度数.7、如图,点O在直线AB上,∠BOD与∠COD互补,∠BOC=3∠EOC.(1)若∠AOD=24°,则∠DOE的度数为.(2)若∠AOD+∠BOE=110°,求∠AOD的度数.8、如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:3,将一直角△MON的直角顶点放在点O处,边OM在射线OB上,另一边ON在直线AB的下方,绕点O逆时针旋转△MON,其中旋转的角度为α(0<α<360°)(1)将图1中的直角△MON旋转至图2的位置,使得ON落在射线OB上,此时α为度.(2)将图1中的直角△MON旋转至图3的位置,使得ON在∠AOC的内部,试探究∠AOM与∠NOC之间满足什么样的等量关系,并说明理由.(3)若直角△MON绕点O按每秒5°的速度顺时针旋转,当直角△MON的直角边ON所在直线恰好平分∠AOC时,求此时直角△MON绕点O的运动时间t的值.9、如图,点O为直线AB上一点,将一直角三角板OMN的直角顶点放在点O处.射线OC平分∠MOB.(1)如图1,若∠AOM=30°,求∠CON的度数;(2)将图1中的直角三角板OMN绕顶点O顺时针旋转至图2的位置,一边OM 在射线OB上方,另一边ON在直线AB的下方.①探究∠AOM和∠CON之间的数量关系,并说明理由;②当∠AOC=3∠BON时,求∠AOM的度数.10、如图1,直线DE上有一点O,过点O在直线DE上方作射线OC,∠COE=140°,将一直角三角板AOB的直角顶点放在点O处,一条直角边OA在射线OD上,另一边OB在直线DE上方,将直角三角板绕着点O按每秒10°的速度逆时针旋转一周,设旋转时间为t秒.(1)当直角三角板旋转到如图2的位置时,OA恰好平分∠COD,求此时∠BOC 的度数;(2)若射线OC的位置保持不变,在旋转过程中,是否存在某个时刻,使得射线OA、OC、OD中的某一条射线是另两条射线所成夹角的角平分线?若存在,请求出t的取值,若不存在,请说明理由;(3)若在三角板开始转动的同时,射线OC也绕O点以每秒15°的速度逆时针旋转一周,从旋转开始多长时间,射线OC平分∠BOD.直接写出t的值.(本题中的角均为大于0°且小于180°的角)11、已知∠AOB=120°,∠COD=40°,OM平分∠AOC,ON平分∠BOD(图中的角均大于0°且小于180°).(1)如图1,求∠MON的度数;(2)若OD与OB重合,OC从图2中的位置出发绕点O逆时针以每秒10°的速度旋转,同时OD从OB的位置出发绕点O顺时针以每秒5°的速度旋转,旋转时间为t秒.①当8<t<24时,试确定∠BOM与∠AON的数量关系;②当0<t<26且t≠时,若|∠MON﹣∠COD|=∠AOB,则t=.12、如图1,已知∠AOC=m°,∠BOC=n°且m、n满足等式|3m﹣420|+(2n﹣40)2=0,射线OP从OB处绕点O以4度/秒的速度逆时针旋转.(1)试求∠AOB的度数;(2)如图1,当射线OP从OB处以4度/秒绕点O开始逆时针旋转,同时射线OQ从OA处以1度/秒的速度绕点O顺时针旋转,当他们旋转多少秒时,使得∠POQ=10°?(3)如图2,若射线OD为∠AOC的平分线,当射线OP从OB处绕点O开始逆时针旋转,同时射线OT从射线OD处以x度/秒的速度绕点O顺时针旋转,使得这两条射线重合于射线OE处(OE在∠DOC的内部)时,且=,试求x.13、已知∠AOB=150°,OD为∠AOB内部的一条射线(1)如图(1),若∠BOC=60°,OD为∠AOB内部的一条射线,∠COD=∠BOC,OE平分∠AOB,求∠DOE的度数.(2)如图(2),若OC、OD是∠AOB内部的两条射线,OM、ON分别平分∠AOD,∠BOC,且∠MOC≠∠NOD,求(∠AOC﹣∠BOD)/(∠MOC﹣∠NOD)的值.(3)如图(3),C1为射线OB的反向延长线上一点,将射线OB绕点O顺时针以6°/s的速度旋转,旋转后OB对应射线为OB1,旋转时间为t秒(0<t≤35),OE平分∠AOB,OF为∠C1OB1的三等分线,∠C1OF=∠C1OB1,若|∠C1OF﹣∠1AOE|=30°,直接写出t的值为.14、已知O是直线CD上的一点,∠AOB是直角,直线OA平分∠COE,∠AOB从OB与OD重合时开始绕着O点以每秒15°的速度逆时针旋转,设旋转时间为t 秒.(1)当t=时,∠DOE=∠BOC;(2)若∠AOB绕着点O旋转一周,请探究∠DOE和∠BOE的数量关系,请画出图形,并说明理由;(3)若OF平分∠AOC,若OF与OD的夹角为150°,这时∠BOD的度数.参考答案1、如图,已知直线AB和CD相交于点O,∠COE是直角,OF平分∠AOE,∠COF=34°.求∠AOD的度数.【解答】解:∵∠COE是直角,∴∠COE=90°,∵∠COF=34°,∴∠EOF=56°,∵OF平分∠AOE,∴∠AOF=∠EOF=56°,∴∠AOC=56°﹣34°=22°,∴∠AOD=180°﹣22°=158°.2、如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)若∠AOB=42°,∠DOE=36°,求∠BOD的度数;(2)若∠AOD与∠BOD互补,且∠DOE=30°,求∠AOC的度数.【解答】解:(1)∵OB是∠AOC的平分线,OD是∠COE的平分线,∠AOB=42°,∠DOE=36°,∴∠AOB=∠BOC==42°,∠COD=∠DOE=36°,∴∠BOD=∠BOC+∠DOC=42°+36°=78°;(2)∵∠AOD与∠BOD互补,∠BOC=,∴∠AOD+∠BOD=180°,∴∠AOC+∠COD+∠AOC+∠COD=180°,∵∠DOE=30°,∴∠COD=30°,∴,∴=180°,∴∠AOC=80°.3、如图,OD平分∠AOB,OE平分∠BOC,∠COD=20°,∠AOB=140°,求∠DOE的度数.【解答】解:∵OD平分∠AOB,∠AOB=140°,∴∠AOD=∠AOB=70°,∴∠BOC=∠AOB﹣∠AOD﹣∠COD=50°,∴∠COE=∠BOC=25°,∴∠DOE=∠COD+∠COE=45°.4、如图,O为AB上一点,∠BOC=40°,OD平分∠AOC,∠DOE=90°,求∠AOE的度数.【解答】解:∵O为AB上一点,∠BOC=40°,∴∠AOC=180°﹣40°=140°∵OD平分∠AOC∴∠AOD=∠AOC=70°又∵∠DOE=90°∴∠AOE=20°5、如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)若∠AOB=40°,∠DOE=30°,求∠BOD的度数;(2)若∠AOD与∠BOD互补,且∠DOE=35°,求∠AOC的度数.【解答】解:(1)∵OB是∠AOC的平分线,OD是∠COE的平分线∴∠COB=∠BOA=40°,∠COD=∠DOE=30°∴∠BOD=∠COD+∠COB=70°;(2)由题意得:∠AOD+∠BOD=180°,∵OD平分∠COE,∠DOE=35°,∴∠COD=∠DOE=35°,设∠AOB=x,则∠AOD=2x+35°,∠BOD=x+35°,∴2x+35°+x+35°=180°,解得:x=,∴∠AOC=2x=.6、如图所示,O为直线上的一点,且∠COD为直角,OE平分∠BOD,OF平分∠AOE,∠BOC+∠FOD=117°,求∠BOE的度数.【解答】解:设∠BOE=α°,∵OE平分∠BOD,∴∠BOD=2α°,∠EOD=α°.∵∠COD=∠BOD+∠BOC=90°,∴∠BOC=90°﹣2α°.∵OF平分∠AOE,∠AOE+∠BOE=180°,∴∠FOE=∠AOE=(180°﹣α°)=90°﹣α°,∴∠FOD=∠FOE﹣∠EOD=90°﹣α°﹣α°=90°﹣α°,∵∠BOC+∠FOD=117°,∴90°﹣2α°+90°﹣α°=117°,∴α=18,∴∠BOE=18°.7、如图,点O在直线AB上,∠BOD与∠COD互补,∠BOC=3∠EOC.(1)若∠AOD=24°,则∠DOE的度数为68°.(2)若∠AOD+∠BOE=110°,求∠AOD的度数.【解答】解:(1)∠BOD与∠COD互补,∠BOD+∠AOD=180°,∴∠AOD=∠COD=24°,∴∠BOC=180°﹣∠AOD﹣∠COD=180°﹣24°﹣24°=132°,∵∠BOC=3∠EOC.∴∠EOC=132°÷3=44°,∴∠DOE=∠COD+∠COE=24°+44°=68°,故答案为:68°.(2)∵∠AOD+∠BOE=110°,∠AOD+∠BOE+∠DOE=180°,∴∠DOE=180°﹣110°=70°,∵∠BOC=3∠EOC,∠AOD=∠COD,∴∠DOE=70°=∠AOD+(110°﹣∠AOD),解得:∠AOD=30°,8、如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:3,将一直角△MON的直角顶点放在点O处,边OM在射线OB上,另一边ON在直线AB的下方,绕点O逆时针旋转△MON,其中旋转的角度为α(0<α<360°)(1)将图1中的直角△MON旋转至图2的位置,使得ON落在射线OB上,此时α为90 度.(2)将图1中的直角△MON旋转至图3的位置,使得ON在∠AOC的内部,试探究∠AOM与∠NOC之间满足什么样的等量关系,并说明理由.(3)若直角△MON绕点O按每秒5°的速度顺时针旋转,当直角△MON的直角边ON所在直线恰好平分∠AOC时,求此时直角△MON绕点O的运动时间t的值.【解答】解:∵∠AOC:∠BOC=1:3,∠AOC+∠BOC=180°,∴∠AOC=45°,∠BOC=135°(1)由ON落在射线OB上,可知旋转角为:∠NOB=90°;故答案为90.(2)∵∠AOM+∠AON=90°,∠AON+∠NOC=∠AOC=45°,∴∠AOM﹣∠NOC=45°;(3)∵ON所在直线恰好平分∠AOC,∴∠AON=∠AOC÷2=45°÷2=22.5°,此时旋转角为:90°+22.5°=112.5°112.5÷5=22.5(秒),或(112.5+180)÷5=58.5(秒)所以直角△MON绕点O的运动时间是22.5秒或58.5秒.9、如图,点O为直线AB上一点,将一直角三角板OMN的直角顶点放在点O处.射线OC平分∠MOB.(1)如图1,若∠AOM=30°,求∠CON的度数;(2)将图1中的直角三角板OMN绕顶点O顺时针旋转至图2的位置,一边OM 在射线OB上方,另一边ON在直线AB的下方.①探究∠AOM和∠CON之间的数量关系,并说明理由;②当∠AOC=3∠BON时,求∠AOM的度数.【解答】解:(1)由已知得∠BOM=180°﹣∠AOM=150°,又∵∠MON是直角,OC平分∠BOM,∴∠CON=∠MON﹣∠BOM=90°﹣×150°=15°;(2)设∠AOM=α,则∠BOM=180°﹣α,①∠AOM=2∠CON,理由如下:∵OC平分∠BOM,∴∠MOC=∠BOM=(180°﹣α)=90°﹣a,∵∠MON=90°,∴∠CON=∠MON﹣∠MOC=90°﹣(90°﹣α)=α,∴∠AOM=2∠CON;②由①知∠BON=∠MON﹣∠BOM=90°﹣(180°﹣α)=α﹣90°,∠AOC=∠AOM+∠MOC=α+90°﹣α=90°+α,∵∠AOC=3∠BON,∴90°+α=3(α﹣90°),解得α=144°,∴∠AOM=144°.10、如图1,直线DE上有一点O,过点O在直线DE上方作射线OC,∠COE=140°,将一直角三角板AOB的直角顶点放在点O处,一条直角边OA在射线OD上,另一边OB在直线DE上方,将直角三角板绕着点O按每秒10°的速度逆时针旋转一周,设旋转时间为t秒.(1)当直角三角板旋转到如图2的位置时,OA恰好平分∠COD,求此时∠BOC 的度数;(2)若射线OC的位置保持不变,在旋转过程中,是否存在某个时刻,使得射线OA、OC、OD中的某一条射线是另两条射线所成夹角的角平分线?若存在,请求出t的取值,若不存在,请说明理由;(3)若在三角板开始转动的同时,射线OC也绕O点以每秒15°的速度逆时针旋转一周,从旋转开始多长时间,射线OC平分∠BOD.直接写出t的值.(本题中的角均为大于0°且小于180°的角)【解答】解:(1)解:∵∠COE=140°,∴∠COD=180°﹣∠COE=40°,又∵OA平分∠COD,∴∠AOC=∠COD=20°,∵∠AOB=90°,∴∠BOC=90°﹣∠AOC=70°;(2)存在①当OA平分∠COD时,∠AOD=∠AOC,即10°t=20°,解得:t=2;②当OC平分∠AOD时,∠AOC=∠DOC,即10°t﹣40°=40°,解得:t=8;③当OD平分∠AOC时,∠AOD=∠COD,即360°﹣10°t=40°,解得:t=32;综上所述:t=2,t=8或32;(3)或或35,理由如下:设运动时间为t,则有①当90+10t=2(40+15t)时,t=②当270﹣10t=2(320﹣15t)时,t=③当OC回到起始位置后,∵OC平分∠BOD,∴∠BOC=∠COD=40°,∴t==35,所以t的值为或或35.11、已知∠AOB=120°,∠COD=40°,OM平分∠AOC,ON平分∠BOD(图中的角均大于0°且小于180°).(1)如图1,求∠MON的度数;(2)若OD与OB重合,OC从图2中的位置出发绕点O逆时针以每秒10°的速度旋转,同时OD从OB的位置出发绕点O顺时针以每秒5°的速度旋转,旋转时间为t秒.①当8<t<24时,试确定∠BOM与∠AON的数量关系;②当0<t<26且t≠时,若|∠MON﹣∠COD|=∠AOB,则t=或12 .【解答】解:(1)∵∠AOB=120°,∠COD=40°,∴∠AOC=120°﹣∠BOC,∠BOD=40°﹣∠BOC,∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠AOC=(120°﹣∠BOC),∠BON=∠BOD=(40°﹣∠BOC)∴∠MON=∠MOC+∠BOC+∠BON=60°+20°=80°;(2)①如图1,则∠AOM=∠AOC=(10t﹣80°)=5t﹣40°,∠BON=∠BOD=5t=t,∴∠BOM=∠AOB+∠AOM=120°+5t﹣40°=5t+80°.当t=20时,∠AOM=5t﹣40°=60°,∠BOM=5t+80°=180°(与题意不符).当8<t<20时,∠BOM=∠AOB+∠AOM=120°+5t﹣40°=5t+80°.∠AON=∠AOB+∠BON=120°+t,∴2∠AON﹣∠BOM=240°+5t﹣5t﹣80°=160°;当20<t<24时,如图2,则∠BOM=360°﹣(∠AOM+∠AOB)=360°﹣(5t﹣40°+120°)=280°﹣5t,∠AON=∠AOB+∠BON=120°+t,∴2∠AON+∠BOM=2(120°+t)+(280°﹣5t)=520°,综上,当8<t<20时,2∠AON﹣∠BOM=160°;当20<t<24时,2∠AON+∠BOM=520°,②若∠COD=180°,则t=s,若∠MON=180°,则t=s,若∠COD=0°,则t==s.当0<t<时,如图3,∠MON=∠AOM+∠BON+∠AOB=∠AOC+∠BOD+∠AOB=(10t﹣80°)+×5t+120°=t+80°,∠COD=10t+40°+5t=15t+40°,∵|∠MON﹣∠COD|=∠AOB,∴|(t+80°)﹣(15t+40°)|=,∴t=,或t=(舍去),当时,如图4,∠MON=∠∠AOC+∠BOD+∠AOB=(10t﹣80°)+×5t+120°=t+80°,∠COD=360°﹣∠AOC﹣∠BOD﹣∠AOB=360°﹣(10t﹣80°)﹣5t﹣120°=320°﹣15t,∵|∠MON﹣∠COD|=∠AOB,∴|(t+80°)﹣(320°﹣15t)|=,∴t=12,或t=(舍去),当<t≤时,如图5,∠MON=360°﹣∠AOC﹣∠BOD﹣∠AOB=360°﹣(10t﹣80°)﹣5t ﹣120°=280°﹣t,∠COD=360°﹣∠AOC﹣∠BOD﹣∠AOB=360°﹣(10t﹣80°)﹣5t﹣120°=320°﹣15t,∵|∠MON﹣∠COD|=∠AOB,∴|(﹣t+280°)﹣(320°﹣15t)|=,∴t=(舍去),或t=(舍去),当<t<26时,∠MON=360°﹣∠AOC﹣∠BOD﹣∠AOB=360°﹣(10t﹣80°)﹣5t ﹣120°=280°﹣t,∠COD=(10t+40°+5t)﹣360°=15t﹣320°,∵|∠MON﹣∠COD|=∠AOB,∴|280°﹣t﹣(15t﹣320°)|=×120°,∴t=或t=28(舍去).综上,t=或12或.故答案为或12或.12、如图1,已知∠AOC=m°,∠BOC=n°且m、n满足等式|3m﹣420|+(2n﹣40)2=0,射线OP从OB处绕点O以4度/秒的速度逆时针旋转.(1)试求∠AOB的度数;(2)如图1,当射线OP从OB处以4度/秒绕点O开始逆时针旋转,同时射线OQ从OA处以1度/秒的速度绕点O顺时针旋转,当他们旋转多少秒时,使得∠POQ=10°?(3)如图2,若射线OD为∠AOC的平分线,当射线OP从OB处绕点O开始逆时针旋转,同时射线OT从射线OD处以x度/秒的速度绕点O顺时针旋转,使得这两条射线重合于射线OE处(OE在∠DOC的内部)时,且=,试求x.【解答】解:(1)∵|3m﹣420|+(2n﹣40)2=0,∴3m﹣420=0且2n﹣40=0,∴m=140,n=20,∴∠AOC=140°,∠BOC=20°,∴∠AOB=∠AOC+∠BOC=160°;(2)设他们旋转x秒时,使得∠POQ=10°.则∠AOQ=x°,∠BOP=4x°.①当射线OP与射线OQ相遇前有:∠AOQ+∠BOP+∠POQ=∠AOB=160°,即:x+4x+10=160,解得:x=30;②当射线OP与射线OQ相遇后有:∠AOQ+∠BOP﹣∠POQ=∠AOB=160°,即:x+4x﹣10=160,解得:x=34.答:当他们旋转30秒或34秒时,使得∠POQ=10°;(3)设t秒后这两条射线重合于射线OE处,则∠BOE=4t°.∵OD为∠AOC的平分线,∴∠COD=∠AOC=70°,∴∠BOD=∠COD+∠BOC=70°+20°=90°.∵,∴∠COE=×90°=40°,∠DOE=30°,∠BOE=20°+40°=60°即:4t=60,∴t=15,∴∠DOE=15x°,即:15x=30解得x=2.13、已知∠AOB=150°,OD为∠AOB内部的一条射线(1)如图(1),若∠BOC=60°,OD为∠AOB内部的一条射线,∠COD=∠BOC,OE平分∠AOB,求∠DOE的度数.(2)如图(2),若OC、OD是∠AOB内部的两条射线,OM、ON分别平分∠AOD,∠BOC,且∠MOC≠∠NOD,求(∠AOC﹣∠BOD)/(∠MOC﹣∠NOD)的值.(3)如图(3),C1为射线OB的反向延长线上一点,将射线OB绕点O顺时针以6°/s的速度旋转,旋转后OB对应射线为OB1,旋转时间为t秒(0<t≤35),OE平分∠AOB,OF为∠C1OB1的三等分线,∠C1OF=∠C1OB1,若|∠C1OF﹣∠1AOE|=30°,直接写出t的值为3秒或15秒.【解答】解(1)分两种情况:①当射线OD在∠BOC的内部时,如图1所示,∵OE平分∠AOB,∴∠BOE=∠AOB,又∠AOB=150°,∴∠BOE=75°,又∵∠COD=∠BOC,且∠BOC=60°,∴∠BOD=∠BOC=×60°=40°,∴∠DOE=∠BOE﹣∠BOD=75°﹣40°=35°;②当射线OD在∠AOC的内部时,如图2所示,同理得:∠BOE=75°,∵∠COD=∠BOC=×60°=20°,∴∠DOE=∠COD+∠BOC﹣∠BOE,=20°+60°﹣75°,=5°,综上所述,∠DOE=35°或5°;(2)∵OM、ON分别平分∠AOD,∠BOC,∴∠MOD=∠AOD,∠CON=∠BOC,又∠MOC=∠MOD﹣∠COD,∠NOD=∠CON﹣∠COD,∴∠MOC﹣∠NOD=(∠MOD﹣∠COD)﹣(∠CON﹣∠COD),=∠AOD﹣∠COD﹣(∠BOC﹣∠COD),=(∠AOD﹣∠BOC),而∠AOD=∠AOC+∠COD,∠BOC=∠BOD+∠COD,∴∠MOC﹣∠NOD=(∠AOC+∠COD﹣∠BOD﹣COD),=(∠AOC﹣∠BOD),∴(∠AOC﹣∠BOD)/(∠MOC﹣∠NOD)==2;(3)①当∠BOB1≤30°时,∵∠BOB1=6t,∴∠AOB1=150°+6t,∵OE平分∠AOB1,∴∠AOE=AOB1=(150°+6t)=75°+3t,∵∠C1OB1=360°﹣∠C1OB1=180°﹣6t,∵∠C1OF=∠C1OB1,∴∠C1OF=60°﹣2t,∵|∠C1OF﹣∠AOE|=30°,∴75°+3t﹣60°+2t=30°或60°﹣2t﹣75°﹣3t=30°,∴t=3或﹣9(舍弃)②当∠BOB1>30°时,同理t=15故答案为:3秒或15秒.14、已知O是直线CD上的一点,∠AOB是直角,直线OA平分∠COE,∠AOB从OB与OD重合时开始绕着O点以每秒15°的速度逆时针旋转,设旋转时间为t 秒.(1)当t= 4 时,∠DOE=∠BOC;(2)若∠AOB绕着点O旋转一周,请探究∠DOE和∠BOE的数量关系,请画出图形,并说明理由;(3)若OF平分∠AOC,若OF与OD的夹角为150°,这时∠BOD的度数.【解答】解:(1)∵∠AOB从OB与OD重合时开始绕着O点以每秒15°的速度逆时针旋转t秒,∴∠BOD=15°t,∵∠AOB是直角,∴∠AOB=90°,∴∠AOC=90°﹣15°t,∵OA平分∠COE,∴∠AOE=∠AOC=90°﹣15°t,∴∠BOE=15°t,∵∠DOE=∠BOC,∴∠BOD+∠BOE=∠AOB+∠AOC,∴15°t+15°t=90°+90°﹣15°t,解得:t=4.故答案为:4.(2)分四种情形:①当0≤t≤6时,如图,2,∵∠AOB=90°,直线OA平分∠COE,∴∠AOE=∠AOC,∠AOC+∠BOD=90°,∵∠AOE+∠BOE=90°,∴∠BOD=∠BOE,∴∠DOE=2∠BOE.②当6<t≤12时,如图3,∠AOC=15°t﹣90°,∵∠AOB=90°,直线OA平分∠COE,∴∠AOE=∠AOC=15°t﹣90°,∴∠BOE=∠AOB+∠AOE=15°t,∠DOE=180°﹣∠COE=180°﹣2∠AOC=360°﹣30°t,∴∠DOE+2∠BOE=360°.③当12<t≤18时,如图4,∠AOC=15°t﹣90°,∴∠A′OC=180°﹣∠AOC=270°﹣15°t,∵∠AOB=90°,直线OA平分∠COE,∴∠A′OE=∠A′OC=270°﹣15°t,∠DOE=180°﹣∠A′OC=30°t﹣360°,∠BOE=∠A′OB+∠A′OE=360°﹣15°t,∴∠DOE+2∠BOE=360°.④当18<t≤24时,如图5,由题意得:∠DOB=360°﹣15°t,∠AOB=90°,∴∠A′OC=∠AOD=15°t﹣270°,∠BOC=180°﹣∠DOB=15°t﹣180°∵直线OA平分∠COE,∴∠COE=2∠A′OC=30°t﹣540°,∴∠DOE=180°﹣∠COE=720°﹣30°t,∠BOE=∠BOC﹣∠COE=360°﹣15°t,∴∠DOE=2∠BOE.综上所述,当0≤t≤6时,∠DOE=2∠BOE;当6<t≤18时,∠DOE+2∠BOE =360°;当18<t≤24时,∠DOE=2∠BOE.(3)当OF在CD上方时,如图6,∠DOF=150°,∴∠FOC=30°,∵OF平分∠AOC,∴∠AOC=2∠FOC=60°,∴∠BOD=180°﹣∠AOC﹣∠AOB=30°;当OF在CD下方时,如图7,∠DOF=150°,∴∠FOC=30°,∵OF平分∠AOC,∴∠AOC=2∠FOC=60°,∵∠AOB=90°,∴∠BOC=∠AOB﹣∠AOC=30°,∴∠BOD=180°﹣∠BOC=150°.综上所述,∠BOD=30°或150°.。

【2013】山东郯城实验中学七年级数学上册期末各章复习全套练习资料【新课标人教版】

【2013】山东郯城实验中学七年级数学上册期末各章复习全套练习资料【新课标人教版】

第一章有理数总复习一、知识归纳:1、数轴是一条规定了原点、方向、长度单位的直线。

有了数轴,任何一个有理数都可以用它上面的一个确定的点来表示。

在数的研究上它起着重要的作用。

它使数和最简单的图形——直线上的点建立了对应关系,它揭示了数和形之间的内在关系,因此它是数形结合的基础。

但要注意数轴上的所有点并不是都有有理数和它对应。

借助于数轴上点的位置关系可以比较有理数的大小,法则是:在数轴上表示的两个有理数,右边的数总比左边的数大。

2、相反数是指只有符号不同的两个数。

零的相反数是零。

互为相反的两个数位于数轴上原点的两边,离开原点的距离相等。

有了相反数的概念后,有理数的减法运算就可以转化为加法运算。

3、绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

显然有:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零。

对于任何有理数a,都有a≥0。

4、倒数可以这样理解:如果a与b是非零的有理数,并且有a×b=1,我们就说a与b互为倒数。

有了倒数的概念后,有理数的除法运算就可以转化为乘法运算。

5、有理数的大小比较:(1)正数都大于零,负数都小于零,即负数<零<正数;(2)两个正数,绝对值大的数较大;(3)两个负数,绝对值大的数反而小;(4)在数轴上表示的有理数,右边的数总比左边的大;6、科学记数法:是指任何数记成a×10n的形式,其中用式子表示|a|的范围是0<|a|<10。

7、近似数与精确度:近似数:一个与实际数很接近的数,称为近似数;精确度:右边最后一位数所在的位数,就是精确到的数位。

二、有理数的运算法则1、有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。

由此可得,互为相反数的两数相加的0;三个数相加先把前两个数相加,或先把后两个数相加,和不变。

重庆九十四中学七年级上册数学 压轴题 期末复习试卷及答案-百度文库

重庆九十四中学七年级上册数学 压轴题 期末复习试卷及答案-百度文库

重庆九十四中学七年级上册数学 压轴题 期末复习试卷及答案-百度文库一、压轴题1.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数; (3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小. 2.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.3.如图,在数轴上的A 1,A 2,A 3,A 4,……A 20,这20个点所表示的数分别是a 1,a 2,a 3,a 4,……a 20.若A 1A 2=A 2A 3=……=A 19A 20,且a 3=20,|a 1﹣a 4|=12.(1)线段A 3A 4的长度= ;a 2= ; (2)若|a 1﹣x |=a 2+a 4,求x 的值;(3)线段MN 从O 点出发向右运动,当线段MN 与线段A 1A 20开始有重叠部分到完全没有重叠部分经历了9秒.若线段MN =5,求线段MN 的运动速度.4.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题: (1)数列-4,-3,1的最佳值为(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为 ,取得最佳值最小值的数列为 (写出一个即可);(3)将2,-9,a (a >1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a 的值.5.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等.(1)可求得 x =______,第 2021 个格子中的数为______; (2)若前 k 个格子中所填数之和为 2019,求 k 的值;(3)如果m ,n 为前三个格子中的任意两个数,那么所有的|m -n | 的和可以通过计算|6-a |+|6-b|+|a -b|+|a -6| +|b -6|+|b -a| 得到.若m ,n 为前8个格子中的任意两个数,求所有的|m-n|的和. 6.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯. ()1观察发现()1n n 1=+______;()1111122334n n 1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a ;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a ;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a ;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a;⋯⋯如此进行了n次.na=①______(用含m、n的代数式表示);②当na6188=时,求123n1111a a a a+++⋯⋯+的值.7.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m和数n的两点之间的距离等于∣m-n∣.直接应用:表示数a和2的两点之间的距离等于____,表示数a和-4的两点之间的距离等于____;灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____;(3)若∣a-2∣+∣a+4∣=10,则a =______;实际应用:已知数轴上有A、B、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A、C两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档