导数综合应用答案
导数的综合应用(选择)1

f
'
x
anxn1
f f
(1) a '(1) an
2
4
a
n
2
f (x) 2x2
函数
f
x 是偶函
数且有最小值.
12.已知函数 f x x5 3x3 5x 3 ,若 f a f a 2 6 ,则实数 a 的取值范围是
f x f 1e2x2 x2 2 f 0x , g x 2g x 0 ,则下列不等式成立的是
2
()
A. f 2g 2015 g 2017
B. f 2g 2015 g 2017
C. g 2015 f 2g 2017
e e2 1
A.
e
2e2 1 e
B.
e
e2 1 e
C.
e
【答案】C
【解析】
D. e 1 1 e
试题分析:由圆的对称性知,只需考虑圆心 C e 1 ,0 到 f x ln x 图象上一点距离的
e
最小值.设函数 f x ln x 图象上任一点 Pt.ln t , f x 1 , f t 1 ,即经过 P 的
1 e2 e
,故选 C.
e
考点:1.求切线方程;2.函数的单调性;3.两点间距离公式. 【方法点晴】本题主要考查了利用导数研究曲线上任意一点的切线方程,属于中档题.
由圆心到圆上任意一点的距离为1,本题转化为圆心 C e 1 ,0 到函数 f x ln x 上
e
1
一点距离的最小值,由导数的几何意义,求出切线斜率为 ,由两直线垂直的条件,求出
2022年高考数学真题分专题训练专题:导数的综合应用(教师版含解析)

专题09导数的综合应用1.(2021年全国高考乙卷数学(文)试题)已知函数32()1f x x x ax .(1)讨论 f x 的单调性;(2)求曲线 y f x 过坐标原点的切线与曲线 y f x 的公共点的坐标.【答案】(1)答案见解析;(2)和 11a ,.【分析】(1)由函数的解析式可得: 232f x x x a ,导函数的判别式412a ,当14120,3a a 时, 0,f x f x 在R 上单调递增,当时,的解为:1211,32x x ,当1,3x时,单调递增;当11311333x时,单调递减;当13x时,单调递增;综上可得:当时,在R 上单调递增,当时,在1,3,1,3上单调递增,在113113,33上单调递减.(2)由题意可得: 3200001f x x x ax , 200032f x x x a ,则切线方程为: 322000000132y x x ax x x a x x ,切线过坐标原点,则: 32200000001320x x ax x x a x ,整理可得:3200210x x ,即:20001210x x x ,解得:,则, 0'()11f x f a切线方程为: 1y a x ,与联立得321(1)x x ax a x ,化简得3210x x x ,由于切点的横坐标1必然是该方程的一个根,1x 是321x x x 的一个因式,∴该方程可以分解因式为2110,x x 解得121,1x x , 11f a ,综上,曲线过坐标原点的切线与曲线的公共点的坐标为和 11a ,.2.(2021年全国高考乙卷数学(理)试题)设函数 ln f x a x ,已知0x 是函数 y xf x 的极值点.(1)求a ;(2)设函数()()()x f x g x xf x .证明: 1g x .【答案】1;证明见详解【分析】(1)由 n 1'l a f x a x f x x , 'ln x y a x x ay xf x ,又0x 是函数 y xf x 的极值点,所以 '0ln 0y a ,解得1a ;(2)由(1)得 ln 1f x x ,ln 1()()()ln 1x x x f x g x xf x x x ,1x 且0x ,当 0,1x 时,要证ln 1()1ln 1x x g x x x , 0,ln 10x x ∵, ln 10x x ,即证 ln 1ln 1x x x x ,化简得 1ln 10x x x ;同理,当 ,0x 时,要证ln 1()1ln 1x x g x x x , 0,ln 10x x ∵, ln 10x x ,即证 ln 1ln 1x x x x ,化简得 1ln 10x x x ;令 1ln 1h x x x x ,再令1t x ,则 0,11,t ,1x t ,令 1ln g t t t t , '1ln 1ln g t t t ,当 0,1t 时, '0g x , g x 单减,假设 1g 能取到,则 10g ,故 10g t g ;当 1,t 时, '0g x , g x 单增,假设 1g 能取到,则 10g ,故 10g t g ;综上所述,ln 1()1ln 1x x g x x x 在 ,00,1x 恒成立3.(2021年全国高考甲卷数学(文)试题)设函数22()3ln 1f x a x ax x ,其中0a .(1)讨论 f x 的单调性;(2)若 y f x 的图像与x 轴没有公共点,求a 的取值范围.【答案】(1) f x 的减区间为10,a,增区间为1,+a;(2)1a e .【分析】(1)函数的定义域为 0, ,又 23(1)()ax ax f x x,因为0,0a x ,故230ax ,当10x a 时,()0f x ;当1x a时,()0f x ;所以 f x 的减区间为10,a,增区间为1,+a .(2)因为 2110f a a 且 y f x 的图与x 轴没有公共点,所以 y f x 的图象在x 轴的上方,由(1)中函数的单调性可得 min 1133ln 33ln f x f a a a,故33ln 0a 即1a e.4.(2021年全国高考甲卷数学(理)试题)已知0a 且1a ,函数()(0)a x x f x x a.(1)当2a 时,求 f x 的单调区间;(2)若曲线 y f x 与直线1y 有且仅有两个交点,求a 的取值范围.【答案】(1)20,ln2上单调递增;2,ln2上单调递减;(2) 1,,e e .【分析】(1)当2a 时,令 '0f x 得2ln 2x,当20ln 2x 时, 0f x ,当2ln 2x 时, 0f x ,∴函数 f x 在20,ln2上单调递增;2,ln2上单调递减;(2) ln ln 1ln ln a x a x x x a f x a x x a a x a x a,设函数 ln x g x x ,则 21ln x g x x,令 0g x ,得x e ,在 0,e 内 0g x , g x 单调递增;在 ,e 上 0g x , g x 单调递减;1max g x g e e,又 10g ,当x 趋近于 时, g x 趋近于0,所以曲线 y f x 与直线1y 有且仅有两个交点,即曲线 y g x 与直线ln a y a有两个交点的充分必要条件是ln 10a a e ,这即是 0g a g e ,所以a 的取值范围是 1,,e e .5.(2021年全国新高考Ⅰ卷数学试题)已知函数 1ln f x x x .(1)讨论 f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b ,证明:112e a b.【答案】(1) f x 的递增区间为 0,1,递减区间为 1,+ ;(2)证明见解析.【分析】(1)函数的定义域为 0, ,又 1ln 1ln f x x x ,当 0,1x 时, 0f x ,当 1,+x 时, 0f x ,故 f x 的递增区间为 0,1,递减区间为 1,+ .(2)因为ln ln b a a b a b ,故 ln 1ln +1b a a b ,即ln 1ln +1a b a b ,故11f f a b,设1211,x x a b,由(1)可知不妨设1201,1x x .因为 0,1x 时, 1ln 0f x x x , ,x e 时, 1ln 0f x x x ,故21x e .先证:122x x ,若22x ,122x x 必成立.若22x ,要证:122x x ,即证122x x ,而2021x ,故即证 122f x f x ,即证: 222f x f x ,其中212x .设 2,12g x f x f x x ,则 2ln ln 2g x f x f x x x ln 2x x ,因为12x ,故 021x x ,故 ln 20x x ,所以 0g x ,故 g x 在 1,2为增函数,所以 10g x g ,故 2f x f x ,即 222f x f x 成立,所以122x x 成立,综上,122x x 成立.设21x tx ,则1t ,结合ln 1ln +1a b a b ,1211,x x a b 可得: 11221ln 1ln x x x x ,即: 111ln 1ln ln x t t x ,故11ln ln 1t t t x t ,要证:12x x e ,即证 11t x e ,即证 1ln 1ln 1t x ,即证: 1ln ln 111t t t t t ,即证: 1ln 1ln 0t t t t ,令 1ln 1ln ,1S t t t t t t ,则 112ln 11ln ln 111t S t t t t t t,先证明一个不等式: ln 1x x .设 ln 1u x x x ,则 1111x u x x x ,当10x 时, 0u x ;当0x 时, 0u x ,故 u x 在 1,0 上为增函数,在 0,+ 上为减函数,故 max 00u x u ,故 ln 1x x 成立由上述不等式可得当1t 时,112ln 11t t t,故 0S t 恒成立,故 S t 在 1, 上为减函数,故 10S t S ,故 1ln 1ln 0t t t t 成立,即12x x e 成立.综上所述,112e a b.6.(2021年全国新高考2卷数学试题)已知函数2()(1)x f x x e ax b .(1)讨论()f x 的单调性;(2)从下面两个条件中选一个,证明:()f x 有一个零点①21,222e a b a ;②10,22a b a .【答案】(1)答案见解析;(2)证明见解析.【解析】【分析】(1)首先求得导函数的解析式,然后分类讨论确定函数的单调性即可;(2)由题意结合(1)中函数的单调性和函数零点存在定理即可证得题中的结论.【详解】(1)由函数的解析式可得:'2x f x x e a ,当0a 时,若 ,0x ,则 '0,f x f x 单调递减,若 0,x ,则 '0,f x f x 单调递增;当102a 时,若,ln 2x a ,则 '0,f x f x 单调递增,若ln 2,0x a ,则 '0,f x f x 单调递减,若 0,x ,则 '0,f x f x 单调递增;当12a时, '0,f x f x 在R 上单调递增;当12a 时,若 ,0x ,则 '0,f x f x 单调递增,若0,ln 2x a ,则 '0,f x f x 单调递减,若ln 2,x a ,则 '0,f x f x 单调递增;(2)若选择条件①:由于2122e a ,故212a e ,则 21,010b af b ,而 210b f b b e ab b ,而函数在区间 ,0 上单调递增,故函数在区间 ,0 上有一个零点.2ln 22ln 21ln 2f a a a a a b 22ln 21ln 22a a a a a22ln 2ln 2a a a a ln 22ln 2a a a ,由于2122e a ,212a e ,故 ln 22ln 20a a a ,结合函数的单调性可知函数在区间 0, 上没有零点.综上可得,题中的结论成立.若选择条件②:由于102a ,故21a ,则 01210f b a ,当0b 时,24,42e a ,2240f e a b ,而函数在区间 0, 上单调递增,故函数在区间 0, 上有一个零点.当0b 时,构造函数 1x H x e x ,则 1xH x e ,当 ,0x 时, 0,H x H x 单调递减,当 0,x 时, 0,H x H x 单调递增,注意到 00H ,故 0H x 恒成立,从而有:1x e x ,此时:22111x f x x e ax b x x ax b 211a x b ,当x 2110a x b ,取01x,则 00f x ,即:00,10f f,而函数在区间 0, 上单调递增,故函数在区间 0, 上有一个零点.2ln 22ln 21ln 2f a a a a a b 22ln 21ln 22a a a a a22ln 2ln 2a a a a ln 22ln 2a a a ,由于102a ,021a ,故 ln 22ln 20a a a ,结合函数的单调性可知函数在区间 ,0 上没有零点.综上可得,题中的结论成立.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.7.(2021年天津卷数学试题)已知0a ,函数()x f x ax xe .(I )求曲线()y f x 在点(0,(0))f 处的切线方程:(II )证明()f x 存在唯一的极值点(III )若存在a ,使得()f x a b 对任意x R 成立,求实数b 的取值范围.【答案】(I )(1),(0)y a x a ;(II )证明见解析;(III ),e 【解析】【分析】(I )求出 f x 在0x 处的导数,即切线斜率,求出 0f ,即可求出切线方程;(II )令 0f x ,可得(1)x a x e ,则可化为证明y a 与 y g x 仅有一个交点,利用导数求出 g x 的变化情况,数形结合即可求解;(III )令 2()1,(1)xh x x x e x ,题目等价于存在(1,)x ,使得()h x b ,即min ()b h x ,利用导数即可求出 h x 的最小值.【详解】(I )()(1)x f x a x e ,则(0)1f a ,又(0)0f ,则切线方程为(1),(0)y a x a ;(II )令()(1)0x f x a x e ,则(1)x a x e ,令()(1)x g x x e ,则()(2)x g x x e ,当(,2)x 时,()0g x , g x 单调递减;当(2,)x 时,()0g x , g x 单调递增,当x 时, 0g x , 10g ,当x 时, 0g x ,画出 g x 大致图像如下:所以当0a 时,y a 与 y g x 仅有一个交点,令 g m a ,则1m ,且()()0f m a g m ,当(,)x m 时,()a g x ,则()0f x , f x 单调递增,当 ,x m 时,()a g x ,则()0f x , f x 单调递减,x m 为 f x 的极大值点,故()f x 存在唯一的极值点;(III )由(II )知max ()()f x f m ,此时)1(1,m a m e m ,所以 2max {()}()1(1),m f x a f m a m m e m ,令 2()1,(1)x h x x x e x ,若存在a ,使得()f x a b 对任意x R 成立,等价于存在(1,)x ,使得()h x b ,即min ()b h x , 2()2(1)(2)x x h x x x e x x e ,1x ,当(1,1)x 时,()0h x , h x 单调递减,当(1,)x 时,()0h x , h x 单调递增,所以min ()(1)h x h e ,故b e ,所以实数b 的取值范围 ,e .【点睛】关键点睛:第二问解题的关键是转化为证明y a 与 y g x 仅有一个交点;第三问解题的关键是转化为存在(1,)x ,使得()h x b ,即min ()b h x .8.(2021年浙江卷数学试题)设a ,b 为实数,且1a ,函数 2R ()x f x a bx e x(1)求函数 f x 的单调区间;(2)若对任意22b e ,函数 f x 有两个不同的零点,求a 的取值范围;(3)当a e 时,证明:对任意4b e ,函数 f x 有两个不同的零点12,x x ,满足2212ln 2b b e x x e b .(注: 2.71828e 是自然对数的底数)【答案】(1)0b 时,()f x 在R 上单调递增;0b 时,函数的单调减区间为,log ln a b a ,单调增区间为log ,ln a b a;(2)21,e ;(3)证明见解析.【解析】【分析】(1)首先求得导函数的解析式,然后分类讨论即可确定函数的单调性;(2)将原问题进行等价转化,然后构造新函数,利用导函数研究函数的性质并进行放缩即可确定实数a 的取值范围;(3)结合(2)的结论将原问题进行等价变形,然后利用分析法即可证得题中的结论成立.【详解】(1)2(),()ln x x f x b f a x e a x a b ,①若0b ,则()ln 0x f x a a b ,所以()f x 在R 上单调递增;②若0b ,当,log ln a b x a时, '0,f x f x 单调递减,当log ,ln a b x a时, '0,f x f x 单调递增.综上可得,0b 时,()f x 在R 上单调递增;0b 时,函数的单调减区间为,log ln a b a ,单调增区间为log ,ln a b a.(2)()f x 有2个不同零点20x a bx e 有2个不同解ln 20x a e bx e 有2个不同的解,令ln t x a ,则220,0ln ln t tb b e e e e t a a t t ,记22222(1)(),()t t t t e t e e e e e t e g t g t t t t ,记2()(1),()(1)10t t t t h t e t e h t e t e e t ,又(2)0h ,所以(0,2)t 时,()0,(2,)h t t 时,()0h t ,则()g t 在(0,2)单调递减,(2,) 单调递增,22(2),ln ln b b g e a a e,22222,ln ,21b b e a a e e∵.即实数a 的取值范围是21,e .(3)2,()x a e f x e bx e 有2个不同零点,则2x e e bx ,故函数的零点一定为正数.由(2)可知有2个不同零点,记较大者为2x ,较小者为1x ,1222412x x e e e e b e x x ,注意到函数2x e e y x在区间 0,2上单调递减,在区间 2, 上单调递增,故122x x ,又由5245e e e 知25x ,122211122x e e e e b x x x b,要证2212ln 2b b e x x e b ,只需22ln e x b b,222222x x e e e b x x 且关于b 的函数 2ln e g b b b在4b e 上单调递增,所以只需证 22222222ln 52x x e x e x x x e,只需证2222222ln ln 02x x x e x e e x e ,只需证2ln ln 202x e x x e,242e ∵,只需证4()ln ln 2x x h x x e 在5x 时为正,由于 11()44410x x x h x xe e e x x x,故函数 h x 单调递增,又54520(5)ln 5l 20n 2ln 02h e e ,故4()ln ln 2x x h x x e 在5x 时为正,从而题中的不等式得证.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.9.(2021年北京卷数学试题)已知函数 232x f x x a.(1)若0a ,求 y f x 在 1,1f 处切线方程;(2)若函数 f x 在1x 处取得极值,求 f x 的单调区间,以及最大值和最小值.【答案】(1)450x y ;(2)函数 f x 的增区间为 ,1 、 4, ,单调递减区间为 1,4 ,最大值为1,最小值为14.【解析】【分析】(1)求出 1f 、 1f 的值,利用点斜式可得出所求切线的方程;(2)由 10f 可求得实数a 的值,然后利用导数分析函数 f x 的单调性与极值,由此可得出结果.【详解】(1)当0a 时, 232x f x x ,则 323x f x x, 11f , 14f ,此时,曲线 y f x 在点1,1f 处的切线方程为 141y x ,即450x y ;(2)因为 232x f x x a ,则 222222223223x a x x x x a f x x a x a ,由题意可得224101a f a ,解得4a ,故 2324x f x x ,222144x x f x x ,列表如下:x,1 1 1,4 4 4,f x 0 0 f x 增极大值减极小值增所以,函数 f x 的增区间为 ,1 、 4, ,单调递减区间为 1,4 .当32x 时, 0f x ;当32x 时, 0f x .所以, max 11f x f , min 144f x f .。
70知识讲解_导数的综合应用题(基础)(文)

导数及其应用》全章复习与巩固学习目标】能通过运用导数这一工具解决生活中的一些优化问题:例如利润最大、用料最省、效率最高等问要点梳理】 要点一:有关切线问题 直线与曲线相切,我们要抓住三点: ① 切点在切线上; ② 切点在曲线上;③ 切线斜率等于曲线在切点处的导数值 要点诠释: 通过以上三点可以看出,抓住切点是解决此类题的关键,有切点直接求,无切点则设切点,布列方程要点二:有关函数单调性的问题要点诠释:则 f '(x) 0.2) f '(x) 0或 f'(x) 0恒成立,求参数值的范围的方法: ① 分离参数法: m g(x)或m g(x).1 )如果恒有 f '(x) 0,则函数f(x)在(a, b)内为增函数; 2)如果恒有 f '(x) 0,则函数f(x)在(a, b)内为减函数; 3)如果恒有 f '(x) 0,则函数f (x)在(a, b)内为常数函数.设函数 y f (x) 在区间1. 会利用导数解决曲线的切线的问题2. 会利用导数解决函数的单调性等有关问题3. 会利用导数解决函数的极值、最值等有关问题组.4. (a, b)内可导,(1)若函数f(x)在区间(a, b)内单调递增,则f'(X) 0,若函数f(x)在(a, b)内单调递减,② 若不能隔离参数,就是求含参函数 f(x,m) 的最小值 f(x,m)min或是求含参函数 f(x,m) 的最大值 f(x,m)max ,使 f ( x, m)max 0) 要点三:函数极值、最值的问题 函数极值的问题求方程 f (x) 0 的根;负右正,则 f(x) 在这个根处取得极小值 .( 最好通过列表法 ) 要点诠释: ① 先求出定义域② 一般都要列表:然后看在每个根附近导数符号的变化:若由正变负,则该点为极大值点; 变正,则该点为极小值点注意:无定义的点不用在表中列出③ 根据表格给出结论:注意一定指出在哪取得极值 函数最值的问题若函数y f (x)在闭区间[a,b ]有定义,在开区间(a,b)内有导数,则求函数y f (x)在[a,b ]上的最 大值和最小值的步骤如下:求在(a,b)内所有使f(X) 0的的点的函数值和 f(x)在闭区间端点处的函数值 f (a), f (b);y f (x)在闭区间[a,b ]上的最小值.要点诠释: ①求函数的最值时,不需要对导数为0的点讨论其是极大还是极小值,只需将导数为0的点和端点的 函数值进行比较即可 .使f ( x, m)min 01) 确定函数的定义域; 2) 求导数 f (x) ;4) 检查f'(x)在方程根左右的值的符号,如果左正右负,则f(x) 在这个根处取得极大值;如果左若由负1) 求函数f (x)在(a, b)内的导数f(X); 2) 求方程f(X)0在(a,b)内的根;4) 比较上面所求的值,其中最大者为函数y f(x)在闭区间[a,b ]上的最大值,最小者为函数② 若f (x )在开区间(a,b )内可导,且有唯一的极大(小)值,则这一极大(小)值即为最大(小)值 要点四:优化问题在实际生活中用料最省、利润最大、效率最高等问题,常常可以归结为函数的最大值问题,从而可 用导数来解决.我们知道,导数是求函数最大(小)值的有力工具,导数在实际生活中的应用主要是解决 有关函数最大值、最小值的实际问题利用导数解决实际问题中的最值的一般步骤:分析实际问题中各量之间的关系,找出实际问题的数学模型,写出实际问题中变量之间的函数关系式y f (x );求函数的导数f '(X ),解方程f '(X ) 0 ; 比较函数在区间端点和极值点的函数值大小,最大 (小)者为最大(小)值.要点诠释:①解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定 函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系 相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具. 利用导数解决优化问题的基本思路:②得出变量之间的关系 y f (X )后,必须由实际意义确定自变量 X 的取值范围;③ 在实际问题中,有时会遇到函数在区间内只有一个点使(小)值,那么不与端点值比较,也可以知道这就是最大(小)值.④ 在求实际问题的最大(小)值时,一定要注意考虑实际问题的意义,不符合实际意义的值应舍去. 【典型例题】类型一: 利用导数解决有关切线问题 3X 3X ,过点A (016)作曲线y f (x )的切线,求此切线方程.(1) .再通过研究f '(X ) 0的情形,如果函数在这点有极大例1.已知函数y【思路点拨】因为点 A 不在曲线上,所以应先设出切点并求出切点. 【解析】曲线方程为 3y X 3X ,点A (016)不在曲线上.3a)点A(016)在切线上,则有16 (X)33x 0)3化简得X o 8,解得X o 2 .所以,切点为 M( 2,2),切线方程为9xA 是否在曲线上,若点 A 不在曲线上,应先设出切点, 然后根据直线与曲线相切的三个关系列方程组,从而求得参数值举一反三:【变式1】曲线y=x(3lnx+1)在点(1,1)处的切线方程为 【答案】y 4x1(2,o)且与曲线y -相切的直线方程. X类型二: 利用导数解决有关函数单调性、极值最值的问题 例 2.设函数 f(x) -x 32ax 23a 2x b (a,b3【思路点拨】求导后,求导数为零的根,两根大小的判断是确定分类点的依据Q Q【解析】f (x) X 4ax 3a (x a)(x(1 )当 a o 时,f(X) X 2o , f (X)在(设切点为M (X o, y 0),则点M 的坐标满足y o3 c X o 3x o .2因 f(X o ) 3(X o 1), 故切线的方程为y y 023(X o 1)(x X o ).23(x o 1)(o X o ).【变式2】求过点【答案】设P(xo, y o )为切点,则切线的斜率为 y 1X X o1~2X o•••切线方程为y 1 1 y o —(x X o ),即 yX oX o又已知切线过点 (2,0),把它代入上述方程,得-V(x X o 1 x o ). X o丄(2 X o ).X o解得X o 1, y o—1,即 X y 2 o. X o【总结升华】此类题的解题思路是,先判断点 R),求f (x)的单调区间和极值.令 f(X)o 得 X 24ax 3a 2 o 即(x a)(x3a) 0,解得 X a 或 x 3a ,)上单调递减,没有极值;(2)当a o时,由f(X) o得a X 3a,由f (x) o得x a或x 3a ,3a)•••当X a 或X 3a 时,f (x)0 , f (x)单调递减;X 2当a x 3a 时,f(X)0, f(x)单调递增;【总结升华】(1)解决此类题目,关键是解不等式 f '(X) 0或f '(X) 0,若f '(X)中含有参数,须分类讨论.(2)特别应注意,在求解过程中应先写出函数的定义域 举一反三:aa0,-r1,XV a X 0 时,4 3--f (X)极小 f (a)— ab , f (X)极大 f (3a) b , ••• f(x)的递减区间为(,a) , (3a, );递增区间为(a,3a);f(X)极小 3 a'f(x)极大b .(3)当a 0时,由f (X) 0 得 3a X a ,由 f (X) 0 得 X 3a 或 x a ,•••当X 3a 或X a 时, f (X) 0 , f(x)单调递减;当3a X a 时,f (X) 0 , f(x)单调递增;••• f(x)极小 f (3a)f (X)极大 f(a) • f(x)的递减区间为3a), (a,递增区间为(3a, a);f (x)极大 4 a'f (x)极小b .【变式1】求函数f (X) X a-(a 0)的单调区间. X【答案】 f '(X) 1令 f'(X)a~2X a 2XX 2a ,(1)J a 或XT a 时,所以, f'(X) 0;(2)1.【高清课堂:导数的应用综合 370878 例题4】【变式2】 已知函数f(x)=ax 3+x 2+1 , x€ (0 , 1]若f(x)在(0,1)上是增函数,求实数 a 的取值范围;【答案】••• f(x)在(0, 1)上是增函数,••• x€( 0 , 1)时,f’(x)=3ax 2+2x>0 恒成立, 2即a 一对x €( 0, 1 )恒成立, 3x2•-—在(0, 1)上单调增,3x2 2••• x=1时,—取最大值 -3x 32 2— (a —时也符合题意),则a 3 3(2)又 f(1) a 2 27^ 1.27a所以,f'(x) 0• • f (x)的单调增区间是,单调减区间是J a, 0 , 0, j a .(2) 求f(x)在(0,1)上的最大值.(1) (1) f’(x)=3ax 2+2x,①当a ②当a 2-时,f(x)在(0 ,1)上单调增, 32 2一时,令f '(x) 3ax 2x 0,由x 0 ,得x3 2 一时,f '(x) 0;当3a 2 f(x)max f(1) a 2.23a 2 3a 427a 20,【高清课堂:导数的应用综合 370878 例题1】例3.已知函数f (x) ax 3bx c 在x 2处取得极值为c (1)求a 、b 的值;(2)若f(x)有极大值28,求f(x)在[•- f(x)在(0,1)上的最大值为4 27a 216,3,3]上的最大值.【高清课堂:导数的应用综合370878 例题1】1 12举一反三:(2) 由( 1) 知 f (X) 3 X 12x c , f (x)23x 12,令f (X) 0 ,得X 1 2,X 2 2当X (J2)时 f(X) 0, 故f(x)在(,2)上为增函数;当X (2,2) 时 f(X) 0, 故 f(x)在(2,2)上为减函数;当X (2,)时 f(X) 0, 故 f (X)在(2, )上为增函数由此可知f(X)在X j2处取得极大值f( 2)16 c ,其导函数 f(X),且函数f (X)在X 2处取得极小值,则函数【变式1】设函数f(x)在R 上可导, 【解析】 3(1 )因 f(x) ax bx c 故f (x) 3ax 2b 由于f (x)在点x 2处取得极值故有f (2) 0 f (2) c 1612a b 8a 2b cc 16解得f(X)在X 2 2处取得极小值f(2) c 16,由题设条件知16 c 28得c 12,此时 f( 3) 9 c 21, f (3)3 , f(2) c 164,因此f(x)上[3,3]的最小值为 f(2) 4.【高清课堂:导数的应用综合370878 例题1】x5x y 80.(1)若a 0,当x 变化时,f(X)的正负如下表:xg 旦3a 3a a3a(a,g )f (x)oaa/ 因此,函数f(x)在x-处取得极小值fa ,且f3^a3 ;【答案】C 【变式2】函数f(X)— 2sin x 的图象大致是( )2首先易判断函数为奇函数,排除 A,求导后解导数大于零可得周期性区间, 从而排除 B 、D,故选C.例4.设函数f(x) x(x 、2a) ( x(I)当 a 1时,求曲线 y f(x)在点(2, f(2))处的切线方程; (n)当 a 0时,求函数f (x)的极大值和极小值. 【解析】 (I)当a 1时,f (x) x(x 1)2 x 3 2x 2 x ,得 f(2)2,且f (x) 3x 24x 1 , f (2)5.所以,曲线yx(x 21)在点(2, 2)处的切线方程是y 25(x 2),整理得(n) f(x)x(xa)2 2ax 2 (x)3x 2 4 axa 2(3x a)(x a).由于aa或30,以下分两种情况讨论.f (x) 0,解得x函数f(x)在x a 处取得极大值f(a),且f(a) 0 .(2)若a 0,当x 变化时,f(X)的正负如下表:因此,函数f (x)在x a 处取得极小值f (a),且f(a) 0 ;aa a 4 Q函数f(x)在x 3处取得极大值f -,且 f- 护-【总结升华】1.导数式含参数时,如何讨论参数范围而确定到数值的正负是解决这类题的难点,一般采用求根法和图像法.举一反三:2. 列表能比较清楚的看清极值点3. 写结论时极值点和极大(小) 值都要交代清楚【高清课堂: 导数的应用综合 370878例题2】1【变式1】设函数f(X)-x In 3x(x 0),则 y f(X)(A. 在区间(一,1),(1,e)内均有零点.eB. 在区间(丄⑴门闾内均无零点e '1C. 在区间(一,1)内有零点,在区间e 1D. 在区间(一,1)内无零点,在区间 (1,e)内无零点. (1,e)内有零点.由题得f'(x)13 1 X 3x 3x,令 f'(X) 0 得 x 3 ; 令 f'(x) 0 得 0 x 3 ; f'(x) 0 得x 3,故知函数 f (x)在区间 (0,3)上为减函数,在区间(3,)为增函数,在点 x 3处有极小值1 ln3 0 ;又 f(1) l,f e3 e1 0, f(1) — 3 e 3e1 0,故选择D.每月生产200吨产品时利润达到最大,最大利润为 315万元.【变式2】(1)试确定a,b 的值;(2)讨论函数f(x)的单调区间.又对f(x)求导得x 1时,f(X) 0,此时f(x)为减函数; 1时,f(X)0,此时f (x)为增函数.例5.某工厂生产某种产品,已知该产品的月生产量X (吨)与每吨产品的价格 P (元/吨)之间的关系式1 2为:P 24200-X ,且生产X 吨的成本为R 50000 200x (元).问该厂每月生产多少吨产品才能使 5利润L 达到最大?最大利润是多少?(利润=收入一成本)1【解析】:每月生产X 吨时的利润为f(x) (24200 -X 2)x (50000 200x) 5故它就是最大值点,且最大值为:f (200)1(200)3 24000 2005已知函数 f(x) ax 41nx bx 4C (x>0)在 x = 1 处取得极值-3-c , 其中a,b,c 为常数.【答案】(1)由题意知f(1)C ,从而b3f (x) 4ax ln x 41ax g- X4bx 3 x 3(4a l nx由题意f (1) 0 , 因此a 4b 0,解得 a 12,b(2)由(I)知 f(X)348x In X ( x 0),令 f(X)0,解得x因此 f(x)的单调递减区间为(0,1),而f(x)的单调递增区间为(1, g ).类型三:利用导数解决优化问题lx 3 24000 X 50000 (x5 0)3 2由 f(X) -X 24000 0解得X 1200, X 2 200(舍去). 因f (x)在[0,)内只有一个点X 200,使f (X) 050000 3150000(元)【总结升华】禾u用导数求实际问题中的最大值或最小值时,如果函数在区间内只有一个极值点,那么依据实际意义,该极值点也就是最值点举一反三:【变式】某单位用 2 160万元购得一块空地,计划在该空地上建造一栋至少房•经测算,如果将楼房建为x( X> 10)层,则每平方米的平均建筑费用为560+48X (单位:元)•为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用当 X > >15 时,f '(X)0,当 10< X < 15 时,f '(X)因此,当X=15时,f(X)取得最小值f(15)2000 •10层、每层2000平方米的楼购地总费用)建筑总面积【答案】设楼房每平方米的平均综合费用为f(X),则2160 10000 f(X)(560 48X)——2000Xf'(X)48 10800,令f'(X)0 ,X 560 48x 10, X N)•得x=15•为了使楼房每平方米的平均综合费用最少,该楼房应建为15层.。
专题三 导数及其应用第八讲导数的综合应用答案

专题三 导数及其应用第八讲 导数的综合应用答案部分 2019年1.解析 当1x =时,()112210f a a =-+=>恒成立; 当1x <时,()2222021x f x x ax aax =-+⇔-恒成立,令()()()()22221112111111x x x x x g x x x x x-----+==-=-=-=---- ()()11221201x x x⎛⎫--+---= ⎪ ⎪-⎝⎭, 所以()max 20ag x =,即0a >.当1x >时,()ln 0ln xf x x a xax=-⇔恒成立,令()ln x h x x =,则()()21ln ln x x x h x x -⋅'==当e x >时,()0h x '>,()h x 递增,当1e x <<时,()0h x '<,()h x 递减, 所以当e x =时,()h x 取得最小值()e e h =. 所以()min e ah x =.综上,a 的取值范围是[]0,e .2.解析(1)2()622(3)f x x ax x x a '=-=-.令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增; 若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫ ⎪⎝⎭单调递减. (2)满足题设条件的a ,b 存在.(i )当a ≤0时,由(1)知,()f x 在[0,1]单调递增,所以()f x 在区间[0,l]的最小值为(0)=f b ,最大值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当1b =-,21a b -+=,即a =0,1b =-.(ii )当a ≥3时,由(1)知,()f x 在[0,1]单调递减,所以()f x 在区间[0,1]的最大值为(0)=f b ,最小值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当21a b -+=-,b =1,即a =4,b =1.(iii )当0<a <3时,由(1)知,()f x 在[0,1]的最小值为3327a a f b ⎛⎫=-+ ⎪⎝⎭,最大值为b 或2a b -+.若3127a b -+=-,b =1,则a =,与0<a <3矛盾.若3127a b -+=-,21a b -+=,则a =或a =-a =0,与0<a <3矛盾.综上,当且仅当a =0,1b =-或a =4,b =1时,()f x 在[0,1]的最小值为–1,最大值为1.3.解析:(Ⅰ)当34a =-时,3()ln 04f x x x =-+>.3()4f 'x x =-=所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(Ⅱ)由1(1)2f a≤,得04a <≤.当04a <≤时,()2f x a≤等价于22ln 0x a a --≥.令1t a=,则t ≥.设()22ln ,g t tx t =≥,则()2ln g t g x ≥=.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-=. 故所以,()(1)0p x p ≥= .因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,1()1g t g x ⎛+= ⎝令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫⎪⎝⎭.由(i )得11(1)077q p p ⎛⎫⎛⎫=<= ⎪ ⎪⎝⎭⎝⎭. 所以,()<0q x .因此1()10g t g x ⎛+=> ⎝.由(i )(ii )得对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞,即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2xf x a. 综上所述,所求a 的取值范围是⎛ ⎝⎦4.解析:(1)设()()g x f 'x =,则1()cos 1g x x x=-+,21sin ())(1x 'x g x =-++.当1,2x π⎛⎫∈- ⎪⎝⎭时,()g'x 单调递减,而(0)0,()02g'g'π><, 可得()g'x 在1,2π⎛⎫- ⎪⎝⎭有唯一零点,设为α. 则当(1,)x α∈-时,()0g'x >;当,2x α⎛π⎫∈ ⎪⎝⎭时,()0g'x <. 所以()g x 在(1,)α-单调递增,在,2απ⎛⎫ ⎪⎝⎭单调递减,故()g x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点,即()f 'x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点.(2)()f x 的定义域为(1,)-+∞.(i )当(1,0]x ∈-时,由(1)知,()f 'x 在(1,0)-单调递增,而(0)0f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点.(ii )当0,2x ⎛π⎤∈ ⎥⎝⎦时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ⎛⎫⎪⎝⎭单调递减,而(0)=0f ',02f 'π⎛⎫< ⎪⎝⎭,所以存在,2βαπ⎛⎫∈ ⎪⎝⎭,使得()0f 'β=,且当(0,)x β∈时,()0f 'x >;当,2x βπ⎛⎫∈ ⎪⎝⎭时,()0f 'x <.故()f x 在(0,)β单调递增,在,2βπ⎛⎫⎪⎝⎭单调递减.又(0)=0f ,1ln 1022f ππ⎛⎫⎛⎫=-+> ⎪ ⎪⎝⎭⎝⎭,所以当0,2x ⎛π⎤∈ ⎥⎝⎦时,()0f x >.从而()f x 在0,2⎛⎤⎥⎝⎦π没有零点.(iii )当,2x π⎛⎤∈π ⎥⎝⎦时,()0f 'x <,所以()f x 在,2π⎛⎫π ⎪⎝⎭单调递减.而02f π⎛⎫> ⎪⎝⎭,()0f π<,所以()f x 在,2π⎛⎤π ⎥⎝⎦有唯一零点.(iv )当(,)x ∈π+∞时,ln(1)1x +>,所以()f x <0,从而()f x 在(,)π+∞没有零点. 综上,()f x 有且仅有2个零点.5.解析:(1)f (x )的定义域为(0,1)(1,)+∞.因为211()0(1)f x x x '=+>-,所以()f x 在(0,1),(1,+∞)单调递增. 因为f (e )=e 110e 1+-<-,22222e 1e 3(e )20e 1e 1f +-=-=>--, 所以f (x )在(1,+∞)有唯一零点x 1,即f (x 1)=0. 又1101x <<,1111111()ln ()01x f x f x x x +=-+=-=-, 故f (x )在(0,1)有唯一零点11x . 综上,f (x )有且仅有两个零点.(2)因为0ln 01e x x -=,故点B (–ln x 0,01x )在曲线y =e x 上. 由题设知0()0f x =,即0001ln 1x x x +=-, 故直线AB 的斜率0000000000111ln 111ln 1x x x x x k x x x x x x +---===+-----.曲线y =e x在点001(ln ,)B x x -处切线的斜率是01x ,曲线ln y x =在点00(,ln )A x x 处切线的斜率也是1x , 所以曲线ln y x =在点00(,ln )A x x 处的切线也是曲线y =e x 的切线.6.解析(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-. 因为(4)8f =,所以3(4)8a -=,解得2a =. (2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x b =或23a bx +=. 因为2,,3a ba b +都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a b a b +===-.此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-. 令()0f 'x =,得3x =-或1x =.列表如下:所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>, 则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得12x x ==.列表如下:所以()f x 的极大值()1M f x =.解法一:()321111(1)M f x x b x bx ==-++()221111211(1)[32(1)]3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭ ()2321(1)(1)227927b b b b b --+++=++23(1)2(1)(1)2272727b b b b +-+=-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭. 令()0g'x =,得1x =.列表如下:所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭.所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 7.解析:(I )由321()4f x x x x =-+,得23'()214f x x x =-+.令'()1f x =,即232114x x -+=,解得0x =或83x =.又88(0)0,(),327f f ==所以曲线()y f x =的斜率为1的切线方程是y x =与88273y x -=-,即y x =与6427y x =-.(II )令()()g x f x x =-,[]2,4x ∈-.由321()4g x x x =-得23'()24g x x x =-. 令'()0g x =得0x =或83x =.'(),()g x g x 随x 的变化情况如表所示所以()g x 的最小值为-6,最大值为0,所以6()0g x -≤≤,即6()x f x x -≤≤. (III )由(II )知,当3a ≤-时,()()()003M a F g a a ≥=-=->; 当3a >-时,()()()2263M a F g a a ≥-=--=+>; 当3a =-时,()3M a =. 综上,当()M a 最小时,3a =-.8.解析 (Ⅰ)由已知,有'()e (cos sin )x f x x x =-.因此,当52,244x k k ππ⎛⎫∈π+π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x >,得()'0f x <,则()f x 单调递减;当32,244x k k ππ⎛⎫∈π-π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x <,得()'0f x >,则()f x 单调递增.所以,()f x 的单调递增区间为32,2(),()44k k k f x ππ⎡⎤π-π+∈⎢⎥⎣⎦Z 的单调递减区间为52,2()44k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z . (Ⅱ)记()()()2h x f x g x x π⎛⎫=+-⎪⎝⎭.依题意及(Ⅰ),有()e (cos sin )x g x x x =-,从而'()2e sin x g x x =-.当ππ,42x ⎛⎫∈⎪⎝⎭时,()'0g x <, 故'()'()'()()(1)'()022h x f x g x x g x g x x ππ⎛⎫⎛⎫=+-+-=-<⎪ ⎪⎝⎭⎝⎭. 因此,()h x 在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递减,进而()022h x h f ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.所以,当,42x ππ⎡⎤∈⎢⎥⎣⎦时,()()02f x g x x π⎛⎫+- ⎪⎝⎭.(Ⅲ)依题意,()()10n n u x f x =-=,即cos e 1n xn x =.记2n n y x n =-π,则,42n y ππ⎛⎫∈ ⎪⎝⎭, 且()()()22e cos ecos 2e n n yx n n n n n n f y y x n -π-π==-π=∈N .由()()20e1n n f y f y -π==及(Ⅰ),得0n y y . 由(Ⅱ)知,当,42x ππ⎛⎫∈⎪⎝⎭时,()'0g x <,所以()g x 在,42ππ⎡⎤⎢⎥⎣⎦上为减函数,因此()()004n g y g y g π⎛⎫<= ⎪⎝⎭.又由(Ⅱ)知,()()02n n n f y g y y π⎛⎫+-⎪⎝⎭, 故()()()()()022*******2sin cos sin c e e e e os e n n n n n n y n n f y y g y g y g y y y x x -π-π-π-ππ--=-=<--. 所以,20022sin c s e o n n n x x x -πππ+-<-.2010-2018年1.A 【解析】∵21()[(2)1]x f x x a x a e-'=+++-,∵(2)0f '-=,∴1a =-,所以21()(1)x f x x x e-=--,21()(2)x f x x x e-'=+-,令()0f x '=,解得2x =-或1x =,所以当(,2)x ∈-∞-,()0f x '>,()f x 单调递增;当(2,1)x ∈-时,()0f x '<,()f x 单调递减;当(1,)x ∈+∞,()0f x '>,()f x 单调递增,所以()f x 的极小值为11(1)(111)1f e-=--=-,选A .2.D 【解析】由导函数的图象可知,()y f x =的单调性是减→增→减→增,排除 A 、C ;由导函数的图象可知,()yf x =的极值点一负两正,所以D 符合,选D . 3.D 【解析】当0x时,令函数2()2x f x x e =-,则()4x f x x e '=-,易知()f x '在[0,ln 4)上单调递增,在[ln 4,2]上单调递减,又(0)10f '=-<,1()202f '=->,(1)40f e '=->,2(2)80f e '=->,所以存在01(0,)2x ∈是函数()f x 的极小值点,即函数()f x 在0(0,)x 上单调递减,在0(,2)x 上单调递增,且该函数为偶函数,符合 条件的图像为D .4.B 【解析】(解法一)2m ≠时,抛物线的对称轴为82n x m -=--.据题意,当2m >时,822n m --≥-即212m n +≤.2262m nm n +⋅≤≤18mn ∴≤.由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,8122n m --≤-即218m n +≤.2292m n m n +⋅≤≤812mn ∴≤.由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以(182)(1828)816mn n n =-<-⨯⨯=,所以最大值为18.选B .(解法二)由已知得()(2)8f x m x n '=-+-,对任意的1[,2]2x ∈,()0f x '≤,所以1()02()0f f x ⎧'⎪⎨⎪'⎩≤≤,即0,021822m n m n m n ⎧⎪+⎨⎪+⎩≥≥≤≤.画出该不等式组表示的平面区域如图中阴影部分所示,令mn t =,则当0n 时,0t ,当0n ≠时,t m n =,由线性规划的相关知识,只有当直线212m n +=与曲线t m n 相切时,t 取得最大值,由212192t n t n n ⎧-=-⎪⎪⎨⎪-=⎪⎩,解得6n ,18t ,所以max ()18mn =,选B .5.A 【解析】令()()f x h x x,因为()f x 为奇函数,所以()h x 为偶函数,由于 2()()()xf x f x h x x '-'=,当0x 时,'()()xf x f x - 0<,所以()h x 在(0,)+∞ 上单调递减,根据对称性()h x 在(,0)-∞上单调递增,又(1)0f -=,(1)0f , 数形结合可知,使得()0f x 成立的x 的取值范围是()(),10,1-∞-. 6.D 【解析】由题意可知存在唯一的整数0x ,使得000(21)-<-x e x ax a ,设()(21)=-x g x e x ,()=-h x ax a ,由()(21)x g x e x '=+,可知()g x 在1(,)2-∞- 上单调递减,在1(,)2-+∞上单调递增,作出()g x 与()h x 的大致图象如图所示,-a故(0)(0)(1)(1)>⎧⎨--⎩h g h g ≤,即132<⎧⎪⎨--⎪⎩a a e ≤,所以312a e ≤. 7.D 【解析】∵()ln f x kx x =-,∴1()f x k x'=-,∵()f x 在(1,)+∞单调递增, 所以当1x > 时,1()0f x k x '=-≥恒成立,即1k x≥在(1,)+∞上恒成立, ∵1x >,∴101x<<,所以k ≥1,故选D . 8.A 【解析】法一 由题意可知,该三次函数满足以下条件:过点(0,0),(2,0),在(0,0)处的切线方程为y x =-,在(2,0)处的切线方程为36y x =-,以此对选项进行检验.A 选项,321122y x x x =--,显然过两个定点,又2312y x x '=--, 则02|1,|3x x y y ==''=-=,故条件都满足,由选择题的特点知应选A .法二 设该三次函数为32()f x ax bx cx d =+++,则2()32f x ax bx c '=++由题设有(0)0(2)0(0)1(2)3f f f f =⎧⎪=⎪⎨'=-⎪⎪'=⎩,解得11,,1,022a b c d==-=-=. 故该函数的解析式为321122y x x x =--,选A . 9.C 【解析】由正弦型函数的图象可知:()f x 的极值点0x 满足0()f x =,则022x k m πππ=+()k Z ∈,从而得01()()2x k m k Z =+∈.所以不等式 ()22200[]x f x m +<,即为2221()32k m m ++<,变形得21[1()]32m k -+>, 其中k Z ∈.由题意,存在整数k 使得不等式21[1()]32m k -+>成立.当1k ≠-且0k ≠时,必有21()12k +>,此时不等式显然不能成立,故1k =-或0k =,此时,不等式即为2334m >,解得2m <-或2m >. 10.A 【解析】设所求函数解析式为()y f x =,由题意知(5)2,52f f =--=(),且(5)0f '±=,代入验证易得3131255y x x =-符合题意,故选A . 11.C 【解析】当(0,1]x ∈时,得321113()4()a x x x --+≥,令1t x =,则[1,)t ∈+∞, 3234a t t t --+≥,令()g t =3234t t t --+,[1,)t ∈+∞,则()2981(1)(91)g x t t t t '=--+=-+-,显然在[1,)+∞上,()0g t '<, ()g t 单调递减,所以max ()(1)6g t g ==-,因此6a -≥;同理,当[2,0)x ∈-时,得2a -≤.由以上两种情况得62a --≤≤.显然当0x =时也成立,故实数a 的取值范围为[6,2]--.12.C 【解析】设()ln x f x e x =-,则1()x f x e x'=-,故()f x 在(0,1)上有一个极值点,即()f x 在(0,1)上不是单调函数,无法判断1()f x 与2()f x 的大小,故A 、B 错;构造函数()x e g x x =,2(1)()x e x g x x-'=,故()g x 在(0,1)上单调递减,所以()()12g x g x >,选C .13.【解析】B 当0a =,可得图象D ;记2()2a f x ax x =-+,232()2g x a x ax =-+ ()x a a R +∈,取12a =,211()(1)24f x x =--,令()0g x '=,得2,23x =,易知 ()g x 的极小值为1(2)2g =,又1(2)4f =,所以(2)(2)g f >,所以图象A 有可能;同理取2a =,可得图象C 有可能;利用排除法可知选B .14.C 【解析】若0c =则有(0)0f =,所以A 正确.由32()f x x ax bx c =+++得 32()f x c x ax bx -=++,因为函数32y x ax bx =++的对称中心为(0,0),所以32()f x x ax bx c =+++的对称中心为(0,)c ,所以B 正确.由三次函数的图象可知,若0x 是()f x 的极小值点,则极大值点在0x 的左侧,所以函数在区间0(,)x -∞单调递减是错误的,D 正确.选C .15.A 【解析】法一:由题意可得,00sin y x =[1,1]∈-,而由()f x =0[0,1]y ∈,当0a =时,()f x∴0[0,1]y ∈时,0()[1f x ∈.∴0(())1f f y >.∴ 不存在0[0,1]y ∈使00))((y y f f =成立,故B ,D 错;当1a e =+时,()f x当0[0,1]y ∈时,只有01y =时()f x 才有意义,而(1)0f =,∴ ((1))(0)f f f =,显然无意义,故C 错.故选A .法二:显然,函数()f x 是增函数,()0f x ≥,从而以题意知0[0,1]y ∈.于是,只能有00()f y y =.不然的话,若00()f y y >,得000(())()f f y f y y >>, 与条件矛盾;若00()f y y <,得000(())()f f y f y y <<,与条件矛盾.于是,问题转化为()f t t =在[0,1]上有解.由t =2t t e t a =+-,分离变量,得2()t a g t e t t ==-+,[0,1]t ∈ 因为()210tg t e t '=-+>,[0,1]t ∈,所以,函数()g t 在[0,1]上是增函数,于是有1(0)()(1)g g t g e ==≤≤,即[1,]a e ∈,应选A .16.D 【解析】A .0,()()x R f x f x ∀∈≤,错误.00(0)x x ≠是()f x 的极大值点,并不是最大值点;B .0x -是()f x -的极小值点.错误.()f x -相当于()f x 关于y 轴的对称图像,故0x -应是()f x -的极大值点;C .0x -是()f x -的极小值点.错误.()f x -相当于()f x 关于x 轴的对称图像,故0x 应是()f x -的极小值点.跟0x -没有关系;D .0x -是()f x --的极小值点.正确.()f x --相当于()f x 先关于y 轴的对称,再关于x 轴的对称图像.故D 正确.17.B 【解析】∵21ln 2y x x =-,∴1y x x '=-,由0y ',解得11x -,又0x >, ∴01x <故选B .18.D 【解析】()x f x xe =,()(1)x f x e x '=+,0>x e 恒成立,令()0f x '=,则1-=x当1-<x 时,()0f x '<,函数单调减,当1->x 时,()0f x '>,函数单调增, 则1x =-为()f x 的极小值点,故选D .19.D 【解析】2()1222f x x ax b '=--,由(1)0f '=,即12220a b --=,得6a b +=.由0a >,0b >,所以2()92a b ab +=≤,当且仅当3a b ==时取等号.选D .20.D 【解析】若1x =-为函数()x f x e 的一个极值点,则易知a c =,∵选项A ,B 的函数为2()(1)f x a x =+,∴[()][()()](1)(3)x x x f x e f x f x e a x x e '=+=++,∴1x =-为函数()x f x e 的一个极值点满足条件;选项C 中,对称轴02b x a =->, 且开口向下,∵0,0a b <>,∴(1)20f a b -=-<,也满足条件;选项D 中,对称轴02b x a=-<,且开口向上,∴0,2a b a >>, ∴(1)20f a b -=-<,与题图矛盾,故选D .21.D 【解析】由题2||ln MN x x =-,(0)x >不妨令2()ln h x x x =-,则1'()2h x x x=-,令'()0h x =解得2x =,因2x ∈时,'()0h x <,当)x ∈+∞时,'()0h x >,所以当x =时,||MN 达到最小.即2t =. 22.①③④⑤ 【解析】 令32(),()3f x x ax b f x x a '=++=+,当0a ≥时,()0f x '≥,则()f x 在R 上单调递增函数,此时30x ax b ++=仅有一个实根,所以(4)(5)对; 当3a =-时,由2()330f x x '=-<得11x -<<,所以1x = 是()f x 的极小值点.由(1)0f >,得31310b -⋅+>,即2b >,(3)对.1x =- 是()f x 的极大值点, 由(1)0f -<,得3(1)3(1)0b --⋅-+<,即2b <-,(1)对.23.①④【解析】(1)设12x >x ,函数2x 单调递增,所有122>2x x ,120x x , 则m =1212()()f x f x x x --=121222x x x x >0,所以正确; (2)设1x >2x ,则120x x ->,则1212()()g x g x n x x 22121212()x x a x x x x 12121212()()x x x x a x x a x x ,可令1x =1,2x =2,4a =-,则10n =-<,所以错误;(3)因为m n ,由(2)得:2121)()(x x x f x f --12x x a =++,分母乘到右边, 右边即为12()()g x g x -,所以原等式即为12()()f x f x -=12()()g x g x -,即为12()()f x g x -=12()()f x g x ,令()()()h x f x g x =-,则原题意转化为对于任意的a ,函数()()()h x f x g x =-存在不相等的实数1x , 2x 使得函数值相等,2()2x h x x ax =--,则()2ln 22x h x x a '=--,则()2(ln 2)2xh x ''=-,令0()0h x ''=,且012x <<,可得0()h x '为极小值. 若10000a =-,则0()0h x '>,即0()0h x '>,()h x 单调递增,不满足题意, 所以错误.(4)由(3) 得12()()f x f x -=12()()g x g x -,则1122()()()()f x g x g x f x +=+, 设()()()h x f x g x =+,有1x ,2x 使其函数值相等,则()h x 不恒为单调. 2()2x h x x ax =++,()2ln 22x h x x a '=++,()2()2ln 220x h x ''=+>恒成立, ()h x '单调递增且()0h '-∞<,()0h '+∞>.所以()h x 先减后增,满足题意,所以正确.24.4【解析】当01x ≤时,()ln f x x ,()0g x ,此时方程|()()|1f x g x即为ln 1x 或ln 1x,故x e 或1x e ,此时1x e 符合题意,方程有一个实根. 当12x 时,()ln f x x ,22()422g x x x ,方程|()()|1f x g x即为2ln 21x x或2ln 21x x ,即2ln 10x x 或2ln 30x x , 令2ln 1y x x ,则120y x x,函数2ln 1y x x 在(1,2)x 上单调递减,且1x 时0y,所以当12x 时,方程2ln 10x x 无解;令2ln 3y x x ,则120y x x ,函数2ln 3y x x 在(1,2)x 上单调递减,且1x 时20y ,2x 时ln 210y ,所以当12x 时,方程2ln 30x x 有一个实根. 当2x ≥时,()ln f x x ,2()6g x x ,方程|()()|1f x g x 即为2ln 61x x 或2ln 61x x,即2ln 70x x 或2ln 50x x ,令2y ln 7x x , 则120y x x,函数2y ln 7x x 在[2,)x 上单调递增,且2x 时 ln 230y ,3x 时ln320y ,所以当2x ≥时方程2ln 70x x 有1个实根;同理2ln 50x x 在[2,)x 有1个实根.故方程1|)()(|=+x g x f 实根的个数为4个.25.2【解析】由题意2()363(2)f x x x x x '=-=-,令()0f x '=得0x =或2x =.因0x <或2x >时,()0f x '>,02x <<时,()0f x '<.∴2x =时()f x 取得极小值. 26.【解析】(1)()f x 的定义域为(0,)+∞,22211()1a x ax f x x x x-+'=--+=-. (i )若2≤a ,则()0'≤f x ,当且仅当2a =,1x =时()0f x '=,所以()f x 在(0,)+∞单调递减.(ii )若2a >,令()0f x '=得,x =或x =.当2()a a x +∈+∞时,()0f x '<;当x ∈时,()0f x '>.所以()f x在,)+∞单调递减,在单调递增. (2)由(1)知,()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点1x ,2x 满足210x ax -+=,所以121x x =,不妨设12x x <,则21x >.由于12121221212121222()()ln ln ln ln 2ln 11221f x f x x x x x x a a a x x x x x x x x x x ----=--+=-+=-+----, 所以1212()()2f x f x a x x -<--等价于22212ln 0x x x -+<. 设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)0g =,从而当(1,)x ∈+∞时,()0g x <. 所以22212ln 0x x x -+<,即1212()()2f x f x a x x -<--. 27.【解析】(1)当1=a 时,()1≥f x 等价于2(1)e10-+-≤x x . 设函数2()(1)1-=+-x g x x e ,则22()(21)(1)--=--+=--x x g'x x x e x e . 当1≠x 时,()0<g'x ,所以()g x 在(0,)+∞单调递减.而(0)0=g ,故当0≥x 时,()0≤g x ,即()1≥f x .(2)设函数2()1e -=-xh x ax . ()f x 在(0,)+∞只有一个零点当且仅当()h x 在(0,)+∞只有一个零点.(i )当0≤a 时,()0>h x ,()h x 没有零点;(ii )当0a >时,()(2)e xh'x ax x -=-.当(0,2)∈x 时,()0<h'x ;当(2,)∈+∞x 时,()0>h'x .所以()h x 在(0,2)单调递减,在(2,)+∞单调递增. 故24(2)1e=-a h 是()h x 在[0,)+∞的最小值. ①若(2)0>h ,即2e 4<a ,()h x 在(0,)+∞没有零点; ②若(2)0=h ,即2e 4=a ,()h x 在(0,)+∞只有一个零点; ③若(2)0<h ,即2e 4>a ,由于(0)1=h ,所以()h x 在(0,2)有一个零点, 由(1)知,当0>x 时,2e >x x , 所以33342241616161(4)11110e (e )(2)=-=->-=->a a a a a h a a a. 故()h x 在(2,4)a 有一个零点,因此()h x 在(0,)+∞有两个零点.综上,()f x 在(0,)+∞只有一个零点时,2e 4=a . 28.【解析】(1)当0a =时,()(2)ln(1)2f x x x x =++-,()ln(1)1x f x x x '=+-+. 设函数()()ln(1)1x g x f x x x'==+-+,则2()(1)x g x x '=+. 当10x -<<时,()0g x '<;当0x >时,()0g x '>.故当1x >-时,()(0)0g x g =≥,且仅当0x =时,()0g x =,从而()0f x '≥,且仅当0x =时,()0f x '=.所以()f x 在(1,)-+∞单调递增.又(0)0f =,故当10x -<<时,()0f x <;当0x >时,()0f x >.(2)(i )若0a ≥,由(1)知,当0x >时,()(2)ln(1)20(0)f x x x x f ++->=≥,这与0x =是()f x 的极大值点矛盾.(ii )若0a <,设函数22()2()ln(1)22f x x h x x x ax x ax==+-++++.由于当||min{x <时,220x ax ++>,故()h x 与()f x 符号相同. 又(0)(0)0h f ==,故0x =是()f x 的极大值点当且仅当0x =是()h x 的极大值点.2222222212(2)2(12)(461)()1(2)(1)(2)x ax x ax x a x ax a h x x x ax x ax x ++-++++'=-=++++++.如果610a +>,则当6104a x a +<<-,且||min{x <时,()0h x '>, 故0x =不是()h x 的极大值点.如果610a +<,则224610a x ax a +++=存在根10x <,故当1(,0)x x ∈,且||min{x <时,()0h x '<,所以0x =不是()h x 的极大值点. 如果610a +=,则322(24)()(1)(612)x x h x x x x -'=+--.则当(1,0)x ∈-时,()0h x '>; 当(0,1)x ∈时,()0h x '<.所以0x =是()h x 的极大值点,从而0x =是()f x 的极大值点 综上,16a =-. 29.【解析】(1)因为2()[(41)43]x f x ax a x a e =-+++,所以2()[2(41)][(41)43]x xf x ax a e ax a x a e '=-++-+++(x ∈R )=2[(21)2]x ax a x e -++. (1)(1)f a e '=-.由题设知(1)0f '=,即(1)0a e -=,解得1a =.此时(1)30f e =≠.所以a 的值为1.(2)由(1)得2()[(21)2](1)(2)x x f x ax a x e ax x e '=-++=--.若12a >,则当1(,2)x a∈时,()0f x '<; 当(2,)x ∈+∞时,()0f x '>. 所以()0f x <在2x =处取得极小值. 若12a ≤,则当(0,2)x ∈时,20x -<,11102ax x --<≤, 所以()0f x '>.所以2不是()f x 的极小值点. 综上可知,a 的取值范围是1(,)2+∞.30.【解析】(1)由已知,()ln xh x a x a =-,有()ln ln xh x a a a '=-.令()0h x '=,解得0x =.由1a >,可知当x 变化时,()h x ',()h x 的变化情况如下表:所以函数()h x 的单调递减区间(,0)-∞,单调递增区间为(0,)+∞.(2)证明:由()ln xf x a a '=,可得曲线()y f x =在点11(,())x f x 处的切线斜率为1ln x a a .由1()ln g x x a'=,可得曲线()y g x =在点22(,())x g x 处的切线斜率为21ln x a.因为这两条切线平行,故有121ln ln x a a x a =,即122(ln )1x x a a =.两边取以a 为底的对数,得21log 2log ln 0a a x x a ++=,所以122ln ln ()ln ax g x a+=-. (3)证明:曲线()y f x =在点11(,)xx a 处的切线1l :111ln ()xxy a a a x x -=⋅-. 曲线()y g x =在点22(,log )a x x 处的切线2l :2221log ()ln a y x x x x a-=⋅-. 要证明当1ee a ≥时,存在直线l ,使l 是曲线()yf x =的切线,也是曲线()yg x =的切线,只需证明当1ee a ≥时,存在1(,)x ∈-∞+∞,2(0,)x ∈+∞,使得l 1和l 2重合.即只需证明当1e e a ≥时,方程组1112121ln ln 1ln log ln x x x a a a x a a x a a x a ⎧=⎪⎪⎨⎪-=-⎪⎩①②有解,由①得1221(ln )x x a a =,代入②,得111112ln ln ln 0ln ln x x a a x a a x a a-+++=. ③ 因此,只需证明当1ee a ≥时,关于1x 的方程③有实数解. 设函数12ln ln ()ln ln ln x xau x a xa a x a a=-+++, 即要证明当1ee a ≥时,函数()y u x =存在零点.2()1(ln )x u x a xa '=-,可知(,0)x ∈-∞时,()0u x '>;(0,)x ∈+∞时,()u x '单调递减,又(0)10u '=>,21(ln )21()10(ln )a u a a '=-<, 故存在唯一的0x ,且00x >,使得0()0u x '=,即0201(ln )0x a x a-=.由此可得()u x 在0(,)x -∞上单调递增,在0(,)x +∞上单调递减.()u x 在0x x =处取得极大值0()u x .因为1ee a ≥,故ln(ln )1a -≥, 所以0000012ln ln ()ln ln ln xxau x a x a a x a a=-+++02012ln ln 22ln ln 0(ln )ln ln a ax x a a a+=++≥≥. 下面证明存在实数t ,使得()0u t <. 由(1)可得1ln xa x a +≥, 当1ln x a>时, 有12ln ln ()(1ln )(1ln )ln ln a u x x a x a x a a+-+++≤ 2212ln ln (ln )1ln ln aa x x a a=-++++,所以存在实数t ,使得()0u t <因此,当1ee a ≥时,存在1(,)x ∈-∞+∞,使得1()0u x =.所以,当1ee a ≥时,存在直线l ,使l 是曲线()yf x =的切线,也是曲线()yg x =的切线.31.【解析】(1)函数()f x x =,2()22g x x x =+-,则()1f x '=,()22g x x '=+.由()()f x g x =且()()f x g x ''=,得222122x x x x ⎧=+-⎨=+⎩,此方程组无解,因此,()f x 与()g x 不存在“S 点”. (2)函数2()1f x ax =-,()ln g x x =, 则1()2()f x ax g x x'='=,. 设0x 为()f x 与()g x 的“S 点”,由00()()f x g x =且00()()f x g x ''=,得200001ln 12ax x ax x ⎧-=⎪⎨=⎪⎩,即200201ln 21ax x ax ⎧-=⎪⎨=⎪⎩,(*) 得01ln 2x =-,即120e x -=,则1221e 22(e )a -==. 当e2a =时,120e x -=满足方程组(*),即0x 为()f x 与()g x 的“S 点”.因此,a 的值为e 2. (3)对任意0a >,设32()3h x x x ax a =--+.因为(0)0(1)1320h a h a a =>=--+=-<,,且()h x 的图象是不间断的,所以存在0(0,1)x ∈,使得0()0h x =.令03002e (1)x x b x =-,则0b >.函数2e ()()xb f x x a g x x=-+=,,则2e (1)()2()x b x f x x g x x -=-=′,′.由()()f x g x =且()()f x g x ''=,得22e e (1)2xx b x a x b x x x ⎧-+=⎪⎪⎨-⎪-=⎪⎩,即00320030202e e (1)2e (1)2e (1)x x xx x x a x x x x x x x ⎧-+=⋅⎪-⎪⎨-⎪-=⋅⎪-⎩,(**) 此时,0x 满足方程组(**),即0x 是函数()f x 与()g x 在区间(0,1)内的一个“S 点”. 因此,对任意0a >,存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”. 32.【解析】(1)函数()f x的导函数1()f x x'=-, 由12()()f x f x ''=1211x x -=-, 因为12x x ≠12=.= 因为12x x ≠,所以12256x x >.由题意得121212()()ln ln ln()f x f x x x x x +=+=.设()ln g x x =,则1()4)4g x x'=,所以所以()g x 在[256,)+∞上单调递增, 故12()(256)88ln 2g x x g >=-,即12()()88ln 2f x f x +>-. (2)令(||)a k m e-+=,2||1()1a n k+=+,则 ()||0f m km a a k k a -->+--≥,()))0a f n kn a n k n k n --<---<≤ 所以,存在0(,)x m n ∈使00()f x kx a =+,所以,对于任意的a ∈R 及(0,)k ∈+∞,直线y kx a =+与曲线()y f x =有公共点.由()f x kx a =+得ln x ak x-=.设ln ()x ah x x-=,则22ln 1()12()x ag x a h x x x --+--+'==,其中()ln 2g x x =-. 由(1)可知()(16)g x g ≥,又34ln 2a -≤, 故()1(16)134ln 2g x a g a a --+--+=-++≤,所以()0h x '≤,即函数()h x 在(0,)+∞上单调递减,因此方程()0f x kx a --=至多1个实根.综上,当34ln 2a -≤时,对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.33.【解析】(1)()f x 的定义域为(,)-∞+∞,2()2(2)1(1)(21)x x x x f x ae a e ae e '=+--=-+,(ⅰ)若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减. (ⅱ)若0a >,则由()0f x '=得ln x a =-.当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>, 所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增. (2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.(ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+.①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20nnnnf n a a n n n =+-->->->.由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点.综上,a 的取值范围为(0,1).34.【解析】(1)()f x 的定义域为(0,)+∞.设()ln g x ax a x =--,则()()f x xg x =,()0f x ≥等价于()0g x ≥. 因为(1)0g =,()0g x ≥,故(1)0g '=,而1()g x a x'=-,(1)1g a '=-,得1a =. 若1a =,则1()1g x x'=-.当01x <<时,()0g x '<,()g x 单调递减;当1x >时,()0g x '>,()g x 单调递增.所以1x =是()g x 的极小值点,故()(1)0g x g =≥.综上,1a =.(2)由(1)知2()ln f x x x x x =--,()22ln f x x x '=--. 设()22ln h x x x =--,则1()2h x x'=-. 当1(0,)2x ∈时,()0h x '<;当1(,)2x ∈+∞时,()0h x '>.所以()h x 在1(0,)2单调递减,在1(,)2+∞单调递增.又2()0h e ->,1()02h <,(1)0h =,所以()h x 在1(0,)2有唯一零点0x ,在1[,)2+∞有唯一零点1,且当0(0,)x x ∈时,()0h x >;当0(,1)x x ∈时,()0h x <;当(1,)x ∈+∞时,()0h x >.因此()()f x h x '=,所以0x x =是()f x 的唯一极大值点. 由0()0f x '=得00ln 2(1)x x =-,故000()(1)f x x x =-. 由0(0,1)x ∈得,01()4f x <. 因为0x x =是()f x 在(0,1)的最大值点,由1(0,1)e -∈,1()0f e -'≠得120()()f x f e e -->=.所以220()2ef x --<<.35.【解析】(1)()f x 的定义域为(0,)+∞.①若a 0≤,因为11()ln 2022f a =-+<,所以不满足题意; ②若>0a ,由()1a x af 'x x x-=-=知,当()0x ,a ∈时,()<0f 'x ;当(),+x a ∈∞时,()>0f 'x ,所以()f x 在(0,)a 单调递减,在(,)a +∞单调递增,故x a =是()f x 在(0,)+∞的唯一最小值点.由于()10f =,所以当且仅当a =1时,()0f x ≥. 故a =1.(2)由(1)知当(1,)x ∈+∞时,1ln 0x x -->令112n x =+得11ln(1)22n n+<,从而 221111111ln(1)ln(1)ln(1)112222222n n n ++++⋅⋅⋅++<++⋅⋅⋅+=-<故2111(1)(1)(1)222n e ++⋅⋅⋅+<而23111(1)(1)(1)2222+++>,所以m 的最小值为3.36.【解析】(Ⅰ)因为(21)121x x x '--=--,()x xe e --'=- 所以 ()(1)(21)21x x f x e x x e x --'=----- (1)(212)21xx x e x ----=-1()2x > (Ⅱ)由(1)(212)()021xx x e f x x ----'==-解得 1x =或52x =. 因为x12(12,1) 1 (1,52) 52 (52,+∞) ()f x '- 0 +0 - ()f x↘↗↘又2()(211)02x f x x e -=-≥, 所以()f x 在区间1[,)2+∞上的取值范围是121[0,]2e -.37.【解析】(1)由32()1f x x ax bx =+++,得222()323()33a a f x x axb x b '=++=++-.当3ax =-时,()f x '有极小值23a b -.因为()f x '的极值点是()f x 的零点.所以33()1032793a a a ab f -=-+-+=,又0a >,故2239a b a=+. 因为()f x 有极值,故()=0f x '有实根,从而231(27a )039a b a-=-≤,即3a ≥. 3a =时,()>0(1)f x x '≠-,故()f x 在R 上是增函数,()f x 没有极值;3a >时,()=0f x '有两个相异的实根1=3a x -,2=3a x -. 列表如下故()f x 的极值点是12,x x . 从而3a >,因此2239a b a=+,定义域为(3,)+∞.(2)由(1=+. 设23()9t g t t=+,则22222227()39t g t t t -'=-=.当(,)2t ∈+∞时,()0g t '>,所以()g t 在(,)2+∞上单调递增.因为3a >,所以>(g g >=> 因此23b a >.(3)由(1)知,()f x 的极值点是12,x x ,且1223x x a +=-,22212469a b x x -+=.从而323212111222()()11f x f x x ax bx x ax bx +=+++++++2222121122121212(32)(32)()()23333x x x ax b x ax b a x x b x x =++++++++++ 346420279a ab ab -=-+=记()f x ,()f x '所有极值之和为()h a ,因为()f x '的极值为221339a b a a -=-+,所以213()=9h a a a-+,3a >. 因为223()=09h a a a '--<,于是()h a 在(3,)+∞上单调递减. 因为7(6)=2h -,于是()(6)h a h ≥,故6a ≤.因此a 的取值范围为(36],.38.【解析】(Ⅰ)由432()2336f x x x x x a =+--+,可得 32()()8966g x f x x x x '==+--,进而可得2()24186g x x x '=+-.令()0g x '=,解得1x =-,或14x =. 当x 变化时,(),()g x g x '的变化情况如下表:所以,()g x 的单调递增区间是(,1)-∞-,(,)4+∞,单调递减区间是1(1,)4-. (Ⅱ)证明:由0()()()()h x g x m x f m =--,得0()()()()h m g m m x f m =--,000()()()()h x g x m x f m =--.令函数10()()()()H x g x x x f x =--,则10()()()H x g x x x ''=-.由(Ⅰ)知,当[1,2]x ∈时,()0g x '>,故当0[1,)x x ∈时,1()0H x '<,1()H x 单调递减;当0(,2]x x ∈时,1()0H x '>,1()H x 单调递增.因此,当00[1,)(,2]x x x ∈时,1100()()()0H x H x f x >=-=,可得1()0,()0H m h m >>即.令函数200()()()()H x g x x x f x =--,则20()()()H x g x g x '=-.由(Ⅰ)知,()g x 在[1,2]上单调递增,故当0[1,)x x ∈时,2()0H x '>,2()H x 单调递增;当0(,2]x x ∈时,2()0H x '<,2()H x 单调递减.因此,当00[1,)(,2]x x x ∈时,220()()0H x H x <=,可得20()0,()0H m h x <<即.。
高二数学导数的实际应用试题答案及解析

高二数学导数的实际应用试题答案及解析1.已知函数,则()A.0B.1C.2D.【答案】C【解析】,.【考点】导数公式的应用.2.已知函数,则=____________。
【答案】0;【解析】,所以;【考点】三角函数求导公式;3.函数的定义域为开区间,其导函数在内的图象如图所示,则函数在开区间内极小值点的个数为()A.1个B.2个C.3个D.4个【答案】A【解析】在极小值点处满足:,由图可知在右边第二个零点处满足条件,故A.【考点】极值点定义.4.已知..(1)求函数在区间上的最小值;(2)对一切实数,恒成立,求实数的取值范围;(3) 证明对一切,恒成立.【答案】(1)见解析;(2);(3)见解析.【解析】(1)对于研究非常规的初等函数的最值问题,往往都需要求函数的导数.根据函数导数的正负判断函数的单调性,利用单调性求函数在某个区间上的最值;(2)恒成立问题,一般都需要将常数和变量分离开来(分离常数法)转化为最值问题处理;(3)证明不等式恒成立问题,往往将不等式转化为函数来证明恒成立问题.但有些时候这样转化后不等会乃然很难实现证明,还需对不等式经行恒等变形以达到化简不等式的目的,然后再证.试题解析:⑴,当,,单调递减,当,,单调递增. 1分(由于的取值范围不同导致所处的区间函数单调性不同,故对经行分类讨论.)①,t无解; 2分②,即时, 3分③,即时,在上单调递增,;所以 5分由题可知:,则.因对于,恒成立,故,设,则.单调递增,单调递减.所以,即.问题等价于证明(为了利用第(1)小问结论,并考虑到作差做函数证明不方便,下证的最值与最值的关系.)由(1)可知在的最小值是,当且仅当时取到.设,则,易得,当且仅当时取到.从而对于一切,都有恒成立.【考点】(1)含参量函数最值的讨论;(2)含参恒成立问题,参数取值范围;(3)利用倒数证明不等式.5.已知是的导函数,,且函数的图象过点.(1)求函数的表达式;(2)求函数的单调区间和极值.【答案】(1);(2)函数的单调减区间为,单调增区间为极小值是,无极大值.【解析】⑴注意到是常数,所以从而可求得;又因为函数的图象过点,所以点的坐标满足函数解析式,从而可求出m的值,进而求得的解析式.(2)由⑴可得的解析式及其定义域,进而就可应用导数求其单调区间和极值.试题解析:⑴,,函数的图象过点,,解得:函数的表达式为:(2)函数的定义域为,当时,;当时,函数的单调减区间为,单调增区间为极小值是,无极大值.【考点】1.函数的导数;2.函数的单调区间;3.函数的极值.6.已知函数的导函数为,且满足关系式,则的值等于()A.B.-1C.4D.2【答案】A【解析】对求导,知,令可得,解得.【考点】求导.7.函数的导函数的图像如图所示,则的图像最有可能的是()【答案】C.【解析】从的图像中可以看到,当时,,当时,,∴在上是减函数,在上是增函数,∴选C.【考点】导数的运用.8.函数在x=4处的导数= .【答案】.【解析】∵,∴,∴.【考点】复合函数的导数.9.函数的单调递增区间是()A.B.C.D.【答案】D【解析】,单调递增区间有,,可得.【考点】由导数求函数的单调性.10.已知函数在上是单调递减函数,方程无实根,若“或”为真,“且”为假,求的取值范围。
2024届全国高考数学一轮复习好题专项(导数的综合应用)练习(附答案)

2024届全国高考数学一轮复习好题专项(导数的综合应用)练习一、基础练习1.(2021ꞏ沙坪坝区ꞏ重庆一中高三其他模拟)已知e 为自然对数的底数,a ,b 为实数,且不等式()ln 310x e a x b +-++≤对任意()0,x ∈+∞恒成立,则当3b a+取最大值时,实数a 的值为( ) A .3eB .31e +C .4eD .41e +2.(2021ꞏ湖南高三其他模拟)已知函数()e ax f x =a 的取值范围是( ) A .0,2e ⎛⎫ ⎪⎝⎭B .,2e ⎛⎫+∞⎪⎝⎭C .10,2e ⎛⎫ ⎪⎝⎭D .1,2e ⎛⎫+∞⎪⎝⎭3.(2021ꞏ四川遂宁市ꞏ高三三模(理))已知函数()()2xh x x e =-,()212a a g x x x =-,又当()0h x ≥时,()()h x g x ≥恒成立,则实数a 的取值范围是( )A .(2,e ⎤-∞⎦B .(],e -∞C .(20,e ⎤⎦D .(]0,e4.(2021ꞏ全国高三其他模拟)已知f (x )是定义在区间[﹣2,2]上的偶函数,当x ∈[0,2]时,f (x )=xxe ,若关于x 的方程2f 2(x )+(2a ﹣1)f (x )﹣a =0有且只有2个实数根,则实数a 的取值范围是( )A .[﹣1e ,﹣22e ] B .[﹣1e ,﹣22e ) C .(﹣22e,0)D .(﹣22e ,0)∪{﹣1e}5.(2021ꞏ宁夏银川市ꞏ高三其他模拟(理))平行于x 轴的直线与函数ln ,0,(),0,x x f x e x x>⎧⎪=⎨-<⎪⎩的图像交于,A B 两点,则线段AB 长度的最小值为( ) A .1e e-B .1e e+C .eD .2e6.(2021ꞏ正阳县高级中学高三其他模拟(理))已知2m <-,若关于x 的不等式22e 2x mx n x +<+恒成立,则实数n 的取值范围为( ) A .[)3e,+∞B .)2e ,⎡+∞⎣C .[)e,+∞D .[)2e,+∞7.【多选题】(2021ꞏ河北衡水中学高三其他模拟)已知函数()3e exxx a f x x -=-+-,则下列结论中正确的是( )A .若()f x 在区间[]1,1-上的最大值与最小值分别为M ,m ,则0M m +=B .曲线()y f x =与直线y ax =-相切C .若()f x 为增函数,则a 的取值范围为(],2-∞D .()f x 在R 上最多有3个零点8.(2021ꞏ黑龙江大庆市ꞏ高三一模(理))用总长11m 的钢条制作一个长方体容器的框架,如果所制容器底面一条边比另一条边长1m ,则该容器容积的最大值为________m 3(不计损耗). 9.(2021ꞏ湖南高三其他模拟)中国最早的化妆水是1896年在香港开设的广生行生产的花露水,其具有保湿、滋润、健康皮肤的功效.已知该化妆水容器由一个半球和一个圆柱组成(其中上半球是容器的盖子,化妆水储存在圆柱中),容器轴截面如图所示,上部分是半圆形,中间区域是矩形,其外周长为12cm .则当圆柱的底面半径r =___________时,该容器的容积最大,最大值为___________.10.(2021ꞏ全国高三其他模拟)若函数ln ()1xxf x ae x=--只有一个零点,则实数a 的取值范围是 ________. 二、提升练习1.(2021ꞏ全国高三其他模拟)若不等式ln x ax b ≤+恒成立,则2a b +的最小值为( ) A .2B .3C .ln 2D .52.(2021ꞏ北京高考真题)已知函数()lg 2f x x kx =--,给出下列四个结论: ①若0k =,则()f x 有两个零点; ②0k ∃<,使得()f x 有一个零点; ③0k ∃<,使得()f x 有三个零点; ④0k ∃>,使得()f x 有三个零点. 以上正确结论得序号是_______.3.(2021ꞏ四川省绵阳南山中学高三其他模拟(文))设函数()()222ln xf x x x e aex e x =-+-,其中e 为自然对数的底数,曲线()y f x =在()()22f ,处切线的倾斜角的正切值为2322e e +.(1)求a 的值; (2)证明:()0f x >.4.(2021ꞏ全国高三其他模拟(理))已知函数()()ln e xf x x m x -=+-.(1)若()f x 的图象在点()()1,1f 处的切线与直线20x y -=平行,求m 的值; (2)在(1)的条件下,证明:当0x >时,()0f x >; (3)当1m >时,求()f x 的零点个数.5.(2021ꞏ黑龙江哈尔滨市ꞏ哈尔滨三中高三其他模拟(文))已知函数2211()(1)ln (0)22f x x a x a x a a =-+++>. (1)讨论()f x 的单调性;(2)若函数()y f x =只有一个零点,求实数a 的取值范围.6.(2021ꞏ河北高三其他模拟)已知函数2ln 1()(ln )()2k x f x x k x+=+∈R . (1)当0k =时,求证:()1f x ≤; (2)当0k ≠时,讨论()f x 零点的个数.7.(2021ꞏ重庆市育才中学高三二模)已知函数()x f x e =,()1g x ax =+. (1)已知()()f x g x ≥恒成立,求a 的值;(2)若(0,1)x ∈,求证:21ln 11()x x f x x-+-<. 8.(2021ꞏ全国高三其他模拟)已知函数()()ln x a f x a x+=+,()0,x ∈+∞.(1)当0a =时,讨论函数()f x 的单调性; (2)若函数()f x 存在极大值M ,证明:12M e≤<.9.(2021ꞏ重庆高三二模)已知函数()ln ()f x ax x a R =+∈在1x =处取得极值. (1)若对(0,),()1x f x bx ∀∈+∞≤-恒成立,求实数b 的取值范围;(2)设()()(2)x g x f x x e =+-,记函数()y g x =在1,14⎡⎤⎢⎥⎣⎦上的最大值为m ,证明:(4)(3)0m m ++<. 10.(2021ꞏ江苏南通市ꞏ高三一模)已知函数()()21ln 22f x ax ax x =+-,0a >. (1)求函数()f x 的增区间;(2)设1x ,2x 是函数()f x 的两个极值点,且12x x <,求证:122x x +>. 三、真题练习1.(2021ꞏ全国高考真题(文))设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图像与x 轴没有公共点,求a 的取值范围.2.(2021ꞏ全国高考真题(理))设函数()()ln f x a x =-,已知0x =是函数()y xf x =的极值点. (1)求a ; (2)设函数()()()x f x g x xf x +=.证明:()1g x <.3.(2021ꞏ全国高考真题)已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<. 4.(2020·山东海南省高考真题)已知函数1()e ln ln x f x a x a -=-+.(1)当a e =时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积; (2)若f (x )≥1,求a 的取值范围.5.(2020·浙江省高考真题)已知12a <≤,函数()e xf x x a =--,其中e =2.71828…为自然对数的底数.(Ⅰ)证明:函数()y f x =在(0)+∞,上有唯一零点;(Ⅱ)记x 0为函数()y f x =在(0)+∞,上的零点,证明:0x ≤≤; (ⅱ)00(e )(e 1)(1)x x f a a ≥--.6.(2019·全国高考真题(理))已知函数.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线的切线.()11ln x f x x x -=-+e x y =参考答案一、基础练习1.(2021ꞏ沙坪坝区ꞏ重庆一中高三其他模拟)已知e 为自然对数的底数,a ,b 为实数,且不等式()ln 310x e a x b +-++≤对任意()0,x ∈+∞恒成立,则当3b a+取最大值时,实数a 的值为( ) A .3e B .31e +C .4eD .41e +【答案】C 【答案解析】不等式(3)10lnx e a x b +-++…对任意(0,)x ∈+∞恒成立,化为不等式31lnx ex ax b +--…对任意(0,)x ∈+∞恒成立,必然有0a >.令1=x e,化为:31b a e +….令4a e =,1b =.利用导数研究函数的单调性极值最值即可得出结论. 【答案详解】解:不等式(3)10lnx e a x b +-++…对任意(0,)x ∈+∞恒成立, 则不等式31lnx ex ax b +--…对任意(0,)x ∈+∞恒成立, 则0a >. 令1=x e,则131a b e -+--…,化为:31b a e +…. 令4a e =,1b =.不等式31lnx ex ax b +--…对任意(0,)x ∈+∞恒成立,即不等式20lnx ex -+…对任意(0,)x ∈+∞恒成立, 令()2f x lnx ex =-+,则1()1()e x e f x e x x --'=-=,可得:1=x e 时,函数()f x 取得极大值即最大值,1(1120f e=--+=, 满足题意.可以验证其他值不成立. 故选:C .2.(2021ꞏ湖南高三其他模拟)已知函数()e ax f x =a 的取值范围是( ) A .0,2e ⎛⎫ ⎪⎝⎭B .,2e ⎛⎫+∞⎪⎝⎭C .10,2e ⎛⎫ ⎪⎝⎭D .1,2e ⎛⎫+∞ ⎪⎝⎭【答案】C 【答案解析】函数零点即方程ax e =的解,2ax e x =(0x >),取对数得2ln ax x =,此方程有两个解,引入函数()ln 2g x x ax =-,利用导数求得函数的单调性,函数的变化趋势,然后由零点存在定理可得结论.【答案详解】显然(0)1f =,()e ax f x =有两个零点,即方程ax e =,2ax e x =在(0,)+∞上有两个解,两边取对数得到2ln ax x =,令()ln 2g x x ax =-,1()2g x a x '=-,()g x 在10,2a ⎛⎫ ⎪⎝⎭单调递增,在1,2a ⎛⎫+∞ ⎪⎝⎭单调递减,又当0x →时,()g x →-∞,当x →+∞时,()g x →-∞, 因为()g x 有两个零点,则11ln 1022g a a ⎛⎫=->⎪⎝⎭, 解得12e a <.所以正数a 的取值范围是10,2e ⎛⎫⎪⎝⎭. 故选:C .3.(2021ꞏ四川遂宁市ꞏ高三三模(理))已知函数()()2xh x x e =-,()212a a g x x x =-,又当()0h x ≥时,()()h x g x ≥恒成立,则实数a 的取值范围是( )A .(2,e ⎤-∞⎦B .(],e -∞C .(20,e ⎤⎦D .(]0,e【答案】A 【答案解析】首先根据()0h x ≥求出2x ≥,进而参变分离解决恒成立的问题即可. 【答案详解】因为()()2xh x x e =-,所以()0h x ≥,即2x ≥,所以当2x ≥时,()()h x g x ≥恒成立,即()2122xa a x e x x -≥-, 即()()1222xx e x ax -≥-, 当2x =时,()()1222xx e x ax -≥-恒成立,符合题意;当()2,x ∈+∞时,有12xe ax ≥,即2xe xa ≥,令()2x e m x x =,则()()2210x e x m x x-'=>,所以()m x 在()2,x ∈+∞上单调递增,而()22m e =,所以2e a ≥,故选:A.4.(2021ꞏ全国高三其他模拟)已知f (x )是定义在区间[﹣2,2]上的偶函数,当x ∈[0,2]时,f (x )=xxe ,若关于x 的方程2f 2(x )+(2a ﹣1)f (x )﹣a =0有且只有2个实数根,则实数a 的取值范围是( )A .[﹣1e ,﹣22e ]B .[﹣1e ,﹣22e ) C .(﹣22e,0)D .(﹣22e ,0)∪{﹣1e}【答案】D 【答案解析】利用导数研究函数在定义域上的单调性,得出1()f x e≤;结合题意得出()f x 在[]02,有且仅有1个解,计算(0)(2)f f 、的值即可. 【答案详解】当[]02x ∈,时()xxf x e =, 则1()x xf x e-'=令()=0f x ',解得1x =,所以当[]01x ∈,时()0f x '>,()f x 单调递增; 当[]12x ∈,时()0f x '<,()f x 单调递减, 所以max 1()(1)f x f e==,故1()f x e≤在定义域上恒成立,由22()(21)()0f x a f x a +--=有且只有2个实数根, 得方程[]12()()02f x a f x ⎡⎤+-=⎢⎥⎣⎦有2个解,又1()f x e≤,所以111()022f x e -≤-<,则()f x 在[]02,有且仅有1个解, 因为22(0)0(2)f f e ==,,则220a e <-<或1a e-=, 所以220a e-<<或1a e =-,即实数的取值范围是2210e e ⎛⎫⎧⎫--⎨⎬ ⎪⎝⎭⎩⎭,, 故选:D5.(2021ꞏ宁夏银川市ꞏ高三其他模拟(理))平行于x 轴的直线与函数ln ,0,(),0,x x f x e x x>⎧⎪=⎨-<⎪⎩的图像交于,A B 两点,则线段AB 长度的最小值为( ) A .1e e-B .1e e+C .eD .2e【答案】D 【答案解析】画出函数图像,数形结合构造函数,利用导数判断函数单调性并求函数最值即可. 【答案详解】根据题意,画出()f x 的图象如下所示:令()f x t =,(0)t >,故可得lnx t =,解得t x e =;e t x -=,解得e x t=-.故可得(),,,te A e t B t t ⎛⎫- ⎪⎝⎭,(0)t >, 故()teAB g t e t==+,(0)t >, 故可得()2te g t e t ='-,()30te g t e t'=+>'恒成立, 故()g t '是单调递增函数,且()10g '=,关于()0g t '<在()0,1成立,()0g t '>在()1,+∞成立, 故()g t 在()0,1单调递减,在()1,+∞单调递增, 故()()12min g t g e e e ==+=. 即||AB 的最小值为2e . 故选:D6.(2021ꞏ正阳县高级中学高三其他模拟(理))已知2m <-,若关于x 的不等式22e 2x mx n x +<+恒成立,则实数n 的取值范围为( ) A .[)3e,+∞ B .)2e ,⎡+∞⎣C .[)e,+∞D .[)2e,+∞【答案】D 【答案解析】参变分离可得222e x mx x n +-<,研究函数()222exmx xf x +-=,根据导函数()()22e x m x x m f x ⎛⎫--- ⎪⎝⎭'=以及2m <-,可得函数()f x 的极大值为22222e 0e m m f m -⎛⎫==> ⎪⎝⎭,当2x >,()2220ex mx x f x -+=<,所以()2max 2e m f x -⎡⎤=⎣⎦,根据()f x 的最大值的范围即可得解. 【答案详解】由22e 2xmx n x +<+,得222exmx x n +-<, 令()222exmx xf x +-=,则()()22e xm x x m f x ⎛⎫--- ⎪⎝⎭'=,当2m <-时,210m-<<, 函数()f x 在2,m ⎛⎫-∞ ⎪⎝⎭,()2,+∞上单调递增,在2,2m ⎛⎫⎪⎝⎭上单调递减,故函数()f x 的极大值为22222e 0e mm f m -⎛⎫==> ⎪⎝⎭,极小值为()24220e m f -=<, 且2x >时,()2220ex mx x f x -+=<,所以()2max 2e m f x -⎡⎤=⎣⎦,由2m <-, 得22e 2e m -<,由()f x n <恒成立,得2e n ≥, 故选:D .7.【多选题】(2021ꞏ河北衡水中学高三其他模拟)已知函数()3e exxx a f x x -=-+-,则下列结论中正确的是( )A .若()f x 在区间[]1,1-上的最大值与最小值分别为M ,m ,则0M m +=B .曲线()y f x =与直线y ax =-相切C .若()f x 为增函数,则a 的取值范围为(],2-∞D .()f x 在R 上最多有3个零点 【答案】ACD 【答案解析】由定义法确定函数的奇偶性,再求导数判断函数的单调性与切线斜率,以及零点情况. 【答案详解】因为对于任意x ∈R ,都有()()()()3e e x x x x a xf x f -=-+---=--, 所以()f x 为奇函数,其图象关于原点对称,故A 正确.又()2e e 3xxx a f x =++-',令()f x a '=-,得2e e 30x x x -++=(*),因为e 0x >,e 0x ->,所以方程(*)无实数解,即曲线()y f x =的所有切线的斜率都不可能为a -,故B 错误.若()f x 为增函数,则()f x ¢大于等于0,即2e e 3x x a x -≤++,2e e 32x x x -++≥, 当且仅当0x =时等号成立,所以2a ≤,故C 正确.令()0f x =,得0x =或2e e x x x a x --+=(0x ≠).设()2e e x x g x x x--=+,则()()()21e 1e 2x x x x x x g x -'=-+++,令()()()1e 1e x xx x t x -=-++,则()()e exxx x t -='-.当0x >时,()0t x '>,当0x =时,()0t x '=,当0x <时,()0t x '>,所以函数()t x 为增函数,且()00t =,所以当0x >时,()0t x >,从而()0g x ¢>,()g x 单调递增.又因为对于任意0x ≠,都有()()g x g x -=,所以()g x 为偶函数,其图象关于y 轴对称. 综上,()g x 在(),0-?上单调递减,在()0,+?上单调递增,则直线y a =与()y g x =最多有2个交点,所以()f x 在R 上最多有3个零点,故D 正确. 故选ACD .8.(2021ꞏ黑龙江大庆市ꞏ高三一模(理))用总长11m 的钢条制作一个长方体容器的框架,如果所制容器底面一条边比另一条边长1m ,则该容器容积的最大值为________m 3(不计损耗). 【答案】916. 【答案解析】设长方体的底面边长为,a b ,高为h ,由题可得3217244V b b b =--+,求出函数导数,判断单调性,即可求出最值. 【答案详解】设长方体的底面边长为,a b ,高为h ,则由题可得1a b =+,()411a b h ++=,则可得784b h -=,则708b <<, 则该容器容积()32781712444b V abh b b b b b -==+⋅⋅=--+,217176624212V b b b b ⎛⎫⎛⎫'=--+=--+ ⎪⎪⎝⎭⎝⎭,当10,2b ⎛⎫∈ ⎪⎝⎭时,0V '>,V 单调递增;当17,28b ⎛⎫∈ ⎪⎝⎭时,0V '<,V 单调递减, ∴当12b =时,max 916V =,即该容器容积的最大值为916. 故答案为:916.9.(2021ꞏ湖南高三其他模拟)中国最早的化妆水是1896年在香港开设的广生行生产的花露水,其具有保湿、滋润、健康皮肤的功效.已知该化妆水容器由一个半球和一个圆柱组成(其中上半球是容器的盖子,化妆水储存在圆柱中),容器轴截面如图所示,上部分是半圆形,中间区域是矩形,其外周长为12cm .则当圆柱的底面半径r =___________时,该容器的容积最大,最大值为___________.【答案】8 c m 2π+ ()32128 c m 2ππ+ 【答案解析】设圆柱的底面半径为r ,圆柱的高为h ,根据已知条件可得出262h r π+=-,根据柱体的体积公式可得()23262V r r πππ+=-,利用导数可求得V 的最大值及其对应的r 的值,即为所求.【答案详解】设圆柱的底面半径为r ,圆柱的高为h . 则由题意可得2212r h r π++=,所以()1222622r h r ππ-++==-.由0h >,得122r π<+. 故容器的容积()22232212660222V r h r r r r r πππππππ++⎛⎫⎛⎫==-=-<< ⎪ ⎪+⎝⎭⎝⎭,容易忽略上半球是容器的盖子,化妆水储存在圆柱中.()232122V r r πππ+'=-,令0V '=,解得0r =(舍)或82r π=+. 显然当80,2r π⎛⎫∈ ⎪+⎝⎭时,0V '>,函数()23262V r r πππ+=-单调递增; 当812,22r ππ⎛⎫∈⎪++⎝⎭时,0V '<,函数()23262V r r πππ+=-单调递减. 所以当8cm 2r π=+时,V 取得最大值, 此时2862cm 22h ππ+=-⨯=+,()23281282cm 22V ππππ⎛⎫=⨯= ⎪+⎝⎭+. 故答案为:8 c m 2π+;()32128 c m 2ππ+. 10.(2021ꞏ全国高三其他模拟)若函数ln ()1xxf x ae x=--只有一个零点,则实数a 的取值范围是 ________. 【答案】0a ≤或1a e= 【答案解析】将函数的零点转化为方程ln (0)x x x a x xe +=>的根,令ln ()xx xg x xe +=,利用导数研究函数的图象特征,即可得到答案; 【答案详解】ln ln 10(0)x x x x xae a x x xe +--=⇔=>, 令ln ()xx x g x xe+=,则'2()(1ln )()x x x x g x x e +--=, ''()01ln 0,()01ln 0,g x x x g x x x >⇔--><⇔--<令()1ln u x x x =--,则'1()10u x x=--<在0x >恒成立, ∴()1ln u x x x =--在(0,)+∞单调递减,且(1)0u =, ∴''()001,()01g x x g x x >⇒<<<⇒>,∴()g x 在(0,1)单调递增,在(1,)+∞单调递减,且1(1)g e=,当x →+∞时,()0g x →, 如图所示,可得当0a ≤或1a e =时,直线y a =与ln xx x y xe +=有且仅有一个交点, 故答案为:0a ≤或1a e=1.(2021ꞏ全国高三其他模拟)若不等式ln x ax b ≤+恒成立,则2a b +的最小值为( ) A .2 B .3C .ln 2D .5【答案】C 【答案解析】构造函数()ln f x ax x b =-+,根据函数的单调性及最值可得ln 1b a ≥--,故22ln 1a b a a +≥--,再构造()2ln 1g x x x =--,求得函数()g x 的最小值即可. 【答案详解】由ln x ax b ≤+恒成立,得ln 0ax x b -+≥, 设()ln f x ax x b =-+,()1f x a x'=-, 当0a ≤时,()0f x ¢<,()f x 在()0,+?上单调递减,不成立;当0a >时,令()0f x ¢=,解得1x a=,故函数()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增, 故()10f x f a ⎛⎫≥≥⎪⎝⎭,即11ln 0a b a a ⎛⎫⋅-+≥ ⎪⎝⎭,ln 1b a ≥--,练提升22ln 1a b a a +≥--,设()2ln 1g x x x =--,()12g x x'=-, 令()0g x ¢=,12x =, 故()g x 在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,2⎛⎫+∞ ⎪⎝⎭上单调递增, 故()1112ln 1ln 2222g x g ⎛⎫⎛⎫≥=⨯--=⎪ ⎪⎝⎭⎝⎭, 即2ln 2a b +≥, 故选:C.2.(2021ꞏ北京高考真题)已知函数()lg 2f x x kx =--,给出下列四个结论: ①若0k =,则()f x 有两个零点; ②0k ∃<,使得()f x 有一个零点; ③0k ∃<,使得()f x 有三个零点; ④0k ∃>,使得()f x 有三个零点. 以上正确结论得序号是_______. 【答案】①②④ 【答案解析】由()0f x =可得出lg 2x kx =+,考查直线2y kx =+与曲线()lg g x x =的左、右支分别相切的情形,利用方程思想以及数形结合可判断各选项的正误. 【答案详解】对于①,当0k =时,由()lg 20f x x =-=,可得1100x =或100x =,①正确; 对于②,考查直线2y kx =+与曲线()lg 01y x x =-<<相切于点(),lg P t t -,对函数lg y x =-求导得1ln10y x '=-,由题意可得2lg 1ln10kt t k t +=-⎧⎪⎨=-⎪⎩,解得100100lg e t k e e ⎧=⎪⎪⎨⎪=-⎪⎩, 所以,存在100lg 0k e e=-<,使得()f x 只有一个零点,②正确; 对于③,当直线2y kx =+过点()1,0时,20k +=,解得2k =-,所以,当100lg 2e k e-<<-时,直线2y kx =+与曲线()lg 01y x x =-<<有两个交点, 若函数()f x 有三个零点,则直线2y kx =+与曲线()lg 01y x x =-<<有两个交点,直线2y kx =+与曲线()lg 1y x x =>有一个交点,所以,100lg 220e k ek ⎧-<<-⎪⎨⎪+>⎩,此不等式无解, 因此,不存在0k <,使得函数()f x 有三个零点,③错误;对于④,考查直线2y kx =+与曲线()lg 1y x x =>相切于点(),lg P t t ,对函数lg y x =求导得1ln10y x '=,由题意可得2lg 1ln10kt t k t +=⎧⎪⎨=⎪⎩,解得100lg 100t ee k e =⎧⎪⎨=⎪⎩,所以,当lg 0100ek e<<时,函数()f x 有三个零点,④正确.故答案为:①②④.3.(2021ꞏ四川省绵阳南山中学高三其他模拟(文))设函数()()222ln xf x x x e aex e x =-+-,其中e 为自然对数的底数,曲线()y f x =在()()22f ,处切线的倾斜角的正切值为2322e e +. (1)求a 的值; (2)证明:()0f x >.【答案】(1)2a =;(2)证明见答案解析. 【答案解析】(1)求出函数的导函数,再代入计算可得;(2)依题意即证()()2222ln 0xf x x x e ex e x =-+->,即()12ln 2x x x e e x--+>,构造函数()()222x g x x e e-=-+,()ln xh x x =,利用导数说明其单调性与最值,即可得到()()>g x h x ,从而得证; 【答案详解】解:(1)因为()()222ln xf x x x e aex e x =-+-,所以()()222xef x x e ae x'=-+-,()22332222e ef ae e =+=+',解得2a =.(2)由(1)可得()()2222ln xf x x x e ex e x =-+-即证()()()2212ln 22ln 02x x x f x x x e ex e x x e e x-=-+->⇔-+>. 令()()222x g x x e e-=-+,()()21x g x x e -=-',于是()g x 在()0,1上是减函数,在()1,+∞上是增函数,所以()()11g x g e≥=(1x =取等号). 又令()ln x h x x =,则()21ln xh x x -'=,于是()h x 在()0,e 上是增函数,在(),e +∞上是减函数,所以()()1h x h e e≤=(x e =时取等号).所以()()>g x h x ,即()0f x >.4.(2021ꞏ全国高三其他模拟(理))已知函数()()ln e xf x x m x -=+-.(1)若()f x 的图象在点()()1,1f 处的切线与直线20x y -=平行,求m 的值; (2)在(1)的条件下,证明:当0x >时,()0f x >; (3)当1m >时,求()f x 的零点个数.【答案】(1)1m =;(2)证明见答案解析;(3)有一个零点. 【答案解析】(1)利用导数的几何意义求解即可(2)利用导数,得到()f x 在()0,∞+上单调递增,由()00f =,即可证明()0f x >在()0,∞+上恒成立 (3)由(2)可知当1m >且0x >时,()()ln 1e0xf x x x ->+->,即()f x 在()0,∞+上没有零点,再根据,0x m +>,得到x m >-, 对(),0x m ∈-进行讨论,即可求解 【答案详解】解:(1)因为()f x 的图象在点()()1,1f 处的切线与直线20x y -=平行,所以()112f '=, 因为()()11e x f x x x m -+-'=+, 所以()11112f m ='=+,解得1m =. (2)由(1)得当1m =时,()()()21e 11e 11ex xx x f x x x x -+-=+-=++', 当0x >时,因为()0f x '>,所以()f x 在()0,∞+上单调递增, 因为()00f =,所以()0f x >在()0,∞+上恒成立. (3)由(2)可知当1m >且0x >时,()()ln 1e 0xf x x x ->+->,即()f x 在()0,∞+上没有零点,当(),0x m ∈-时,()()()()2e 111e e x xxx m x m f x x x m x m -++--=+-=++',令()()2e 1xg x x m x m =++--,(),0x m ∈-,则()e 21xg x x m =++-'单调递增,且()e21e 10mm g m m m m ---=-+-=--<',()00g m '=>,所以()g x '在(),0m -上存在唯一零点,记为0x ,且()0,x m x ∈-时,()0g x '<,()0,0x x ∈时,()0g x '>, 所以()g x 在()0,m x -上单调递减,在()0,0x 上单调递增, 因为1m >, 所以()e0mg m --=>,()010g m =-<,因为()()00g x g <,所以()00g x <,所以()g x 在()0,m x -上存在唯一零点1x ,且在()0,0x 上恒小于零, 故()1,x m x ∈-时,()0g x >;()1,0x x ∈时,()0g x <,所以()f x 在()1,m x -上单调递增,在()1,0x 上单调递减,且()0ln 0f m =>, 所以()f x 在(),0m -上至多有一个零点, 取()e 2e ,0mm x m m -=-+∈-, 则有()()22ln e 0mf x x m m <++=,所以由零点存在定理可知()f x 在(),0m -上只有一个零点, 又f (0)不为0,所以()f x 在(),m -+∞上只有一个零点.5.(2021ꞏ黑龙江哈尔滨市ꞏ哈尔滨三中高三其他模拟(文))已知函数2211()(1)ln (0)22f x x a x a x a a =-+++>. (1)讨论()f x 的单调性;(2)若函数()y f x =只有一个零点,求实数a 的取值范围.【答案】(1)答案见答案解析;(2)01a <<+或a e >.【答案解析】 (1)求得()'fx ,对a 进行分类讨论,由此求得()f x 的单调区间.(2)根据(1)的结论,结合函数的极值以及零点个数,求得a 的取值范围. 【答案详解】 (1)()()()'1x x a f x x--=,当01a <<时,由()'00f x x a >⇒<<或1x >,所以()f x 在()0,a ,()1,+∞单调递增,由()'01fx a x <⇒<<,所以()f x 在(),1a 单调递减;当1a >时,由()'001fx x >⇒<<或x a >,所以()f x 在()0,1,(),a +∞单调递增,由()'01f x x a <⇒<<,所以()f x 在()1,a 单调递减;当1a =时,()()2'10x f x x-=≥⇒()f x 在()0,∞+单调递增.(2)1(1)(1(12f a a ⎡⎤⎡⎤=--⎣⎦⎣⎦,()(ln 1)f a a a =-, 由(1)知当01a <<时,()f x 在x a =处,有极大值,且()0f a <,此时函数有一个零点; 当1a =时,()f x 在()0,∞+单调递增,且()10f <,此时函数有一个零点;当1a >时,()0,1,(),a +∞单调递增,()1,a 单调递减,()f x 在x a =处,有极小值,()f x 在1x =处,有极大值,则当()10f <,或()0f a >时函数有一个零点,有11a <<或a e >.综上:01a <<+或a e >.6.(2021ꞏ河北高三其他模拟)已知函数2ln 1()(ln )()2k x f x x k x+=+∈R . (1)当0k =时,求证:()1f x ≤; (2)当0k ≠时,讨论()f x 零点的个数.【答案】(1)证明过程见解答;(2)当0k <时,()f x 有两个零点,当0k >时,()f x 有一个零点. 【答案解析】(1)将0k =代入,对()f x 求导,得到其单调性,判断其最值,即可得证;(2)令t lnx =,则()0f x =即为2102t k t t e ++=,显然0t ≠,进一步转化为212t k t t e +-=,令21()(0)t t h t t t e+=≠,利用导数作出()h t 的大致图象,进而图象判断方程解的情况,进而得到函数()f x 零点情况. 【答案详解】(1)证明:当0k =时,1()(0)lnx f x x x +=>,则2()lnxf x x'=-, ∴当(0,1)x ∈时,()0f x '>,()f x 单增,当(1,)x ∈+∞时,()0f x '<,()f x 单减,()f x f ∴…(1)1=,即得证;(2)令t lnx =,则()0f x =即为2102t k t t e++=,当0t =,即1x =时,该方程不成立,故1x =不是()f x 的零点; 接下来讨论0t ≠时的情况,当0t ≠时,方程可化为212tk t t e +-=, 令21()(0)t t h t t t e +=≠,则222()tt th t t e++'=-,当0t <时,22220t t ++-=-<…,当且仅当t =当0t >时,22220t t +++=+>…,当且仅当t =时取等号,∴当0t <时,()0h t '>,()h t 单增,当0t >时,()0h t '<,()h t 单减,且当0t →时,()h t →+∞,(1)0h -=,当1t <-时,()0h t <,当0t >时,()0h t >, 函数()h t 的大致图象如下:由图象可知,当02k -<,即0k >时,212t k t t e +-=只有一个解,则()f x 有一个零点,当02k ->,即0k <时,212tk t t e +-=有两个解,则()f x 有两个零点. 综上,当0k <时,()f x 有两个零点,当0k >时,()f x 有一个零点. 7.(2021ꞏ重庆市育才中学高三二模)已知函数()x f x e =,()1g x ax =+. (1)已知()()f x g x ≥恒成立,求a 的值;(2)若(0,1)x ∈,求证:21ln 11()x x f x x-+-<. 【答案】(1)1a =;(2)证明见答案解析. 【答案解析】(1)作差,设()()()1x h x f x g x e ax =-=--,利用导数求出()h x 的最小值为(ln )ln 10h a a a a =--≥,只需1ln 10a a +-≤;设1()ln 1a a aϕ=+-,利用导数求出min ()(1)0a ϕϕ==,解出1a =; (2)利用1x e x >+把原不等式转化为证明1ln 111x x x x -+-<+,即证:21ln 10x x x-++>, 设21()ln 1F x x x x=-++,利用导数求出最小值,即可证明.【答案详解】(1)设()()()1x h x f x g x e ax =-=--,()x h x e a '=-,当0a ≤时,()0x h x e a '=->,()h x 单增,当,()x h x →-∞→-∞,不满足恒成立 当0a >,()h x 在(,ln )x a ∈-∞单减,()h x 在(ln ,)x a ∈+∞单增, 所以()h x 的最小值为(ln )ln 10h a a a a =--≥,即11ln 0a a --≥,即1ln 10a a+-≤ 设1()ln 1a a a ϕ=+-,21()a a aϕ-'=,所以()ϕx 在(0,1)x ∈单减,()ϕx 在(1,)+∞单增, 即min()(1)0a ϕϕ==,故1ln 10a a+-≤的解只有1a =,综上1a =(2)先证当(0,1)x ∈时,1x e x >+恒成立.令()1x h x e x =--,求导()10x h x e '=->,所以()h x 在(0,1)x ∈上单调递增,()(0)0h x h >=,所以1x e x >+所以要证1ln 11x x x e x -+-<,即证1ln 111x x x x-+-<+, 即证211ln 1x x x x x x +-++-<+,即证:21ln 10x x x -++>, 设21()ln 1F x x x x=-++,求导22111()2(1)20F x x x x x x x '=--=--<,所以()F x 在(0,1)上单调递减,所以()(1)10F x F >=>,即原不等式成立.所以当(0,1)x ∈时,如1ln 11()x x f x x-+-<成立. 8.(2021ꞏ全国高三其他模拟)已知函数()()ln x a f x a x+=+,()0,x ∈+∞.(1)当0a =时,讨论函数()f x 的单调性; (2)若函数()f x 存在极大值M ,证明:12M e≤<. 【答案】(1)当()0,x e ∈时,()f x 单调递增;当(),x e ∈+∞时,()f x 单调递减;(2)证明见答案解析. 【答案解析】(1)将0a =代入函数,并求导即可分析单调性;(2)求导函数,讨论当0a =,01a <<与1a ≥时分析单调性,并判断是否有极大值,再求解极大值,即可证明.【答案详解】(1)()f x 的定义域是()0,∞+ 当0a =时,()ln x f x x =,()21ln xf x x -'=, 令()0f x '=,得x e =,所以当()0,x e ∈时,()0f x '>,()f x 单调递增; 当(),x e ∈+∞时,()0f x '<,()f x 单调递减;(2)()()()()()22ln ln xx a x x a x ax a f x x x x a -+-+++'==+, 令()()()()ln ,0,g x x x a x a x =-++∈+∞, 则()()ln g x x a '=-+,由()f x 的定义域是()0,∞+,易得0a ≥,当0a =时,由(1)知,()f x 在x e =处取得极大值,所以()1==M f e e. 当1a ≥时,()0g x '<在()0,x ∈+∞上恒成立,所以()g x 在()0,∞+上单调递减,()ln 0g x a a <-<,所以()0f x '<,故()f x 没有极值. 当01a <<时,令()0g x '=,得1x a =-,所以当()0,1x a ∈-时,()0g x '>,()g x 单调递增;当()1,x a ∈-+∞时,()0g x '<,()g x 单调递减. 所以当()0,1x a ∈-时,()ln 0g x a a >->,又()110g a a -=->,()0-=-<g e a a ,且1-<-e a a ,所以存在唯一()01,∈--x a e a ,使得()()()0000ln g x x x a x a =-+⋅+,当()00,x x ∈时,()0g x >,即()0f x '>,()f x 单调递增;当()0,x x ∈+∞时,()0g x <,即()0f x '<,()f x 单调递减.所以当0x x =时,()f x 取得极大值,所以()()000ln x a M f x a x +==+,所以()()()()000000011ln M x a x x a x a x a x a x a=++-=++-+⋅+++. 令0x a t +=,则()1,t e ∈,设()1ln h t t t t t=+-,()1,t e ∈, 则()21ln 0h t t t'=--<, 所以()h t 在()1,e 上单调递减, 所以()12<<h t e ,所以12<<M e. 综上,若函数()f x 存在极大值M ,则12M e≤<. 9.(2021ꞏ重庆高三二模)已知函数()ln ()f x ax x a R =+∈在1x =处取得极值. (1)若对(0,),()1x f x bx ∀∈+∞≤-恒成立,求实数b 的取值范围;(2)设()()(2)x g x f x x e =+-,记函数()y g x =在1,14⎡⎤⎢⎥⎣⎦上的最大值为m ,证明:(4)(3)0m m ++<. 【答案】(1)211b e -≤;(2)证明见答案解析. 【答案解析】(1)由条件求出a ,然后由()1f x bx ≤-可得1ln 1+x b x x≤-,然后用导数求出右边对应函数的最小值即可;(2)11()(1)e 1(1)(xx g x x x e x x'=--+=--,令()1e x h x x =-,然后可得存在01(,1)2x ∈使得()00h x =,即01ex x =,即00ln x x =-,然后可得0max 000000000012()()(2)ln (2)12x m g x g x x e x x x x x x x x ===--+=---=--,然后判断出函数2()12G x x x=--的单调性即可. 【答案详解】 (1)∵1()f x a x'=+,(1)10f a '=+=,∴1a =-,由已知()1f x bx ≤-,即ln 1x x bx -≤-,即1ln 1+x b x x≤-对()0,x ∀∈+∞恒成立, 令1ln ()1x t x x x =+-,则22211ln ln 2()x x t x x x x --'=--=,易得()t x 在2(0,)e 上单调递减,在2(,)e +∞上单调递增, ∴2min 21()()1t x t e e==-,即211b e -≤. (2)()()(2)e (2)e ln x x g x f x x x x x =+-=--+,则11()(1)e 1(1)(xx g x x x e x x'=--+=--. 当114x <<时,10x -<,令()1e xh x x=-, 则21()e 0xh x x'=+>,所以()h x 在1[,1]4上单调递增.∵121(()e 202h h x ==-<,(1)10h e =->,∴存在01(,1)2x ∈使得()00h x =,即01ex x =,即00ln x x =-. ∴当01(,)4x x ∈时,()0h x <,此时()0g x '>; 当0(,1)x x ∈时,()0h x >,此时()0g x '<; 即()g x 在01(,)4x 上单调递增,在0(),1x 上单调递减,则0max 000000000012()()(2)ln (2)12xm g x g x x e x x x x x x x x ===--+=---=--. 令2()12G x x x =--,1(,1)2x ∈,则22222(1)()20x G x x x '-=-=>,∴()G x 在1(,1)2x ∈上单调递增,则1()(42G x G >=-,()(1)3G x G <=-, ∴43m -<<-.∴()()430m m ++<.10.(2021ꞏ江苏南通市ꞏ高三一模)已知函数()()21ln 22f x ax ax x =+-,0a >. (1)求函数()f x 的增区间;(2)设1x ,2x 是函数()f x 的两个极值点,且12x x <,求证:122x x +>.【答案】(1)答案见答案解析;(2)证明见答案解析. 【答案解析】(1)求函数的导数,分类讨论,解不等式即可求解;(2)根据极值点可转化为1x ,2x 是方程2210-+=ax x 的两个不相等的正实数根,可得12x >且1x ≠,要证122x x +>,只要证212x x >-,利用构造函数的单调性证明即可. 【答案详解】(1)由题意得()21212ax ax x f x x x-+=+='-(0x >). 令()0f x '>,则2210ax x -+>.①当()2240a ∆=--≤,即1a ≥时,2210ax x -+>在()0,∞+上恒成立,即()f x 的增区间为()0,∞+;②当()2240a ∆=-->,即01a <<时,10x a -<<或1x a+>,即()f x 的增区间为10,a ⎛⎫ ⎪ ⎪⎝⎭和1,a ⎛⎫++∞ ⎪ ⎪⎝⎭.综上,当1a ≥时,()f x 的增区间为()0,∞+;当01a <<时,()f x 的增区间为10,a ⎛⎫- ⎪ ⎪⎝⎭和1,a ⎛⎫++∞ ⎪ ⎪⎝⎭. (2)因为()221x x ax xf -+'=(0x >),()f x 有两个极值点1x ,2x , 所以1x ,2x 是方程2210-+=ax x 的两个不相等的正实数根,可求出 从而()2240a ∆=-->,0a >,解得01a <<. 由2210-+=ax x 得221x a x -=. 因为01a <<,所以12x >且1x ≠.令()221x g x x -=,12x >且1x ≠,则()()321x g x x-'=,所以当112x <<时,()0g x '>,从而()g x 单调递增;当1x >时,()0g x '<,从而()g x 单调递减, 于是1222122121x x a x x --==(12112x x <<<). 要证122x x +>,只要证212x x >-,只要证明()()212g x g x <-. 因为()()12g x g x =,所以只要证()()112g x g x <-. 令()()()()()1111122112212122x x F x g x g x x x ---=--=-- 则()()()()1113311212212x x F x xx --⎡⎤-⎣⎦'=+-()()()11331121212x x x x --=+- ()()1331111212x x x ⎡⎤=--⎢⎥-⎢⎥⎣⎦()()()()22211111331141222x x x x x x x ⎡⎤--+-+⎣⎦=-.因为1112x <<, 所以()10F x '>,即()1F x 在1,12⎛⎫⎪⎝⎭上单调递增,所以()()110F x F <=,即()()112g x g x <-, 所以212x x >-,即122x x +>.1.(2021ꞏ全国高考真题(文))设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图像与x 轴没有公共点,求a 的取值范围. 【答案】(1)()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭;(2)1a e >. 练真题(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)根据()10f >及(1)的单调性性可得()min 0f x >,从而可求a 的取值范围. 【答案详解】(1)函数的定义域为()0,∞+,又()23(1)()ax ax f x x+-'=,因为0,0a x >>,故230ax +>, 当10x a <<时,()0f x '<;当1x a>时,()0f x '>; 所以()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭.(2)因为()2110f a a =++>且()y f x =的图与x 轴没有公共点, 所以()y f x =的图象在x 轴的上方, 由(1)中函数的单调性可得()min 1133ln 33ln f x f a a a ⎛⎫==-=+ ⎪⎝⎭, 故33ln 0a +>即1a e>. 2.(2021ꞏ全国高考真题(理))设函数()()ln f x a x =-,已知0x =是函数()y xf x =的极值点. (1)求a ; (2)设函数()()()x f x g x xf x +=.证明:()1g x <.【答案】1;证明见答案详解 【答案解析】(1)由题意求出'y ,由极值点处导数为0即可求解出参数a ; (2)由(1)得()()ln 1()ln 1x x g x x x +-=-,1x <且0x ≠,分类讨论()0,1x ∈和(),0x ∈-∞,可等价转化为要证()1g x <,即证()()ln 1ln 1x x x x +->-在()0,1x ∈和(),0x ∈-∞上恒成立,结合导数和换元法即可求解(1)由()()()n 1'l a f x a x f x x ⇒==--,()()'ln xy a x x ay xf x ⇒=-=+-, 又0x =是函数()y xf x =的极值点,所以()'0ln 0y a ==,解得1a =; (2)由(1)得()()ln 1f x x =-,()()ln 1()()()ln 1x x x f x g x xf x x x +-+==-,1x <且0x ≠,当 ()0,1x ∈时,要证()()ln 1()1ln 1x x g x x x +-=<-,()0,ln 10x x >-< , ()ln 10x x ∴-<,即证()()ln 1ln 1x x x x +->-,化简得()()1ln 10x x x +-->;同理,当(),0x ∈-∞时,要证()()ln 1()1ln 1x x g x x x +-=<-,()0,ln 10x x <-> , ()ln 10x x ∴-<,即证()()ln 1ln 1x x x x +->-,化简得()()1ln 10x x x +-->;令()()()1ln 1h x x x x =+--,再令1t x =-,则()()0,11,t ∈+∞ ,1x t =-, 令()1ln g t t t t =-+,()'1ln 1ln g t t t =-++=,当()0,1t ∈时,()'0g x <,()g x 单减,假设()1g 能取到,则()10g =,故()()10g t g >=; 当()1,t ∈+∞时,()'0g x >,()g x 单增,假设()1g 能取到,则()10g =,故()()10g t g >=; 综上所述,()()ln 1()1ln 1x x g x x x +-=<-在()(),00,1x ∈-∞ 恒成立3.(2021ꞏ全国高考真题)已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<. 【答案】(1)()f x 的递增区间为()0,1,递减区间为()1,+∞;(2)证明见答案解析. 【答案解析】(1)求出函数的导数,判断其符号可得函数的单调区间; (2)设1211,x x a b==,原不等式等价于122x x e <+<,前者可构建新函数,利用极值点偏移可证,后者可设21x tx =,从而把12x x e +<转化为()()1ln 1ln 0t t t t -+-<在()1,+∞上的恒成立问题,利用导数可。
函数、导数及其应用综合测评试题(含答案)
高中数学阶段综合测评试题测试范围:函数、导数及其应用 (时间:120分钟 满分:150分)温馨提示:1.第Ⅰ卷答案写在答题卡上,第Ⅱ卷书写在试卷上;交卷前请核对班级、姓名、考号.2.本场考试时间为120分钟,注意把握好答题时间.3.认真审题,仔细作答,永远不要以粗心为借口原谅自己.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2013·浙江杭州七校联考)设α∈⎩⎨⎧⎭⎬⎫-1,1,12,3,则使函数y =x α的定义域为R 且为奇函数的所有α的值为( )A .1,3B .-1,1C .-1,3D .-1,1,32.预测人口的变化趋势有多种方法,“直接推算法”使用的公式是P n=P 0(1+k )n (k >-1),其中P n 为预测人口数,P 0为初期人口数,k 为预测年内增长率,n 为预测期间隔年数.如果在某一时期有-1<k <0,那么这期间人口数( )A .呈上升趋势B .呈下降趋势C .摆动变化D .不变3.(2013·云南第一次统检)已知f (x )的定义域为(-2,2),且f (x )=⎩⎨⎧2x +3+ln 2-x 2+x,-2<x ≤1-4x 2-5x +23,1<x <2,如果f [x (x +1)]<23,那么x 的取值范围是( )A .-2<x <-1或0<x <1B .x <-1或x >0C .-2<x <-54 D .-1<x <04.(2013·大连双基测)已知f (x )是定义在R 上且以2为周期的偶函数,当0≤x ≤1时,f (x )=x 2.如果函数g (x )=f (x )-(x +m )有两个零点,则实数m 的值为( )A .2k (k ∈Z )B .2k 或2k +14(k ∈Z ) C .0D .2k 或2k -14(k ∈Z )5.函数y =log 2|x |x 的大致图象是()6.函数f (x )=πx +log 2x 的零点所在区间为( ) A.⎝⎛⎦⎥⎤0,18B.⎣⎢⎡⎦⎥⎤18,14 C.⎣⎢⎡⎦⎥⎤14,12 D.⎣⎢⎡⎦⎥⎤12,1 7.定积分⎠⎛039-x 2d x 的值为( )A .9πB .3π C.94πD.92π8.(2013·安徽联谊中学联考)设f (x )是一个三次函数,f ′(x )为其导函数,如图所示的是y =xf ′(x )的图象的一部分,则f (x )的极大值与极小值分别是( )A .f (-2)与f (2)B .f (-1)与f (1)C .f (2)与f (-2)D .f (1)与f (-1)9.(2013·东北三校第一次联考)已知f (x )=ln x1+x -ln x ,f (x )在x =x 0处取最大值,以下各式正确的序号为( )①f (x 0)<x 0 ②f (x 0)=x 0 ③f (x 0)>x 0 ④f (x 0)<12 ⑤f (x 0)>12A .①④B .②④C .②⑤D .③⑤10.(2013·石家庄一模)已知定义域为R 的奇函数f (x )的导函数为f ′(x ),当x ≠0时,f ′(x )+f (x )x >0,若a =12f ⎝ ⎛⎭⎪⎫12,b =-2f (-2),c =ln 12f (ln 2),则下列关于a ,b ,c 的大小关系正确的是( )A .a >b >cB .a >c >bC .c >b >aD .b >a >c11.(2013·陕西省咸阳市高三模拟)定义方程f (x )=f ′(x )的实数根x 0叫做函数f (x )的“新驻点”,若函数g (x )=2x ,h (x )=ln x ,φ(x )=x 3(x ≠0)的“新驻点”分别为a ,b ,c ,则a ,b ,c 的大小关系为( )A .a >b >cB .c >b >aC .a >c >bD .b >a >c12.已知f (x )=a ln x +12x 2(a >0),若对任意两个不等的正实数x 1、x 2都有f (x 1)-f (x 2)x 1-x 2>2恒成立,则a 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(0,1)D .(0,1]第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ∈(-∞,1],log 81x ,x ∈(1,+∞).则满足f (x )=14的x 值为________.14.设函数f (x )=|log 2x |,则f (x )在区间(m -2,2m )内有定义且不是单调函数的充要条件是________.15.(2013·云南第一次统检)已知f (x )=x 3-mx 2+43mx +2 013在(1,3)上只有一个极值点,则实数m 的取值范围为________.16.(2013·山东济宁高三一模)已知定义域为R 的函数f (x )既是奇函数,又是周期为3的周期函数,当x ∈⎝ ⎛⎭⎪⎫0,32时,f (x )=sinπx ,则函数f (x )在区间[0,6]上的零点个数是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知函数f (x )=2x ,g (x )=12|x |+2. (1)求函数g (x )的值域;(2)求满足方程f (x )-g (x )=0的x 的值.18.(12分)已知函数f (x )=log a (x +1)(a >1),若函数y =g (x )图象上任意一点P 关于原点的对称点Q 的轨迹恰好是函数f (x )的图象.(1)写出函数g (x )的解析式;(2)当x ∈[0,1)时,总有f (x )+g (x )≥m 成立,求实数m 的取值范围. 19.(12分)如图所示,四边形ABCD 表示一正方形空地,边长为30 m ,电源在点P 处,点P 到边AD ,AB 距离分别为9 m,3 m .某广告公司计划在此空地上竖一块长方形液晶广告屏幕MNEF ,MN ∶NE =16∶9.线段MN 必须过点P ,端点M ,N 分别在边AD ,AB 上,设AN =x (m),液晶广告屏幕MNEF 的面积为S (m 2).(1)用x 的代数式表示AM ;(2)求S 关于x 的函数关系式及该函数的定义域; (3)当x 取何值时,液晶广告屏幕MNEF 的面积S 最小?20.(12分)(2013·东北三校第一次联考)已知函数f (x )=ax sin x +cos x ,且f (x )在x =π4处的切线斜率为2π8.(1)求a 的值,并讨论f (x )在[-π,π]上的单调性;(2)设函数g (x )=ln(mx +1)+1-x1+x ,x ≥0,其中m >0,若对任意的x 1∈[0,+∞)总存在x 2∈⎣⎢⎡⎦⎥⎤0,π2,使得g (x 1)≥f (x 2)成立,求m 的取值范围. 21.(12分)(2013·石家庄一模)设函数f (x )=x 2+a ln(x +1).(1)若函数y =f (x )在区间[1,+∞)上是单调递增函数,求实数a 的取值范围;(2)若函数y =f (x )有两个极值点x 1、x 2,且x 1<x 2,求证:0<f (x 2)x 1<-12+ln 2.22.(12分)(2013·石家庄质量监测)设函数f (x )=x -1e x 的定义域为(-∞,0)∪(0,+∞).(1)设函数f (x )在[m ,m +1](m >0)上的最小值;(2)设函数g (x )=⎩⎨⎧0,(x =0),1f (x ).(x ≠0),如果x 1≠x 2,且g (x 1)=g (x 2),证明:x 1+x 2>2.阶段综合测评 详解答案1.A 由幂函数的性质可知α=1或3.2.B 由于-1<k <0,所以0<1+k <1,因此P n 为关于n 的递减函数.故选B.3.A 依题意得,函数y =2x +3+ln 2-x 2+x =2x +3+ln ⎝ ⎛⎭⎪⎫-1+42+x 在(-2,1]上是减函数(注:函数y =2x +3、y =ln ⎝ ⎛⎭⎪⎫-1+42+x 在(-2,1]上均是减函数);函数y =-4x 2-5x +23在(1,2)上是减函数,且21+3+ln 2-12+1=12-ln 3>-4×12-5×1+23,因此函数f (x )在(-2,2)上是减函数,且f (0)=23,于是不等式f [x (x +1)]<23=f (0)等价于0<x (x +1)<2,由此解得-2<x <-1或0<x <1,选A.4.D 令g (x )=0得f (x )=x +m .(1)先考虑f (x )在0≤x ≤1时的函数图象,因为两个端点为(0,0),(1,1),所以过这两点的直线方程为y =x +0;(2)考虑直线y =x +m 与0≤x ≤1时的f (x )=x 2的图象相切,与1<x ≤2时的函数图象相交也是两个交点,仍然有两个零点.可求得此时切线方程为y =x -14.综上根据周期为2,得m =2k 或m =2k -14(k ∈Z ).5.D y =log 2|x |x 为奇函数,其图象关于(0,0)对称,排除A ,B ;当x =2时,y =12>0,排除C ,故选D.6.C 因为f (x )在定义域内为单调递增函数,而在4个选项中,只有f ⎝ ⎛⎭⎪⎫14·f ⎝ ⎛⎭⎪⎫12<0, 所以零点所在区间为⎣⎢⎡⎦⎥⎤14,12.7.C 由定积分的几何意义知⎠⎛039-x 2d x 是由曲线y =9-x 2,直线x=0,x =3,y =0围成的封闭图形的面积,故⎠⎛039-x 2d x =π·324=94π,故选C.8.A 由图可知:x ∈(-∞,-2)时,f ′(x )>0; x ∈(-2,0)时,f ′(x )<0; x ∈(0,2)时,f ′(x )<0; x ∈(2,+∞)时,f ′(x )>0.所以f (-2)是f (x )的极大值,f (2)是f (x )的极小值.9.B f ′(x )=⎣⎢⎡⎦⎥⎤(ln x )·⎝ ⎛⎭⎪⎫11+x -1′=1x ⎝ ⎛⎭⎪⎫11+x -1-ln x(1+x )2=-ln x +x +1(1+x )2,由题意可知f ′(x 0)=0,即ln x 0+x 0+1=0,ln x 0=-(x 0+1), 故f (x 0)=ln x 01+x 0-ln x 0=-x 0ln x 01+x 0=x 0(1+x 0)1+x 0=x 0.令函数g (x )=ln x +x +1(x >0), 则g ′(x )=1x +1>0,故函数g (x )为增函数,而g ⎝ ⎛⎭⎪⎫12=ln ⎝ ⎛⎭⎪⎫12+32>32-ln e =12>0=g (x 0). ∴x 0<12,即f (x 0)<12.故选B.10.D f ′(x )+f (x )x =xf ′(x )+f (x )x >0,即x >0时,x ·f ′(x )+f (x )>0,即x >0时[xf (x )]′>0,x ·f (x )为增函数,又f (x )为奇函数,故0·f (0)=0得:x ≥0时,xf (x )≥0,且为增函数;a =12f ⎝ ⎛⎭⎪⎫12,b =-2f (-2)=2f (2),c =-ln 2f (ln 2)<0,故b >a >c ,选D.11.B ∵g (x )=2x ,∴g ′(x )=2. 令2a =2,∴a =1;h (x )=ln x ,h ′(x )=1x . 令ln b =1b ,设M (x )=1x -ln x , 则M (1)>0,M (e)<0,∴1<b <e ; 由φ(x )=x 3(x ≠0),φ′(x )=3x 2. 令3c 2=c 3,∴c =3,∴a <b <c .故选B.12.A 由于f (x 1)-f (x 2)x 1-x 2=k >2恒成立,所以f ′(x )≥2恒成立.又f ′(x )=a x +x ,故ax +x ≥2即a ≥-x 2+2x ,而g (x )=-x 2+2x 在(0,+∞)上的最大值为1,所以a ≥1,故选A.13.3解析:当x ≤1时,由f (x )=2-x=14得x =2,不合题意;当x >1时,由f (x )=log 81x =14得x =3,故满足f (x )=14的x 值为3.14.2≤m <3解析:由题知,只需1∈(m -2,2m ),且m -2≥0即可. 于是0≤m -2<1,且2m >1, 于是2≤m <3. 15.92≤m <8114解析:依题意得f ′(x )=3x 2-2mx +43m =0有两个不等的实根,且恰有一个根属于区间(1,3),于是有①f ′(1)·f ′(3)<0,或②⎩⎨⎧f ′(1)=0f ′(3)>0m 3>1,或③⎩⎨⎧f ′(1)>0f ′(3)=0m 3>1.解①得92<m <8114;解②得m =92;解③得,该不等式组的解集是空集.综上所述,满足题意的实数m 的取值范围是⎣⎢⎡⎭⎪⎫92,8114.16.9 解析:由f (x )是定义域为R 的奇函数,可知f (0)=0.因为f (x +3)=f (x ),所以f (3)=0.令x =-32,得f ⎝ ⎛⎭⎪⎫32=0.又当x ∈⎝⎛⎭⎪⎫0,32时,f (x )=sinπx ,所以f (1)=0,f (2)=f (3-1)=f (-1)=-f (1)=0,则在区间[0,3]上的零点有5个.由周期性可知,在区间(3,6]上有4个零点,故在区间[0,6]上的零点个数是9.17.解:(1)g (x )=12|x |+2=⎝ ⎛⎭⎪⎫12|x |+2,因为|x |≥0,所以0<⎝ ⎛⎭⎪⎫12|x |≤1,即2<g (x )≤3,故g (x )的值域是(2,3]. (2)由f (x )-g (x )=0得2x-12|x |-2=0,当x ≤0时,显然不满足方程, 当x >0时,由2x-12x -2=0,整理得(2x )2-2·2x -1=0,(2x -1)2=2, 故2x =1±2,因为2x >0,所以2x =1+2,即x =log 2(1+2).18.解:(1)设P 点坐标为(x ,y ),则Q 点坐标为(-x ,-y ). ∵Q (-x ,-y )在函数y =log a (x +1)的图象上, ∴-y =log a (-x +1), 即y =-log a (1-x ).这就是说,g (x )=-log a (1-x ). (2)当x ∈[0,1)时,令F (x )=f (x )+g (x )=log a (x +1)-log a (1-x ) =log a 1+x 1-x(a >1).由题意知,只要m ≤⎝ ⎛⎭⎪⎫log a1+x 1-x min 即可, ∵F (x )=log a 1+x1-x =log a ⎝ ⎛⎭⎪⎫-1+21-x 在[0,1)上是增函数,∴F (x )min =F (0)=0.故m ∈(-∞,0]即为所求.19.解:(1)因为点P 到边AD ,AB 距离分别为9 m,3 m ,所以由平面几何知识得AM -3AM =9x ,解得AM =3xx -9(10≤x ≤30).(2)由勾股定理,得MN 2=AN 2+AM 2=x 2+9x2(x -9)2.因为MN ∶NE =16∶9,所以NE =916MN .所以S =MN ·NE =916MN 2=916⎣⎢⎡⎦⎥⎤x 2+9x 2(x -9)2,定义域为[10,30].(3)S ′=916⎣⎢⎡⎦⎥⎤2x +18x (x -9)2-9x 2(2x -18)(x -9)4=98·x [(x -9)3-81](x -9)3,令S ′=0,得x 1=0(舍),x 2=9+333. 当10≤x <9+333时,S ′<0,S 为减函数; 当9+333<x ≤30时,S ′>0,S 为增函数. 所以当x =9+333时,S 取得最小值.20.解:(1)∵f ′(x )=a sin x +ax cos x -sin x =(a -1)sin x +ax cos x ,f ′⎝ ⎛⎭⎪⎫π4=(a -1)·22+π4·a ·22=2π8, ∴a =1,f ′(x )=x cos x .当f ′(x )>0时,-π<x <-π2或0<x <π2; 当f ′(x )<0时,-π2<x <0或π2<x <π,∴f (x )在⎝⎛⎭⎪⎫-π,-π2,⎝⎛⎭⎪⎫0,π2上单调递增;在⎝⎛⎭⎪⎫-π2,0,⎝⎛⎭⎪⎫π2,π上单调递减.(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )单调递增,∴f (x )min =f (0)=1,则只需g (x )≥1在x ∈[0,+∞)上恒成立即可.g ′(x )=m ⎝⎛⎭⎪⎫x 2+m -2m (mx +1)(x +1)2(x ≥0,m >0),①当m ≥2时,m -2m ≥0,∴g ′(x )≥0在[0,+∞)上恒成立,即g (x )在[0,+∞)上单调递增,又g (0)=1,∴g (x )≥1在x ∈[0,+∞)上恒成立,故m ≥2时成立.②当0<m <2时,当x ∈⎝ ⎛⎭⎪⎫0,2-m m 时,g ′(x )<0,此时g (x )单调递减,∴g (x )<g (0)=1,故0<m <2时不成立.综上m ≥2.21.解:(1)f ′(x )=2x 2+2x +ax +1≥0在区间[1,+∞)上恒成立,即a ≥-2x 2-2x 在区间[1,+∞)上恒成立, a ≥-4.经检验,当a =-4时,f ′(x )=2x 2+2x -4x +1=2(x +2)(x -1)x +1,x ∈[1,+∞)时,f ′(x )>0,所以满足题意的a 的取值范围为[-4,+∞).(2)证明:函数的定义域(-1,+∞),f ′(x )=2x 2+2x +ax +1=0,依题意方程2x 2+2x +a =0在区间(-1,+∞)上有两个不等的实根,记g (x )=2x 2+2x +a ,则有⎩⎨⎧Δ>0g (-1)>0-12>-1,得0<a <12.下面有两种证法:证法一:∵x 1+x 2=-1,2x 22+2x 2+a =0,x 2=-12+1-2a 2,-12<x 2<0,f (x 2)x 1=x 22-()2x 22+2x 2ln (x 2+1)-1-x 2,令k (x )=x 2-(2x 2+2x )ln (x +1)-1-x,x ∈⎝ ⎛⎭⎪⎫-12,0 k (x )=-x 2x +1+2x ln(x +1),k ′(x )=x 2(x +1)2+2ln(x +1),k ″(x )=2x 2+6x +2(x +1)3,因为k ″⎝⎛⎭⎪⎫-12=-12,k ″(0)=2,存在x 0∈⎝⎛⎭⎪⎫-12,0,使得k ″(x 0)=0,k ′(0)=0,k ′⎝ ⎭⎪⎫-12=1-2ln 2<0,∴k ′(x )<0,所以函数k (x )在⎝ ⎛⎭⎪⎫-12,0为减函数,k (0)<k (x )<k ⎝⎛⎭⎪⎫-12即0<f (x 2)x 1<-12+ln 2证法二:x 2为方程2x 2+2x +a =0的解,所以a =-2x 22-2x 2,∵0<a <12,x 1<x 2<0,x 2=-12+1-2a 2,∴-12<x 2<0, 先证f (x 2)x 1>0,即证f (x 2)<0(x 1<x 2<0),在区间(x 1,x 2)内,f ′(x )<0,(x 2,0)内f ′(x )>0,所以f (x 2)为极小值,f (x 2)<f (0)=0,即f (x 2)<0,∴f (x 2)x 1>0成立;再证f (x 2)x 1<-12+ln 2,即证f (x 2)>⎝ ⎛⎭⎪⎫-12+ln 2(-1-x 2)=⎝ ⎛⎭⎪⎫12-ln 2(x 2+1),x 22-(2x 22+2x 2)ln(x 2+1)-⎝⎛⎭⎪⎫12-ln 2x 2>12-ln 2,令g (x )=x 2-(2x 2+2x )ln(x +1)-⎝ ⎛⎭⎪⎫12-ln 2x ,x ∈⎝ ⎛⎭⎪⎫-12,0g ′(x )=2x -(4x +2)ln(x +1)-2x (x +1)x +1-⎝ ⎛⎭⎪⎫12-ln 2, =-2(2x +1)ln(x +1)-⎝⎛⎭⎪⎫12-ln 2,ln(x +1)<0,2x +1>0,12-ln 2<0,∴g ′(x )>0,g (x ) 在⎝ ⎛⎭⎪⎫-12,0为增函数. g (x )>g ⎝ ⎛⎭⎪⎫-12=14-⎝ ⎛⎭⎪⎫2×14-1ln 12+12⎝ ⎛⎭⎪⎫12-ln 2 =14+12ln 12+14-12ln 2=12-ln 2. 综上可得0<f (x 2)x 1<-12+ln 2成立.22.解:(1)f ′(x )=x e x -e xx 2,则x >1时,f ′(x )>0;0<x <1时,f ′(x )<0. 知函数f (x )在(0,1)上是减函数,在(1,+∞)上是增函数.当m ≥1时,函数f (x )在[m ,m +1]上是增函数,此时f (x )min =f (m )=e mm . 当0<m <1时,函数f (x )在[m,1]上是减函数,在[1,m +1]上是增函数, 此时f (x )min =f (1)=e.(2)证明:可得g (x )=x e -x (x ∈R ),g ′(x )=(1-x )e -x .所以g (x )在(-∞,1)内是增函数,在(1,+∞)内是减函数.① 考查函数F (x )=g (x )-g (2-x ),即F (x )=x e -x +(x -2)e x -2, 于是F ′(x )=(x -1)(e 2x -2-1)e -x . 当x >1时,2x -2>0,从而e 2x -2-1>0,又e -x >0,所以F ′(x )>0,从而函数F (x )在[1,+∞)是增函数. 又F (1)=e -1-e -1=0,所以x >1时,有F (x )>F (1)=0,即g (x )>g (2-x ).② 由①及g (x 1)=g (x 2),则x 1与x 2只能在1的两侧. 不妨设0<x 1<1,x 2>1,由结论②可知,g (x 2)>g (2-x 2),所以g (x 1)=g (x 2)>g (2-x 2). 因为x 2>1,所以2-x 2<1,又由结论①可知函数g(x)在(-∞,1)内是增函数,所以x1>2-x2,即x1+x2>2.。
4导数的综合应用(杨波)
2017-2018学年度南昌市高三第一轮复习训练题数学(理十七)导数综合应用命题人:莲塘一中 杨波 审题人:莲塘一中 李树森一.选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的. 1.直线1y kx =+与曲线()ln f x a x b =+相切于点(1,2)P ,则a b +=( )A. 1B. 2C. 3D. 42.给出定义:设()f x '是函数()y f x =的导函数, ()f x ''是函数()f x '的导函数,若方程()0f x ''=有实数解0x ,则称点()()00,x f x 为函数()y f x =的“拐点”,已知函数()2sin cos 1f x x x x =-++的拐点是()()00,M x f x ,则点M ( )A. 在直线1y x =-上B. 在直线1y x =+上 C .在直线y x =-上 D. 在直线y x =上 3.若函数()()326f x x x a x a =++++有极大值和极小值,则( )A.173a >-B.173a ≥-C.173a <-D.173a ≤- 4.若函数()1ln f x x mx x=++在[)1,+∞上是单调函数,则m 的取值范围是( )A. 1(,0)[,)4-∞+∞B. 1(,][0,)4-∞-+∞C. 1[,0]4- D. (,1]-∞5.已知函数()2ln 1f x x x =--,则()y f x =的图象大致为( )A. B. C. D.6.已知函数()()22xf x x x e =-,给出下列函数:①()0f x >的解集是{|02}x x <<;②(f 是极小值, f是极大值;③()f x 没有最小值,也没有最大值,其中判断正确的是( )A. ①②B. ①②③C. ②D. ①③7.函数x e x f xln )(-=,若0x 满足1xxe =,设()00,m x ∈, ()0,n x ∈+∞,则( )A. ()'0f m <, ()'0f n <B. ()'0f m >, ()'0f n >C. ()'0f m <, ()'0f n >D. ()'0f m >, ()'0f n <8.已知函数()()2ln 2f x a x x a x =+-+恰有两个零点,则实数a 的取值范围是( )A. ()1,-+∞B. ()2,0-C. ()1,0-D. ()2,1-- 9.已知函数()f x 满足()()0f x f x +-=,且当()0,x ∈+∞时,()()'0f x f x x+>成立,若(1)a f =,ln 2(ln 2)b f =⋅,2211log (log )33c f =⋅,则,,a b c 的大小关系是( )A. a b c >>B. c b a >>C. a c b >>D. c a b >>10.不等式()()2ln 20x a x x +++≥的解集为A ,若[)1,A -+∞⊆,则实数a 的取值范围是( )A. [0,)+∞B. [0,1]C. [0,]eD.[1,0]- 11.函数21()(1)((,1])2xf x x e kx k =--∈,则()f x 在[0,]k 的最大值()h k =( )A. ()32ln22ln2-- B. 1- C. ()22ln22ln2k -- D. ()31k k e k --12.设函数()()2232xf x ex ax ax b =--++,若函数 ()f x 存在两个极值点12,x x ,且极小值点1x 大于极大值点2x ,则实数a 的取值范围是( )A. 321(0,)(2,)2e +∞ B. 321(,)(4,)2e -∞+∞C. 32(,2)e -∞ D. 32(,1)(4,)e -∞+∞二、填空题(本题共4道小题,每小题5分,共20分)13.设函数()f x 的导数为()f x ',且'()()sin cos 2f x f x x π=+,则'()4f π.14.设函数()ln af x x x=+()30≤<x ,以其图象上任意一点),(00y x P 为切点的切线的斜率21≤k ,则实数a 的取值范围为 . 15.()f x 是定义在R 上的函数,其导函数为()f x ',若()()1f x f x '->,()12018f =,则不等式()120171x f x e->⋅+(其中e 为自然对数的底数)的解集为 .16.设e 表示自然对数的底数,函数()()()224xea f x x a -=+-(a R ∈),若关于x 的不等式1()5f x ≤有解,则实数a 的值为 .三.解答题:本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知函数2()2ln ().f x x x a x a R =++∈(Ⅰ)当4a =-时,求()f x 的最小值;(Ⅱ)若函数()f x 在区间(0,1)上为单调函数,求实数a 的取值范围18.(本小题满分12分)已知函数()ln 3mf x x x x=++. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若对任意的[]0,2m ∈,不等式()()1f x k x ≤+,对[]1,x e ∈恒成立,求实数k 的取值范围.19.(本小题满分12分)已知函数()2ln f x x x ax =-+,3()3x g x x =-(Ⅰ)若1a =,求函数()f x 的极值;(Ⅱ)若0a =,()11,2x ∀∈,()21,2x ∃∈,使得()12()f x mg x =(0m ≠),求实数m 的取值范围.20.(本小题满分12分) 已知在(0,)+∞上的函数21()22f x x ax =+,2()3ln g x a x b =+, 其中0a >,设两曲线(),()y f x y g x ==有公共点,且在公共点处的切线相同. (Ⅰ)若1a =,求b 的值;(Ⅱ)用a 表示b ,并求b 的最大值。
导数的综合应用
3.3 导数的综合应用1.利用导数解决生活中的优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y =f (x );(2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值; (4)回归实际问题作答. 2.不等式问题(1)证明不等式时,可构造函数,将问题转化为函数的极值或最值问题.(2)求解不等式恒成立问题时,可以考虑将参数分离出来,将参数范围问题转化为研究新函数的值域问题. 3.方程解的个数问题构造函数,利用导数研究函数的单调性,极值和特殊点的函数值,根据函数性质结合草图推断方程解的个数. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)连续函数在闭区间上必有最值.( √ )(2)函数f (x )=x 2-3x +2的极小值也是最小值.( √ )(3)函数f (x )=x +x -1和g (x )=x -x -1都是在x =0时取得最小值-1.( × )(4)函数f (x )=x 2ln x 没有最值.( × ) (5)已知x ∈(0,π2),则sin x >x .( × )(6)若a >2,则方程13x 3-ax 2+1=0在(0,2)上没有实数根.( × )1.(2014·湖南)若0<x 1<x 2<1,则( ) A .2121e e ln ln xxx x >-- B .1221e eln ln xx x x <--C .1221e e x xx x > D .1221e e xxx x < 答案 C解析 设f (x )=e x -ln x (0<x <1), 则f ′(x )=e x-1x =x e x-1x.令f ′(x )=0,得x e x -1=0.根据函数y =e x 与y =1x 的图象可知两函数图象交点x 0∈(0,1),因此函数f (x )在(0,1)上不是单调函数,故A ,B 选项不正确.设g (x )=e xx (0<x <1),则g ′(x )=e x(x -1)x 2.又0<x <1,∴g ′(x )<0.∴函数g (x )在(0,1)上是减函数. 又0<x 1<x 2<1,∴g (x 1)>g (x 2), ∴1221e e xxx x >.2.(2013·福建)设函数f (x )的定义域为R ,x 0(x 0≠0)是f (x )的极大值点,以下结论一定正确的是( )A .∀x ∈R ,f (x )≤f (x 0)B .-x 0是f (-x )的极小值点C .-x 0是-f (x )的极小值点D .-x 0是-f (-x )的极小值点 答案 D解析 A 错,因为极大值未必是最大值.B 错,因为函数y =f (x )与函数y =f (-x )的图象关于y 轴对称,-x 0应是f (-x )的极大值点.C 错,函数y =f (x )与函数y =-f (x )的图象关于x 轴对称,x 0应为-f (x )的极小值点.D 对,函数y =f (x )与y =-f (-x )的图象关于原点对称,-x 0应为y =-f (-x )的极小值点.3.设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |达到最小时t 的值为( )A .1 B.12 C.52 D.22答案 D解析 |MN |的最小值,即函数h (x )=x 2-ln x (x >0)的最小值,h ′(x )=2x -1x =2x 2-1x,显然x =22是函数h (x )在其定义域内唯一的极小值点, 也是最小值点,故t =22. 4.若商品的年利润y (万元)与年产量x (百万件)的函数关系式:y =-x 3+27x +123(x >0),则获得最大利润时的年产量为( ) A .1百万件 B .2百万件 C .3百万件 D .4百万件答案 C解析 y ′=-3x 2+27=-3(x +3)(x -3), 当0<x <3时,y ′>0; 当x >3时,y ′<0.故当x =3时,该商品的年利润最大.题型一 利用导数证明不等式例1 已知定义在正实数集上的函数f (x )=12x 2+2ax ,g (x )=3a 2ln x +b ,其中a >0.设两曲线y=f (x ),y =g (x )有公共点,且在该点处的切线相同. (1)用a 表示b ,并求b 的最大值; (2)求证:f (x )≥g (x )(x >0).(1)解 设两曲线的公共点为(x 0,y 0), f ′(x )=x +2a ,g ′(x )=3a 2x,由题意知f (x0)=g (x 0),f ′(x 0)=g ′(x 0),即⎩⎨⎧12x 20+2ax 0=3a 2ln x 0+b ,x 0+2a =3a2x.由x 0+2a =3a 2x 0,得x 0=a 或x 0=-3a (舍去).即有b =12a 2+2a 2-3a 2ln a =52a 2-3a 2ln a .令h (t )=52t 2-3t 2ln t (t >0),则h ′(t )=2t (1-3ln t ).于是当t (1-3ln t )>0,即0<t <13e 时,h ′(t )>0;当t (1-3ln t )<0,即t >13e 时,h ′(t )<0.故h (t )在(0,13e )上为增函数,在(13e ,+∞)上为减函数,于是h (t )在(0,+∞)上的最大值为h (13e )=233e 2,即b 的最大值为233e 2.(2)证明 设F (x )=f (x )-g (x )=12x 2+2ax -3a 2ln x -b (x >0),则F ′(x )=x +2a -3a 2x =(x -a )(x +3a )x(x >0).故F (x )在(0,a )上为减函数,在(a ,+∞)上为增函数. 于是F (x )在(0,+∞)上的最小值是F (a )=F (x 0)=f (x 0)-g (x 0)=0. 故当x >0时,有f (x )-g (x )≥0, 即当x >0时,f (x )≥g (x ).思维升华 利用导数证明不等式的步骤 (1)构造新函数,并求其单调区间; (2)判断区间端点函数值与0的关系;(3)判断定义域内函数值与0的大小关系,证不等式.证明:当x ∈[0,1]时,22x ≤sin x ≤x . 证明 记F (x )=sin x -22x , 则F ′(x )=cos x -22. 当x ∈(0,π4)时,F ′(x )>0,F (x )在[0,π4]上是增函数;当x ∈(π4,1)时,F ′(x )<0,F (x )在[π4,1]上是减函数.又F (0)=0,F (1)>0,所以当x ∈[0,1]时,F (x )≥0, 即sin x ≥22x . 记H (x )=sin x -x ,则当x ∈(0,1)时,H ′(x )=cos x -1<0, 所以H (x )在[0,1]上是减函数, 则H (x )≤H (0)=0,即sin x ≤x .综上,22x≤sin x≤x,x∈[0,1].题型二利用导数研究函数零点问题例2(2013·北京)已知函数f(x)=x2+x sin x+cos x.(1)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;(2)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.解(1)由f(x)=x2+x sin x+cos x,得f′(x)=x(2+cos x).∵y=f(x)在点(a,f(a))处与直线y=b相切.∴f′(a)=a(2+cos a)=0且b=f(a),则a=0,b=f(0)=1.(2)令f′(x)=0,得x=0.∴当x>0时,f′(x)>0,f(x)在(0,+∞)上递增.当x<0时,f′(x)<0,f(x)在(-∞,0)上递减.∴f(x)的最小值为f(0)=1.∵函数f(x)在区间(-∞,0)和(0,+∞)上均单调,∴当b>1时曲线y=f(x)与直线y=b有且仅有两个不同交点.综上可知,b的取值范围是(1,+∞).思维升华函数零点或函数图象交点问题的求解,一般利用导数研究函数的单调性、极值等性质,并借助函数图象,根据零点或图象的交点情况,建立含参数的方程(或不等式)组求解,实现形与数的和谐统一.已知函数f(x)=x3-3ax-1,a≠0.(1)求f(x)的单调区间;(2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围.解(1)f′(x)=3x2-3a=3(x2-a),当a<0时,对x∈R,有f′(x)>0,∴当a<0时,f(x)的单调增区间为(-∞,+∞).当a>0时,由f′(x)>0,解得x<-a或x>a.由f′(x)<0,解得-a<x<a,∴当a>0时,f(x)的单调增区间为(-∞,-a),(a,+∞),单调减区间为(-a,a).(2)∵f(x)在x=-1处取得极值,∴f′(-1)=3×(-1)2-3a=0,∴a =1.∴f (x )=x 3-3x -1, f ′(x )=3x 2-3,由f ′(x )=0,解得x 1=-1,x 2=1.由(1)中f (x )的单调性可知,f (x )在x =-1处取得极大值f (-1)=1,在x =1处取得极小值f (1)=-3.∵直线y =m 与函数y =f (x )的图象有三个不同的交点,结合如图所示f (x )的图象可知:实数m 的取值范围是(-3,1). 题型三 生活中的优化问题例3 某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.思维点拨 (1)由x =5时y =11求a ;(2)建立商场每日销售该商品所获利润和售价x 的函数关系,利用导数求最值. 解 (1)因为x =5时,y =11,所以a2+10=11,a =2.(2)由(1)可知,该商品每日的销售量为 y =2x -3+10(x -6)2. 所以商场每日销售该商品所获得的利润为f (x )=(x -3)[2x -3+10(x -6)2]=2+10(x -3)(x -6)2,3<x <6.从而,f ′(x )=10[(x -6)2+2(x -3)(x -6)] =30(x -4)(x -6).于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表可得,x =4所以,当x =4时,函数f (x )取得最大值,且最大值等于42.答 当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.思维升华 在求实际问题中的最大值或最小值时,一般先设自变量、因变量、建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合.用导数求实际问题中的最大(小)值,如果函数在区间内只有一个极值点,那么根据实际意义可知该极值点就是最值点.请你设计一个包装盒,如图所示,ABCD 是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E ,F 在AB 上,是被切去的一个等腰直角三角形斜边的两个端点,设AE =FB =x (cm).(1)某广告商要求包装盒的侧面积S (cm 2)最大,试问x 取何值?(2)某厂商要求包装盒的容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.解 设包装盒的高为h cm ,底面边长为a cm. 由已知得a =2x ,h =60-2x2=2(30-x ),0<x <30.(1)S =4ah =8x (30-x )=-8(x -15)2+1 800, 所以当x =15时,S 取得最大值.(2)V =a 2h =22(-x 3+30x 2),V ′=62x (20-x ).由V ′=0,得x =0(舍)或x =20.当x ∈(0,20)时,V ′>0;当x ∈(20,30)时,V ′<0. 所以当x =20时,V 取得极大值,也是最大值. 此时h a =12.即包装盒的高与底面边长的比值为12.一审条件挖隐含典例:(12分)设f (x )=ax+x ln x ,g (x )=x 3-x 2-3.(1)如果存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M .(2)如果对于任意的s ,t ∈[12,2],都有f (s )≥g (t )成立,求实数a 的取值范围.审题路线图(1)存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M(正确理解“存在”的含义) [g (x 1)-g (x 2)]max ≥M挖掘[g (x 1)-g (x 2)]max 的隐含实质 g (x )max -g (x )min ≥MM 的最大整数值(2)对任意s ,t ∈[12,2]都有f (s )≥g (t )(理解“任意”的含义) f (x )min ≥g (x )max求得g (x )max =1 ax+x ln x ≥1恒成立 分离常数 a ≥x -x 2ln x 恒成立求h (x )=x -x 2ln x 的最大值 a ≥h (x )max =h (1)=1 a ≥1 规范解答解 (1)存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M 成立,等价于[g (x 1)-g (x 2)]max ≥M .[2分]由g (x )=x 3-x 2-3,得g ′(x )=3x 2-2x =3x (x -23).令g ′(x )>0得x <0,或x >23,又x ∈[0,2],所以g (x )在区间[0,23]上单调递减,在区间[23,2]上单调递增,所以g (x )min =g (23)=-8527,g (x )max =g (2)=1.故[g (x 1)-g (x 2)]max =g (x )max -g (x )min =11227≥M , 则满足条件的最大整数M =4.[5分](2)对于任意的s ,t ∈[12,2],都有f (s )≥g (t )成立,等价于在区间[12,2]上,函数f (x )min ≥g (x )max .[7分]由(1)可知在区间[12,2]上,g (x )的最大值为g (2)=1.在区间[12,2]上,f (x )=ax+x ln x ≥1恒成立等价于a ≥x -x 2ln x 恒成立.设h (x )=x -x 2ln x ,h ′(x )=1-2x ln x -x ,可知h ′(x )在区间[12,2]上是减函数,又h ′(1)=0,所以当1<x <2时,h ′(x )<0;当12<x <1时,h ′(x )>0.[10分]即函数h (x )=x -x 2ln x 在区间(12,1)上单调递增,在区间(1,2)上单调递减,所以h (x )max =h (1)=1,所以a ≥1,即实数a 的取值范围是[1,+∞).[12分]温馨提醒 (1)“恒成立”、“存在性”问题一定要正确理解问题实质,深刻挖掘条件内含,进行等价转化.(2)构造函数是求范围问题中的一种常用方法,解题过程中尽量采用分离常数的方法,转化为求函数的值域问题.方法与技巧1.利用导数解决含有参数的单调性问题是将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.2.在讨论方程的根的个数、研究函数图象与x 轴(或某直线)的交点个数、不等式恒成立等问题时,常常需要求出其中参数的取值范围,这类问题的实质就是函数的单调性与函数的极(最)值的应用.3.在实际问题中,如果函数在区间内只有一个极值点,那么只要根据实际意义判定是最大值还是最小值即可,不必再与端点的函数值比较. 失误与防范1.函数f (x )在某个区间内单调递增,则f ′(x )≥0而不是f ′(x )>0,(f ′(x )=0在有限个点处取到).2.利用导数解决实际生活中的优化问题,要注意问题的实际意义.A 组 专项基础训练(时间:45分钟)1.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图象可能是( )答案 C解析 由函数f (x )在x =-2处取得极小值,可得f ′(-2)=0,且当x ∈(a ,-2)(a <-2)时,f (x )单调递减,即f ′(x )<0;当x ∈(-2,b )(b >-2)时,f (x )单调递增,即f ′(x )>0.所以函数y =xf ′(x )在区间(a ,-2)(a <-2)内的函数值为正,在区间(-2,b )(-2<b <0)内的函数值为负,由此可排除选项A ,B ,D.2.(2014·课标全国Ⅱ)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞) D .[1,+∞)答案 D解析 由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(1,+∞)单调递增⇔f ′(x )=k -1x ≥0在(1,+∞)上恒成立.由于k ≥1x ,而0<1x<1,所以k ≥1.即k 的取值范围为[1,+∞).3.已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是( ) A .(-1,2) B .(-∞,-3)∪(6,+∞) C .(-3,6) D .(-∞,-1)∪(2,+∞) 答案 B解析 ∵f ′(x )=3x 2+2ax +(a +6),由已知可得f ′(x )=0有两个不相等的实根. ∴Δ=4a 2-4×3(a +6)>0,即a 2-3a -18>0. ∴a >6或a <-3.4.若函数f (x )=x x 2+a (a >0)在[1,+∞)上的最大值为33,则a 的值为( )A.33B. 3C.3+1D.3-1 答案 D解析 f ′(x )=x 2+a -2x 2(x 2+a )2=a -x 2(x 2+a )2,若a >1,当x >a 时,f ′(x )<0,f (x )单调递减,当1<x <a 时,f ′(x )>0,f (x )单调递增,当x =a 时,令f (x )=a 2a =33,a =32<1,不合题意. 若0<a ≤1,则f ′(x )≤0,f (x )在[1,+∞)上单调递减,∴f (x )max =f (1)=11+a =33,a =3-1,故选D. 5.设函数h t (x )=3tx -322t ,若有且仅有一个正实数x 0,使得h 7(x 0)≥h t (x 0)对任意的正数t 都成立,则x 0等于( )A .5B. 5 C .3D.7答案 D解析 ∵h 7(x 0)≥h t (x 0)对任意的正数t 都成立,∴h 7(x 0)≥h t (x 0)max .记g (t )=h t (x 0)=3tx 0-322t ,则g ′(t )=3x 0-123t ,令g ′(t )=0,得t =x 20,易得h t (x 0)max =g (x 20)=x 30,∴21x 0-147≥x 30,将选项代入检验可知选D. 6.已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax (a >12),当x ∈(-2,0)时,f (x )的最小值为1,则a =________.答案 1解析 ∵f (x )是奇函数,且当x ∈(-2,0)时,f (x )的最小值为1,∴f (x )在(0,2)上的最大值为-1.当x ∈(0,2)时,f ′(x )=1x -a ,令f ′(x )=0得x =1a ,又a >12,∴0<1a <2.当x <1a时,f ′(x )>0,f (x )在(0,1a )上单调递增;当x >1a 时,f ′(x )<0,f (x )在(1a ,2)上单调递减,∴f (x )max =f (1a )=ln 1a -a ·1a =-1,解得a =1.7.已知函数y =x 3-3x +c 的图象与x 轴恰有两个公共点,则c =________.答案 -2或2解析 设f (x )=x 3-3x +c ,对f (x )求导可得,f ′(x )=3x 2-3,令f ′(x )=0,可得x =±1,易知f (x )在(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减.由题意知,f (1)=0或f (-1)=0,若f (1)=1-3+c =0,可得c =2;若f (-1)=-1+3+c =0,可得c =-2.8.设函数f (x )=kx 3-3x +1(x ∈R ),若对于任意x ∈[-1,1],都有f (x )≥0成立,则实数k 的值为________.答案 4解析 若x =0,则不论k 取何值,f (x )≥0都成立;当x >0,即x ∈(0,1]时,f (x )=kx 3-3x +1≥0可化为k ≥3x 2-1x 3. 设g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x 4, 所以g (x )在区间(0,12]上单调递增, 在区间[12,1]上单调递减, 因此g (x )max =g (12)=4,从而k ≥4; 当x <0即x ∈[-1,0)时,f (x )=kx 3-3x +1≥0可化为k ≤3x 2-1x 3,g (x )=3x 2-1x 3在区间[-1,0)上单调递增, 因此g (x )min =g (-1)=4,从而k ≤4,综上k =4.9.设a 为实数,函数f (x )=e x -2x +2a ,x ∈R .(1)求f (x )的单调区间与极值;(2)求证:当a >ln 2-1且x >0时,e x >x 2-2ax +1.(1)解 由f (x )=e x -2x +2a ,x ∈R知f ′(x )=e x -2,x ∈R .令f ′(x )=0,得x =ln 2.于是当x 变化时,f ′(x ),f (x )的变化情况如下表:故f (x )单调递增区间是(ln 2,+∞),f (x )在x =ln 2处取得极小值,极小值为f (ln 2)=e ln 2-2ln 2+2a =2-2ln 2+2a .(2)证明 设g (x )=e x -x 2+2ax -1,x ∈R ,于是g ′(x )=e x -2x +2a ,x ∈R .由(1)知当a >ln 2-1时,g ′(x )取最小值为g ′(ln 2)=2(1-ln 2+a )>0.于是对任意x ∈R ,都有g ′(x )>0,所以g (x )在R 内单调递增.于是当a >ln 2-1时,对任意x ∈(0,+∞),都有g (x )>g (0).而g (0)=0,从而对任意x ∈(0,+∞),都有g (x )>0.即e x -x 2+2ax -1>0,故e x >x 2-2ax +1.10.统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/小时)的函数解析式可以表示为y =1128 000x 3-380x +8(0<x ≤120).已知甲、乙两地相距100千米. (1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?解 (1)当x =40时,汽车从甲地到乙地行驶了10040小时,共耗油10040×(1128 000×403-380×40+8)=17.5(升).因此,当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油17.5升.(2)当速度为x 千米/小时时,汽车从甲地到乙地行驶了100x小时, 设耗油量为h (x )升,依题意得h (x )=(1128 000x 3-380x +8)·100x=11 280x 2+800x -154(0<x ≤120), h ′(x )=x 640-800x 2=x 3-803640x 2(0<x ≤120).令h ′(x )=0,得x =80.当x ∈(0,80)时,h ′(x )<0,h (x )是减函数;当x ∈(80,120)时,h ′(x )>0,h (x )是增函数,所以当x =80时,h (x )取得极小值h (80)=11.25.易知h (80)是h (x )在(0,120]上的最小值.故当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,为11.25升.B 组 专项能力提升(时间:30分钟)11.(2014·辽宁)当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A .[-5,-3]B .[-6,-98]C .[-6,-2]D .[-4,-3]答案 C 解析 当x =0时,ax 3-x 2+4x +3≥0变为3≥0恒成立,即a ∈R .当x ∈(0,1]时,ax 3≥x 2-4x -3,a ≥x 2-4x -3x 3, ∴a ≥⎣⎡⎦⎤x 2-4x -3x 3max .设φ(x )=x 2-4x -3x 3, φ′(x )=(2x -4)x 3-(x 2-4x -3)3x 2x 6=-x 2-8x -9x 4=-(x -9)(x +1)x 4>0, ∴φ(x )在(0,1]上递增,φ(x )max =φ(1)=-6,∴a ≥-6.当x ∈[-2,0)时,a ≤x 2-4x -3x 3, ∴a ≤⎣⎡⎦⎤x 2-4x -3x 3min .仍设φ(x )=x 2-4x -3x 3,φ′(x )=-(x -9)(x +1)x 4. 当x ∈[-2,-1)时,φ′(x )<0,当x ∈(-1,0)时,φ′(x )>0.∴当x =-1时,φ(x )有极小值,即为最小值.而φ(x )min =φ(-1)=1+4-3-1=-2,∴a ≤-2.综上知-6≤a ≤-2.12.设函数f (x )=ln x -ax ,g (x )=e x -ax ,其中a 为常数.若f (x )在(1,+∞)上是减函数,且g (x )在(1,+∞)上有最小值,则a 的取值范围是( )A .(e ,+∞)B .[e ,+∞)C .(1,+∞)D .[1,+∞)答案 A解析 f ′(x )=1x-a ,g ′(x )=e x -a ,由题意得,当x ∈(1,+∞)时f ′(x )≤0恒成立,即x ∈(1,+∞)时a ≥1x 恒成立,则a ≥1.因为g ′(x )=e x -a 在(1,+∞)上单调递增,所以g ′(x )>g ′(1)=e -a .又g (x )在(1,+∞)上有最小值,则必有e -a <0,即a >e.综上,a 的取值范围是(e ,+∞).13.已知f (x )=x e x ,g (x )=-(x +1)2+a ,若∃x 1,x 2∈R ,使得f (x 2)≤g (x 1)成立,则实数a 的取值范围是____________.答案 [-1e,+∞) 解析 f ′(x )=e x +x e x =e x (1+x )当x >-1时,f ′(x )>0,函数f (x )单调递增;当x <-1时,f ′(x )<0,函数f (x )单调递减.所以函数f (x )的最小值为f (-1)=-1e. 而函数g (x )的最大值为a ,则由题意,可得-1e ≤a 即a ≥-1e. 14.设函数f (x )=a 2ln x -x 2+ax ,a >0.(1)求f (x )的单调区间;(2)求所有的实数a ,使e -1≤f (x )≤e 2对x ∈[1,e]恒成立.解 (1)因为f (x )=a 2ln x -x 2+ax ,其中x >0,所以f ′(x )=a 2x -2x +a =-(x -a )(2x +a )x. 由于a >0,所以f (x )的增区间为(0,a ),减区间为(a ,+∞).(2)由题意得f (1)=a -1≥e -1,即a ≥e.由(1)知f (x )在[1,e]内单调递增,要使e -1≤f (x )≤e 2对x ∈[1,e]恒成立.只要⎩⎪⎨⎪⎧f (1)=a -1≥e -1,f (e )=a 2-e 2+a e ≤e 2, 解得a =e.15.已知f (x )=ax -ln x ,x ∈(0,e],g (x )=ln x x,其中e 是自然对数的底数,a ∈R . (1)讨论a =1时,函数f (x )的单调性和极值;(2)求证:在(1)的条件下,f (x )>g (x )+12; (3)是否存在正实数a ,使f (x )的最小值是3?若存在,求出a 的值;若不存在,请说明理由.(1)解 ∵a =1,∴f (x )=x -ln x ,f ′(x )=1-1x=x -1x, ∴当0<x <1时,f ′(x )<0,此时f (x )单调递减;当1<x ≤e 时,f ′(x )>0,此时f (x )单调递增.∴f (x )的极小值为f (1)=1.(2)证明 ∵f (x )的极小值为1,即f (x )在(0,e]上的最小值为1,∴[f (x )]min =1.又g ′(x )=1-ln x x 2, ∴当0<x <e 时,g ′(x )>0,g (x )在(0,e]上单调递增.∴[g (x )]max =g (e)=1e <12, ∴[f (x )]min -[g (x )]max >12, ∴在(1)的条件下,f (x )>g (x )+12. (3)解 假设存在正实数a ,使f (x )=ax -ln x (x ∈(0,e])有最小值3,则f ′(x )=a -1x =ax -1x. ①当0<1a <e 时,f (x )在(0,1a)上单调递减, 在(1a,e]上单调递增, [f (x )]min =f (1a)=1+ln a =3,a =e 2,满足条件; ②当1a≥e 时,f (x )在(0,e]上单调递减, [f (x )]min =f (e)=a e -1=3,a =4e(舍去),所以,此时f (x )无最小值. 综上,存在实数a =e 2,使得当x ∈(0,e]时f (x )有最小值3.。
高考大题专项(一) 导数的综合应用
高考大题专项(一)导数的综合应用突破1导数与函数的单调性x3-a(x2+x+1).1.已知函数f(x)=13(1)若a=3,求f(x)的单调区间;(2)略.2.已知函数f(x)=e x-ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)略.13.已知函数f(x)=1-x+a ln x.x(1)讨论f(x)的单调性;(2)略.4.(2019山东潍坊三模,21)已知函数f(x)=x2+a ln x-2x(a∈R).(1)求f(x)的单调递增区间;(2)略.25.(2018全国3,文21)已知函数f(x)=ax 2+x-1 x.(1)求曲线y=f(x)在点(0,-1)处的切线方程;(2)证明:当a≥1时,f(x)+e≥0.6.(2019河南开封一模,21)设函数f(x)=(x-1)e x-k2x2(其中k∈R).(1)求函数f(x)的单调区间;(2)略.37.(2019河北衡水同卷联考,21)已知函数f(x)=x2e ax-1.(1)讨论函数f(x)的单调性;(2)略.8.(2019江西新余一中质检一,19)已知函数f(x)=ln(x-a)x.(1)若a=-1,证明:函数f(x)在(0,+∞)上单调递减;(2)若曲线y=f(x)在点(1,f(1))处的切线与直线x-y=0平行,求a的值;(3)若x>0,证明:ln(x+1)x >xe x-1(其中e是自然对数的底数).突破2利用导数研究函数的极值、最值1.(2019哈尔滨三中模拟)已知函数f(x)=ln x-ax(a∈R).(1)当a=12时,求f(x)的极值;(2)略.42.(2019河北衡水深州中学测试)讨论函数f(x)=ln x-ax(a∈R)在定义域内的极值点的个数.3.(2019陕西咸阳模拟一,21)设函数f(x)=2ln x-x2+ax+2.(1)当a=3时,求f(x)的单调区间和极值;(2)略.54.已知函数f(x)=(x-a)e x(a∈R).(1)当a=2时,求函数f(x)在x=0处的切线方程;(2)求f(x)在区间[1,2]上的最小值.5.(2019湖北八校联考二,21)已知函数f(x)=ln x+ax2+bx.6(1)函数f(x)在点(1,f(1))处的切线的方程为2x+y=0,求a,b的值,并求函数f(x)的最大值;(2)略.6.(2019广东广雅中学模拟)已知函数f(x)=ax+ln x,其中a为常数.(1)当a=-1时,求f(x)的最大值;(2)若f(x)在区间(0,e]上的最大值为-3,求a的值.7.(2019湘赣十四校联考一,21)已知函数f(x)=ln x-mx-n(m,n∈R).7(1)若n=1时,函数f(x)有极大值为-2,求m的值;(2)若对任意实数x>0,都有f(x)≤0,求m+n的最小值.突破3导数在不等式中的应用1.(2019湖南三湘名校大联考一,21)已知函数f(x)=x ln x.(1)略;时,f(x)≤ax2-x+a-1,求实数a的取值范围.(2)当x≥1e2.(2018全国1,文21)已知函数f(x)=a e x-ln x-1.(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;时,f(x)≥0.(2)证明:当a≥1e83.(2019湖南湘潭一模,21)已知函数f(x)=e x-x2-ax.(1)略;(2)当x>0时,f(x)≥1-x恒成立,求实数a的取值范围.4.(2019安徽合肥一模,21)已知函数f(x)=e x-1-a(x-1)+ln x(a∈R,e是自然对数的底数).(1)略;(2)若对x∈[1,+∞),都有f(x)≥1成立,求实数a的取值范围.5.(2019陕西咸阳一模,21)设函数f(x)=x+1-m e x,m∈R.(1)当m=1时,求f(x)的单调区间;(2)求证:当x∈(0,+∞)时,ln e x-1x>x2.96.已知函数f(x)=-a ln x-e xx+ax,a∈R.(1)略;(2)当a=1时,若不等式f(x)+bx-b+1xe x-x≥0在x∈(1,+∞)时恒成立,求实数b的取值范围.7.设函数f(x)=e mx+x2-mx.(1)求证:f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增;(2)若对于任意x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤e-1,求m的取值范围.108.(2019山西太原二模,21)已知x1,x2(x1<x2)是函数f(x)=e x+ln(x+1)-ax(a∈R)的两个极值点.(1)求a的取值范围;(2)求证:f(x2)-f(x1)<2ln a.突破4导数与函数的零点1.(2018全国2,文21)已知函数f(x)=1x3-a(x2+x+1).(1)略;(2)证明:f(x)只有一个零点.2.(2019河北唐山三模,21)已知函数f(x)=x ln x-a(x2-x)+1,函数g(x)=f'(x).(1)若a=1,求f(x)的极大值;(2)当0<x<1时,g(x)有两个零点,求a的取值范围.113.(2019河南开封一模,21)已知函数f(x)=ax 2+bx+1 e x.(1)略;(2)若f(1)=1,且方程f(x)=1在区间(0,1)内有解,求实数a的取值范围.4.(2019安徽安庆二模,21)已知函数f(x)=ax-ln x(a∈R).(1)讨论f(x)的单调性;(2)若f(x)=0有两个相异的正实数根x1,x2,求证:f'(x1)+f'(x2)<0.5.(2019河北石家庄二模,20)已知函数f(x)=1+lnxx.12(1)略;(2)当x>1时,方程f(x)=a(x-1)+1(a>0)有唯一零点,求a的取值范围.x6.(2019山西运城二模,21)已知函数f(x)=x e x-a(ln x+x),a∈R.(1)当a=e时,求f(x)的单调区间;(2)若f(x)有两个零点,求实数a的取值范围.7.已知函数f(x)=(x-2)e x+a(x-1)2有两个零点.(1)求a的取值范围;(2)设x1,x2是f(x)的两个零点,证明:x1+x2<2.138.(2019天津,20)设函数f(x)=ln x-a(x-1)e x,其中a∈R.(1)若a≤0,讨论f(x)的单调性;,(2)若0<a<1e①证明:f(x)恰有两个零点;②设x0为f(x)的极值点,x1为f(x)的零点,且x1>x0,证明3x0-x1>2.参考答案高考大题专项(一)导数的1415综合应用突破1 导数与函数的单调性1.解 (1)当a=3时,f (x )=13x 3-3x 2-3x-3,f'(x )=x 2-6x-3. 令f'(x )=0,解得x=3-2√3或x=3+2√3. 当x ∈(-∞,3-2√3)∪(3+2√3,+∞)时,f'(x )>0; 当x ∈(3-2√3,3+2√3)时,f'(x )<0.故f (x )在(-∞,3-2√3),(3+2√3,+∞)上单调递增,在(3-2√3,3+2√3)上单调递减. 2.证明 (1)当a=1时,f (x )≥1等价于(x 2+1)e -x -1≤0. 设函数g (x )=(x 2+1)e -x -1,则g'(x )=-(x 2-2x+1)e -x =-(x-1)2e -x .当x ≠1时,g'(x )<0,所以g (x )在(0,+∞)上单调递减.而g (0)=0,故当x ≥0时,g (x )≤0,即f (x )≥1.3.解 (1)f (x )的定义域为(0,+∞),f'(x )=-1x 2-1+a x =-x 2-ax+1x 2.①若a ≤2,则f'(x )≤0,当且仅当a=2,x=1时f'(x )=0,所以f (x )在(0,+∞)上单调递减. ②若a>2,令f'(x )=0得,x=a -√a 2-42或x=a+√a 2-42.当x ∈(0,a -√a 2-42)∪a+√a 2-42,+∞时,f'(x )<0;当x ∈a -√a 2-42,a+√a 2-42时,f'(x )>0.所以f (x )在(0,a -√a 2-42),(a+√a 2-42,+∞)上单调递减,在(a -√a 2-42,a+√a 2-42)上单调递增.164.解 (1)函数f (x )的定义域为(0,+∞),f'(x )=2x+a x -2=2x 2-2x+ax,令2x 2-2x+a=0,Δ=4-8a=4(1-2a ),若a ≥1,则Δ≤0,f'(x )≥0在(0,+∞)上恒成立,函数f (x )在(0,+∞)上单调递增; 若a<12,则Δ>0,方程2x 2-2x+a=0,两根为x 1=1-√1-2a 2,x 2=1+√1-2a2, 当a ≤0时,x 2>0,x ∈(x 2,+∞),f'(x )>0,f (x )单调递增; 当0<a<12时,x 1>0,x 2>0,x ∈(0,x 1),f'(x )>0,f (x )单调递增, x ∈(x 2,+∞),f'(x )>0,f (x )单调递增.综上,当a ≥12时,函数f (x )单调递增区间为(0,+∞),当a ≤0时,函数f (x )单调递增区间为1+√1-2a2,+∞,当0<a<12时,函数f (x )单调递增区间为0,1-√1-2a 2,1+√1-2a2,+∞.5.(1)解 f'(x )=-ax 2+(2a -1)x+2e x,f'(0)=2.因此曲线y=f (x )在(0,-1)处的切线方程是2x-y-1=0. (2)证明 当a ≥1时,f (x )+e ≥(x 2+x-1+e x+1)e -x . 令g (x )=x 2+x-1+e x+1, 则g'(x )=2x+1+e x+1.当x<-1时,g'(x )<0,g (x )单调递减;当x>-1时,g'(x )>0,g (x )单调递增;所以g (x )≥g (-1)=0. 因此f (x )+e ≥0.6.解 (1)函数f (x )的定义域为(-∞,+∞),f'(x )=e x +(x-1)e x -kx=x e x -kx=x (e x -k ),①当k ≤0时,令f'(x )>0,解得x>0,∴f (x )的单调递减区间是(-∞,0),单调递增区间是(0,+∞). ②当0<k<1时,令f'(x )>0,解得x<ln k 或x>0,17∴f (x )在(-∞,ln k )和(0,+∞)上单调递增,在(ln k ,0)上单调递减. ③当k=1时,f'(x )≥0,f (x )在(-∞,+∞)上单调递增. ④当k>1时,令f'(x )>0,解得x<0或x>ln k ,所以f (x )在(-∞,0)和(ln k ,+∞)上单调递增,在(0,ln k )上单调递减. 7.解 (1)函数f (x )的定义域为R . f'(x )=2x e ax +x 2·a e ax =x (ax+2)e ax .当a=0时,f (x )=x 2-1,则f (x )在区间(0,+∞)内单调递增,在区间(-∞,0)内单调递减;当a>0时,f'(x )=ax x+2a e ax ,令f'(x )>0得x<-2a 或x>0,令f'(x )<0得-2a <x<0,所以f (x )在区间-∞,-2a 内单调递增,在区间-2a ,0内单调递减,在区间(0,+∞)内单调递增;当a<0时,f'(x )=ax x+2a e ax ,令f'(x )>0得0<x<-2a ,令f'(x )<0得x>-2a 或x<0,所以f (x )在区间(-∞,0)内单调递减,在区间0,-2a 内单调递增,在区间-2a ,+∞内单调递减. 8.(1)证明 当a=-1时,函数f (x )的定义域是(-1,0)∪(0,+∞),所以f'(x )=xx+1-ln (x+1)x 2,令g (x )=xx+1-ln(x+1),只需证当x>0时,g (x )≤0. 又g'(x )=1(x+1)2−1=-x (x+1)2<0在(0,+∞)上恒成立,故g (x )在(0,+∞)上单调递减,所以g (x )<g (0)=-ln 1=0,所以f'(x )<0,故函数f (x )在(0,+∞)上单调递减. (2)解 由题意知,f'(1)=1,且f'(x )=xx -a -ln (x -a )x 2,所以f'(1)=11-a -ln(1-a )=1,即有a1-a -ln(1-a )=0, 令t (a )=a1-a -ln(1-a ),a<1,则t'(a )=1(1-a )2+11-a >0,故t(a)在(-∞,1)上单调递增,又t(0)=0,故0是t(a)的唯一零点,即方程a1-a-ln(1-a)=0有唯一实根0,所以a=0.(3)证明因为xe x-1=ln e xe x-1=ln (ex-1+1)e x-1,故原不等式等价于ln(x+1)x>ln(ex-1+1)e x-1,由(1)知,当a=-1时,f(x)=ln(x+1)x在(0,+∞)上单调递减,故要证原不等式成立,只需证明当x>0时,x<e x-1,令h(x)=e x-x-1,则h'(x)=e x-1>0在(0,+∞)上恒成立,故h(x)在(0,+∞)上单调递增, 所以h(x)>h(0)=0,即x<e x-1,故f(x)>f(e x-1),即ln(x+1)x>ln (ex-1+1)e x-1=xe x-1.突破2利用导数研究函数的极值、最值1.解(1)当a=12时,f(x)=ln x-12x,函数的定义域为(0,+∞),f'(x)=1x−12=2-x2x,令f'(x)=0,得x=2,于是当x变化时,f'(x),f(x)的变化情况如下表:故f(x)的极大值为ln 2-1,无极小值.2.解函数的定义域为(0,+∞),f'(x)=1x -a=1-axx(x>0).1819当a ≤0时,f'(x )>0在(0,+∞)上恒成立,故函数f (x )在(0,+∞)上单调递增,此时函数f (x )在定义域上无极值点; 当a>0时,若x ∈0,1a ,则f'(x )>0,若x ∈1a ,+∞,则f'(x )<0, 故函数f (x )在x=1a 处取极大值.综上可知,当a ≤0时,函数f (x )无极值点,当a>0时,函数f (x )有一个极大值点. 3.解 (1)f (x )的定义域为(0,+∞).当a=3时,f (x )=2ln x-x 2+3x+2, 所以f'(x )=2x -2x+3=-2x 2+3x+2x,令f'(x )=-2x 2+3x+2x=0,得-2x 2+3x+2=0,因为x>0,所以x=2. f (x )与f'(x )在区间(0,+∞)上的变化情况如下:所以f (x )的单调递增区间为(0,2),单调递减区间为(2,+∞). f (x )的极大值为2ln 2+4,无极小值. 4.解 (1)设切线的斜率为k.因为a=2,所以f (x )=(x-2)e x ,f'(x )=e x (x-1).所以f (0)=-2,k=f'(0)=e 0(0-1)=-1. 所以所求的切线方程为y=-x-2,即x+y+2=0. (2)由题意得f'(x )=e x (x-a+1),令f'(x )=0,可得x=a-1.①若a-1≤1,则a≤2,当x∈[1,2]时,f'(x)≥0,则f(x)在[1,2]上单调递增.所以f(x)min=f(1)=(1-a)e.②若a-1≥2,则a≥3,当x∈[1,2]时,f'(x)≤0,则f(x)在[1,2]上单调递减.所以f(x)min=f(2)=(2-a)e2.③若1<a-1<2,则2<a<3,所以f'(x),f(x)随x的变化情况如下表:所以f(x)的单调递减区间为[1,a-1],单调递增区间为[a-1,2].所以f(x)在[1,2]上的最小值为f(a-1)=-e a-1.综上所述,当a≤2时,f(x)min=f(1)=(1-a)e;当a≥3时,f(x)min=f(2)=(2-a)e2;当2<a<3时,f(x)min=f(a-1)=-e a-1.5.解(1)因为f(x)=ln x+ax2+bx,所以f'(x)=1x+2ax+b,则在点(1,f(1))处的切线的斜率为f'(1)=1+2a+b,由题意可得,1+2a+b=-2,且a+b=-2,解得a=b=-1.所以f'(x)=1x-2x-1=-2x2-x+1x=-2x2+x-1x,由f'(x)=0,可得x=12(x=-1舍去),2021当0<x<1时,f'(x )>0,f (x )单调递增;当x>1时,f'(x )<0,f (x )单调递减,故当x=12时,f (x )取得极大值,且为最大值,f 12=-ln 2-34.故f (x )的最大值为-ln 2-34. 6.解 (1)易知f (x )的定义域为(0,+∞),当a=-1时,f (x )=-x+ln x ,f'(x )=-1+1x =1-xx , 令f'(x )=0,得x=1.当0<x<1时,f'(x )>0;当x>1时,f'(x )<0.∴f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.∴f (x )max =f (1)=-1. ∴当a=-1时,函数f (x )的最大值为-1. (2)f'(x )=a+1x ,x ∈(0,e],则1x ∈1e ,+∞.①若a ≥-1e ,则f'(x )≥0,从而f (x )在(0,e]上单调递增,∴f (x )max =f (e)=a e +1≥0,不合题意. ②若a<-1,令f'(x )>0得,a+1>0,又x ∈(0,e],解得0<x<-1; 令f'(x )<0得,a+1x <0,又x ∈(0,e],解得-1a <x ≤e .从而f (x )在0,-1a 上单调递增,在-1a ,e 上单调递减,∴f (x )max =f -1a =-1+ln -1a . 令-1+ln -1a =-3, 得ln -1a =-2,即a=-e 2.∵-e 2<-1e ,∴a=-e 2符合题意.故实数a 的值为-e 2.7.解 (1)函数f (x )的定义域为(0,+∞),当n=1时,f (x )=ln x-mx-1,∵函数f (x )有极大值为-2, 由f'(x )=1x -m=0,得x=1m >0,∴f(1m)=-ln m-1-1=-2,∴m=1.经检验m=1满足题意.故m的值为1.(2)f'(x)=1x-m.①当m<0时,∵x∈(0,+∞),∴f'(x)>0,∴f(x)在(0,+∞)上单调递增.令x=e n,则f(e n)=ln e n-m e n-n=-m e n>0,舍去;②当m=0时,∵x∈(0,+∞),∴f'(x)>0,∴f(x)在(0,+∞)上单调递增,令x=e n+1,则f(e n+1)=ln e n+1-n=1>0,舍去;③当m>0时,若x∈0,1m ,则f'(x)>0,若x∈1m,+∞,则f'(x)<0,∴f(x)在0,1m 上单调递增,在1m,+∞上单调递减.∴f(x)的最大值为f1m=-ln m-1-n≤0, 即n≥-ln m-1.∴m+n≥m-ln m-1,设h(m)=m-ln m-1,令h'(m)=1-1m=0,则m=1.当m∈(0,1)时,h'(m)<0,∴h(m)在(0,1)上单调递减.当m∈(1,+∞)时,h'(m)>0.∴h(m)在(1,+∞)上单调递增.22∴h(m)的最小值为h(1)=0.综上所述,当m=1,n=-1时,m+n的最小值为0.突破3导数在不等式中的应用1.解(2)由已知得a≥xlnx+x+1x2+1,设h(x)=xlnx+x+1x2+1,则h'(x)=(1-x)(xlnx+lnx+2)(x2+1)2.∵y=x ln x+ln x+2是增函数,且x≥1,∴y≥-1-1+2>0,∴当x∈1e,1时,h'(x)>0;当x∈(1,+∞)时,h'(x)<0,∴h(x)在x=1处取得最大值,h(1)=1,∴a≥1.故a的取值范围为[1,+∞).2.(1)解f(x)的定义域为(0,+∞),f'(x)=a e x-1x.由题设知,f'(2)=0,所以a=12e2.从而f(x)=12e2e x-ln x-1,f'(x)=12e2e x-1x.当0<x<2时,f'(x)<0;当x>2时,f'(x)>0.所以f(x)在(0,2)上单调递减,在(2,+∞)上单调递增.(2)证明当a≥1e 时,f(x)≥e xe-ln x-1.设g(x)=e xe-ln x-1,2324则g'(x )=e x−1.当0<x<1时,g'(x )<0;当x>1时,g'(x )>0. 所以x=1是g (x )的最小值点. 故当x>0时,g (x )≥g (1)=0. 因此,当a ≥1时,f (x )≥0.3.解 (2)由题意,当x>0时,e x-x 2-ax ≥1-x ,即a ≤e x x -x-1x +1.令h (x )=e xx -x-1x +1(x>0), 则h'(x )=e x (x -1)-x 2+1x 2=(x -1)(e x -x -1)x 2. 令φ(x )=e x -x-1(x>0),则φ'(x )=e x -1>0. 当x ∈(0,+∞)时,φ(x )单调递增,φ(x )>φ(0)=0. 故当x ∈(0,1)时,h'(x )<0,h (x )单调递减; 当x ∈(1,+∞)时,h'(x )>0,h (x )单调递增. 所以h (x )min =h (1)=e -1,所以a ≤e -1. 故a 的取值范围为(-∞,e -1].4.解 (2)f'(x )=e x-1+1x -a (x ≥1),令g (x )=f'(x ),g'(x )=e x-1-1x 2, 令φ(x )=g'(x ),φ'(x )=e x-1+2x 3>0,∴g'(x )在[1,+∞)上单调递增,g'(x )≥g'(1)=0. ∴f'(x )在[1,+∞]上单调递增,f'(x )≥f'(1)=2-a.当a≤2时,f'(x)≥0,f(x)在[1,+∞)上单调递增,f(x)≥f(1)=1,满足条件; 当a>2时,f'(1)=2-a<0.又f'(ln a+1)=e ln a-a+1lna+1=1lna+1>0,∴∃x0∈(1,ln a+1),使得f'(x)=0,此时,当x∈(1,x0)时,f'(x)<0;当x∈(x0,ln a+1)时,f'(x)>0,∴f(x)在(1,x0)上单调递减,当x∈(1,x0)时,都有f(x)<f(1)=1,不符合题意.综上所述,实数a的取值范围为(-∞,2].5.(1)解当m=1时,f(x)=x+1-e x,f'(x)=1-e x,令f'(x)=0,则x=0.当x<0时,f'(x)>0;当x>0时,f'(x)<0.∴函数f(x)的单调递增区间是(-∞,0),单调递减区间是(0,+∞).(2)证明由(1)知,当m=1时,f(x)max=f(0)=0,∴当x∈(0,+∞)时,x+1-e x<0,即e x>x+1,当x∈(0,+∞)时,要证ln e x-1x>x2,只需证e x-1>x e x 2,令F(x)=e x-1-x e x 2=e x-x(√e)x-1,F'(x)=e x-(√e)x−12x(√e)x=(√e)x(√e)x-1-x2=e x2ex2-1-x2,由e x>x+1可得,e x2>1+x2,25故当x∈(0,+∞)时,F'(x)>0恒成立,即F(x)在(0,+∞)上单调递增,∴F(x)>F(0)=0,即e x-1>x e x2,∴lne x-1x>x2.6.解(2)由题意,当a=1时,f(x)+bx-b+1xe x -x≥0在x ∈(1,+∞)时恒成立, 整理得ln x-b(x-1)e x≤0在(1,+∞)上恒成立.令h(x)=ln x-b(x-1)e x,易知,当b≤0时,h(x)>0,不合题意,∴b>0.又h'(x)=1-bx e x,h'(1)=1-b e.①当b≥1时,h'(1)=1-b e≤0.又h'(x)=1-bx e x在[1,+∞)上单调递减.∴h'(x)≤h'(1)≤0在[1,+∞)上恒成立,则h(x)在[1,+∞)上单调递减.所以h(x)≤h(1)=0,符合题意.②当0<b<1e 时,h'(1)=1-b e>0,h'(1b)=b-e1b<01b>1.又h'(x)=1x-bx e x在[1,+∞)上单调递减,∴存在唯一x0∈(1,+∞),使得h'(x0)=0.∴h(x)在(1,x0)上单调递增,在(x0,+∞)上单调递减.又h(x)在x=1处连续,h(1)=0,∴h(x)>0在(1,x0)上恒成立,不合题意.综上所述,实数b的取值范围为1e,+∞.7.(1)证明f'(x)=m(e mx-1)+2x.若m≥0,则当x∈(-∞,0)时,e mx-1≤0,2627f'(x )≤0;当x ∈(0,+∞)时,e mx -1≥0, f'(x )≥0.若m<0,则当x ∈(-∞,0)时,e mx -1>0,f'(x )<0;当x ∈(0,+∞)时,e mx -1<0,f'(x )>0. 所以f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增.(2)解 由(1)知,对任意的m ,f (x )在[-1,0]上单调递减,在[0,1]上单调递增,故f (x )在x=0处取得最小值.所以对于任意x 1,x 2∈[-1,1],|f (x 1)-f (x 2)|≤e -1的充要条件是{f (1)-f (0)≤e -1,f (-1)-f (0)≤e -1,即{e m -m ≤e -1,e -m +m ≤e -1.设函数g (t )=e t -t-e +1,则g'(t )=e t -1.当t<0时,g'(t )<0;当t>0时,g'(t )>0.故g (t )在(-∞,0)上单调递减,在(0,+∞)上单调递增. 又g (1)=0,g (-1)=e -1+2-e <0,故当t ∈[-1,1]时,g (t )≤0. 当m ∈[-1,1]时,g (m )≤0, g (-m )≤0,即{e m -m ≤e -1,e -m +m ≤e -1.当m>1时,由g (t )的单调性知,g (m )>0,即e m -m>e -1. 当m<-1时,g (-m )>0, 即e -m +m>e -1.综上,m 的取值范围是[-1,1].8.(1)解 由题意得f'(x )=e x +1x+1-a ,x>-1,令g (x )=e x +1x+1-a ,x>-1,则 g'(x )=e x -1(x+1)2,28令h (x )=e x -1(x+1)2,x>-1,则h'(x )=e x +2(x+1)3>0,∴h (x )在(-1,+∞)上单调递增,且h (0)=0. 当x ∈(-1,0)时,g'(x )=h (x )<0,g (x )单调递减, 当x ∈(0,+∞)时,g'(x )=h (x )>0,g (x )单调递增.∴g (x )≥g (0)=2-a.①当a ≤2时,f'(x )=g (x )>g (0)=2-a ≥0. f (x )在(-1,+∞)上单调递增,此时无极值;②当a>2时,∵g1a-1=e 1a -1>0,g (0)=2-a<0,∴∃x 1∈1a-1,0,g (x 1)=0,当x ∈(-1,x 1)时, f'(x )=g (x )>0,f (x )单调递增;当x ∈(x 1,0)时,f'(x )=g (x )<0,f (x )单调递减,∴x=x 1是f (x )的极大值点.∵g (ln a )=11+lna >0,g (0)=2-a<0, ∴∃x 2∈(0,ln a ),g (x 2)=0,当x ∈(0,x 2)时,f'(x )=g (x )<0,f (x )单调递减;当x ∈(x 2,+∞)时,f'(x )=g (x )>0,f (x )单调递增,∴x=x 2是f (x )的极小值点. 综上所述,a 的取值范围为(2,+∞).(2)证明 由(1)得a ∈(2,+∞),1a -1<x 1<0<x 2<ln a ,且g (x 1)=g (x 2)=0,∴x 2-x 1>0,1a <x 1+1<1,1<x2+1<1+ln a,e x2−e x1=x2-x1(x1+1)(x2+1),∴1(x1+1)(x2+1)-a<0,1<x2+1x1+1<a(1+ln a)<a2,∴f(x2)-f(x1)=e x2−e x1+ln x2+1x1+1-a(x2-x1)=(x2-x1)1(x1+1)(x2+1)-a +ln x2+1x1+1<ln a2=2ln a.突破4导数与函数的零点1.(2)证明由于x2+x+1>0,所以f(x)=0等价于x 3x2+x+1-3a=0.设g(x)=x3x2+x+1-3a,则g'(x)=x2(x2+2x+3)(x2+x+1)2≥0,仅当x=0时g'(x)=0,所以g(x)在(-∞,+∞)单调递增,故g(x)至多有一个零点,从而f(x)至多有一个零点.又f(3a-1)=-6a2+2a-13=-6(a-16)2−16<0,f(3a+1)=13>0,故f(x)有一个零点.综上,f(x)只有一个零点.2.解(1)f(x)=x ln x-x2+x+1(x>0),g(x)=f'(x)=ln x-2x+2,g'(x)=1-2=1-2x,当x∈0,12时,g'(x)>0,g(x)单调递增;当x∈12,+∞时,g'(x)<0,g(x)单调递减.又g(1)=f'(1)=0,则当x∈12,1时,f'(x)>0,f(x)单调递增;当x∈(1,+∞)时,f'(x)<0,f(x)单调递减.故当x=1时,f(x)取得极大值f(1)=1.2930(2)g (x )=f'(x )=ln x+1-2ax+a ,g'(x )=1x -2a=1-2axx ,①若a ≤0,则g'(x )>0,g (x )单调递增,至多有一个零点,不合题意. ②若a>0,则当x ∈0,12a 时, g'(x )>0,g (x )单调递增;当x ∈12a ,+∞时,g'(x )<0,g (x )单调递减. 则g 12a ≥g 12=ln 12+1=ln e2>0.不妨设g (x 1)=g (x 2),x 1<x 2,则0<x 1<1<x 2<1.一方面,需要g (1)<0,得a>1.另一方面,由(1)得,当x>1时,ln x<x-1<x ,则x<e x , 进而,有2a<e 2a ,则e -2a <1,且g (e -2a )=-2a e -2a +1-a<0, 故存在x 1,使得0<e -2a <x 1<12a .综上,a 的取值范围是(1,+∞). 3.解 (2)由f (1)=1得b=e -1-a , 由f (x )=1得e x =ax 2+bx+1,设g (x )=e x -ax 2-bx-1,则g (x )在(0,1)内有零点,设x 0为g (x )在(0,1)内的一个零点, 由g (0)=g (1)=0知g (x )在(0,x 0)和(x 0,1)上不单调.设h (x )=g'(x ),则h (x )在(0,x 0)和(x 0,1)上均存在零点,即h (x )在(0,1)上至少有两个零点. g'(x )=e x -2ax-b ,h'(x )=e x -2a ,当a ≤12时,h'(x )>0,h (x )在(0,1)上单调递增,h (x )不可能有两个及以上零点,31当a ≥e2时,h'(x )<0,h (x )在(0,1)上单调递减,h (x )不可能有两个及以上零点, 当12<a<e2时,令h'(x )=0得x=ln(2a )∈(0,1),∴h (x )在(0,ln(2a ))上单调递减,在(ln(2a ),1)上单调递增,h (x )在(0,1)上存在最小值h (ln(2a )), 若h (x )有两个零点,则有h (ln(2a ))<0,h (0)>0,h (1)>0, h (ln(2a ))=3a-2a ln(2a )+1-e 12<a<e2,设φ(x )=32x-x ln x+1-e(1<x<e),则φ'(x )=12-ln x ,令φ'(x )=0,得x=√e , 当1<x<√e 时,φ'(x )>0,φ(x )单调递增;当√e <x<e 时,φ'(x )<0,φ(x )单调递减.∴φmax (x )=φ(√e )=√e +1-e <0, ∴h (ln(2a ))<0恒成立.由h (0)=1-b=a-e +2>0,h (1)=e -2a-b>0,得e -2<a<1.综上,a 的取值范围为(e -2,1). 4.(1)解 f (x )=ax-ln x 的定义域为(0,+∞),所以f'(x )=a-1x =ax -1x .①当a ≤0时,f'(x )<0,所以f (x )在(0,+∞)上为减函数.②当a>0时,由f'(x )>0,得x>1a ,所以f (x )在0,1a 上为减函数,在1a ,+∞上为增函数.(2)证明 解法1:要证f'(x 1)+f'(x 2)<0,即证2a-1x 1−1x 2<0,即2a<1x 1+1x 2.由f (x 1)=f (x 2)得a=ln x 1-ln x2x 12,所以只要证2ln x 1-ln x 2x 12<1x 1+1x 2.不妨设x 1>x 2>0,则只要证2ln x1x 2<(x 1-x 2)1x 1+1x 2⇔2ln x1x 2<x1x 2−x2x 1.令x 1x 2=t>1,则只要证明当t>1时,2ln t<t-1t 成立.32设g (t )=2ln t-t-1t(t>1),则g'(t )=2t -1-1t 2=-(t -1)2t2<0,所以函数g (t )在(1,+∞)上单调递减,所以g (t )<g (1)=0,即2ln t<t-1t 成立. 由上分析可知,f'(x 1)+f'(x 2)<0成立.解法2:要证f'(x 1)+f'(x 2)<0,即证2a-1x 1−1x 2<0,即2a<1x 1+1x 2. 令t 1=1x 1,t 2=1x 2,下证t 1+t 2>2a.由f (x 1)=f (x 2),得ax 1-ln x 1=ax 2-ln x 2,即at 1+ln t 1=at 2+ln t 2.令g (t )=a t +ln t ,g (t 1)=g (t 2),g'(t )=-a t 2+1t =t -at2.由g'(t )>0⇒t>a ,g'(t )<0⇒a>t>0,则g (t )在(0,a )上为减函数,在(a ,+∞)上为增函数. 设t 1∈(0,a ),t 2∈(a ,+∞),令h (t )=g (t )-g (2a-t )=at +ln t-a2a -t -ln(2a-t ). h'(t )=t -a t 2+a -t(2a -t )2 =4a (t -a )(a -t )t 2(2a -t )2,t 1∈(0,a ),h'(t 1)<0.所以h (t )在(0,a )上为减函数,h (t 1)>h (a )=0,即g (t 1)>g (2a-t 1),g (t 2)>g (2a-t 1). 又因为g (t )在(a ,+∞)上为增函数,所以t 2>2a-t 1,即t 1+t 2>2a. 故f'(x 1)+f'(x 2)<0.5.解 (2)当x>1时,方程f (x )=a (x-1)+1x ,即ln x-a (x 2-x )=0,33令h (x )=ln x-a (x 2-x ),有h (1)=0,h'(x )=-2ax 2+ax+1x,令r (x )=-2ax 2+ax+1,x ∈(1,+∞),因为a>0,所以r (x )在(1,+∞)上单调递减,①当r (1)=1-a ≤0即a ≥1时,r (x )<0,即h (x )在(1,+∞)上单调递减,所以h (x )<h (1)=0, 方程f (x )=a (x-1)+1x 无实根.②当r (1)>0即0<a<1时,存在x 0∈(1,+∞),使得x ∈(1,x 0)时,r (x )>0,即h (x )单调递增;x ∈(x 0,+∞)时,r (x )<0,即h (x )单调递减;因此h (x )max =h (x 0)>h (1)=0, 取x=1+1a ,则h 1+1a =ln 1+1a -a (1+1a )2+a 1+1a =ln 1+1a -1+1a , 令t=1+1a (t>1),h (t )=ln t-t ,则h'(t )=1t -1,t>1,所以h'(t )<0,即h (t )在t>1时单调递减,所以h (t )<h (1)=0.故存在x 1∈x 0,1+1a ,使得h (x 1)=0. 综上,a 的取值范围为0<a<1. 6.解 (1)f (x )定义域为(0,+∞),当a=e 时,f'(x )=(1+x )(xe x -e )x.∴0<x<1时,f'(x )<0,x>1时,f'(x )>0.∴f (x )在(0,1)上为减函数;在(1,+∞)上为增函数.(2)记t=ln x+x ,则t=ln x+x 在(0,+∞)上单调递增,且t ∈R .∴f (x )=x e x -a (ln x+x )=e t -at=g (t ).∴f (x )在(0,+∞)上有两个零点等价于g (t )=e t -at 在t ∈R 上有两个零点. ①当a=0时,g (t )=e t 在R 上单调增,且g (t )>0,故g (t )无零点; ②当a<0时,g'(t )=e t -a>0恒成立,∴g (t )在R 上单调递增. 又g (0)=1>0,g1a=e 1a -1<0,故g (t )在R 上只有一个零点;③当a>0时,由g'(t)=e t-a=0可知g(t)在t=ln a时有唯一的极小值g(ln a)=a(1-ln a),若0<a<e,g(t)极小值=a(1-ln a)>0,g(t)无零点;若a=e,g(t)极小值=0,g(t)只有一个零点;若a>e时,g(t)极小值=a(1-ln a)<0,而g(0)=1>0,由于y=lnxx在(e,+∞)上为减函数,可知当a>e时,e a>a a>a2,从而g(a)=e a-a2>0.∴g(t)在(0,ln a)和(ln a,+∞)上各有一个零点.综上可知,当a>e时f(x)有两个零点,即所求a的取值范围是(e,+∞).7.(1)解f'(x)=(x-1)e x+2a(x-1)=(x-1)(e x+2a).①设a=0,则f(x)=(x-2)e x,f(x)只有一个零点.②设a>0,则当x∈(-∞,1)时,f'(x)<0;当x∈(1,+∞)时,f'(x)>0,所以f(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增.又f(1)=-e,f(2)=a,取b满足b<0且b<ln a ,则f(b)>a2(b-2)+a(b-1)2=a(b2-32b)>0,故f(x)存在两个零点.③设a<0,由f'(x)=0得x=1或x=ln(-2a).若a≥-e2,则ln(-2a)≤1,故当x∈(1,+∞)时,f'(x)>0,因此f(x)在(1,+∞)上单调递增.34又当x≤1时,f(x)<0,所以f(x)不存在两个零点.若a<-e2,则ln(-2a)>1,故当x∈(1,ln(-2a))时,f'(x)<0;当x∈(ln(-2a),+∞)时,f'(x)>0.因此f(x)在(1,ln(-2a))上单调递减,在(ln(-2a),+∞)上单调递增.又当x≤1时f(x)<0,所以f(x)不存在两个零点.综上,a的取值范围为(0,+∞).(2)证明不妨设x1<x2,由(1)知,x1∈(-∞,1),x2∈(1,+∞),2-x2∈(-∞,1),f(x)在(-∞,1)上单调递减, 所以x1+x2<2等价于f(x1)>f(2-x2),即f(2-x2)<0.由于f(2-x2)=-x2e2-x2+a(x2-1)2,而f(x2)=(x2-2)e x2+a(x2-1)2=0,所以f(2-x2)=-x2e2-x2-(x2-2)e x2.设g(x)=-x e2-x-(x-2)e x,则g'(x)=(x-1)(e2-x-e x).所以当x>1时,g'(x)<0,而g(1)=0,故当x>1时,g(x)<0.从而g(x2)=f(2-x2)<0,故x1+x2<2.8.(1)解由已知,f(x)的定义域为(0,+∞),且f'(x)=1x -[a e x+a(x-1)e x]=1-ax2e xx.3536因此当a ≤0时,1-ax 2e x >0,从而f'(x )>0, 所以f (x )在(0,+∞)内单调递增. (2)证明 ①由(1)知,f'(x )=1-ax 2e xx.令g (x )=1-ax 2e x ,由0<a<1e,可知g (x )在(0,+∞)内单调递减,又g (1)=1-a e >0,且g ln 1a =1-a ln 1a 21a =1-ln 1a 2<0,故g (x )=0在(0,+∞)内有唯一解,从而f'(x )=0在(0,+∞)内有唯一解,不妨设为x 0,则1<x 0<ln1a. 当x ∈(0,x 0)时,f'(x )=g (x )x >g (x 0)x=0, 所以f (x )在(0,x 0)内单调递增; 当x ∈(x 0,+∞)时,f'(x )=g (x )x <g (x 0)x=0,所以f (x )在(x 0,+∞)内单调递减,因此x 0是f (x )的唯一极值点.令h (x )=ln x-x+1,则当x>1时,h'(x )=1x -1<0,故h (x )在(1,+∞)内单调递减,从而当x>1时,h (x )<h (1)=0,所以ln x<x-1. 从而fln 1a=lnln 1a-aln 1a -1eln1a =lnln 1a -ln 1a +1=h ln 1a <0,又因为f (x 0)>f (1)=0,所以f (x )在(x 0,+∞)内有唯一零点.又f (x )在(0,x 0)内有唯一零点1,从而,f (x )在(0,+∞)内恰有两个零点.②由题意,{f '(x 0)=0,f (x 1)=0,即{ax 02e x 0=1,ln x 1=a (x 1-1)e x 1,从而ln x 1=x 1-1x 02e x 1-x 0,即e x 1-x 0=x 02ln x 1x 1-1.因为当x>1时,ln x<x-1,又x 1>x 0>1,故ex 1-x 0<x 02(x 1-1)1=x 02,两边取对数,得ln e x 1-x 0<ln x 02,于是x 1-x 0<2ln x 0<2(x 0-1),整理得3x 0-x 1>2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.导数的综合应用(含答案)(高二)1.(15理科)已知函数()1ln 1xf x x+=-.(Ⅰ)求曲线()y f x =在点()()00f ,处的切线方程; (Ⅱ)求证:当()01x ∈,时,()323x f x x ⎛⎫>+ ⎪⎝⎭; (Ⅲ)设实数k 使得()33x f x k x ⎛⎫>+ ⎪⎝⎭对()01x ∈,恒成立,求k 的最大值. 【答案】(Ⅰ)20x y -=,(Ⅱ)证明见解析,(Ⅲ)k 的最大值为2.试题解析:(Ⅰ)212()ln,(1,1),(),(0)2,(0)011x f x x f x f f x x+''=∈-===--,曲线()y f x =在点()()00f ,处的切线方程为20x y -=;(Ⅱ)当()01x ∈,时,()323x f x x ⎛⎫>+ ⎪⎝⎭,即不等式3()2()03x f x x -+>,对(0,1)x ∀∈成立,设331()ln 2()ln(1)ln(1)2()133x x x F x x x x x x +=-+=+---+-,则422()1x F x x'=-,当()01x ∈,时,()0F x '>,故()F x 在(0,1)上为增函数,则()(0)0F x F >=,因此对(0,1)x ∀∈,3()2()3x f x x >+成立;(Ⅲ)使()33x f x k x ⎛⎫>+ ⎪⎝⎭成立,()01x ∈,,等价于31()ln ()013x x F x k x x +=-+>-,()01x ∈,; 422222()(1)11kx k F x k x x x +-'=-+=--,当[0,2]k ∈时,()0F x '≥,函数在(0,1)上位增函数,()(0)0F x F >=,符合题意;当2k >时,令402()0,(0,1)k F x x k -'==∈,()(0)F x F <,显然不成立,综上所述可知:k 的最大值为2.考点:1.导数的几何意义;2.利用导数研究函数的单调性,证明不等式;3.含参问题讨论.2.(15年理科)设函数2()f x x ax b =-+.(1)讨论函数(sin )22f x ππ在(-,)的单调性并判断有无极值,有极值时求出极值;(2)记20000(),(sin )(sin )f x x a x b f x f x =-+-求函数在22ππ(-,)上的最大值D ; (3)在(2)中,取2000,D 14a ab z b ===-≤求满足时的最大值。
【答案】(Ⅰ)极小值为24a b -;(Ⅱ)00||||D a a b b =-+-;(Ⅲ)1.试题解析:(Ⅰ)2(sin )sin sin sin (sin )f x x a x b x x a b =-+=-+,22x ππ-<<.[(sin )]'(2sin )cos f x x a x =-,22x ππ-<<.考点:1.函数的单调性、极值与最值;2.绝对值不等式的应用.3.(15年理科)已知函数f()ln(1)x x ,(),(k),g x kx R(Ⅰ)证明:当0xx x 时,f();(Ⅱ)证明:当1k 时,存在00x ,使得对0(0),x x 任意,恒有f()()x g x ;(Ⅲ)确定k 的所以可能取值,使得存在0t,对任意的(0),x ,t 恒有2|f()()|x g x x .【答案】(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)=1k . 【解析】试题分析:(Ⅰ)构造函数()f()ln(1),(0,),F x x x x x x 只需求值域的右端点并和0比较即可;(Ⅱ)构造函数G()f()()ln(1),(0,),x x g x x kx x 即()0G x >,求导得1()1+G x k x(1k)1+kx x,利用导数研究函数()G x 的形状和最值,证明当1k 时,存在00x ,使得()0G x >即可;(Ⅲ)由(Ⅰ)知,当1k 时,对于(0,),x +()f()g x x x ,故()f()g x x ,则不等式2|f()()|x g x x 变形为2k ln(1)x x x ,构造函数2M()k ln(1),[0)x x x x x ,+,只需说明()0M x <,易发现函数()M x 在22(k 2)8(k 1)0)k x (,递增,而(0)0M =,故不存在;当1k 时,由(Ⅱ)知,存在00x ,使得对任意的任意的0(0),x x ,恒有f()()x g x ,此时不等式变形为2ln(1)k x xx ,构造2N()ln(1)k ,[0)x x x x x ,+,易发现函数()N x 在2(+2(k +2)8(1k)0)k x )(,递增,而(0)0N =,不满足题意;当=1k 时,代入证明即可.试题解析:解法一:(1)令()f()ln(1),(0,),F x x x x x x 则有1()11+1+x F x x x当(0,),x()0F x ,所以()F x 在(0,)上单调递减;故当0x 时,()(0)0,F x F 即当0x 时,x x f().(2)令G()f()()ln(1),(0,),x x g x x kx x 则有1(1k)()1+1+kx G x k x x当0kG ()0x ,所以G()x 在[0,)上单调递增,G()(0)0x G故对任意正实数0x 均满足题意. 当01k 时,令()0,x G 得11=10k x k k.取01=1x k,对任意0(0,),x x 恒有G ()0x ,所以G()x 在0[0,x )上单调递增,G()(0)0x G ,即f()()x g x .综上,当1k 时,总存在00x ,使得对任意的0(0),x x ,恒有f()()x g x .(3)当1k 时,由(1)知,对于(0,),x +()f()g x x x ,故()f()g x x , |f()()|()()k ln(1)x g x g x f x x x ,令2M()k ln(1),[0)x x x x x ,+,则有21-2+(k-2)1M ()k2=,11x x k x x x x故当22(k 2)8(k 1)0)k x (,时,M ()0x ,M()x 在22(k 2)8(k 1)[0)k ,上单调递增,故M()M(0)0x ,即2|f()()|x g x x ,所以满足题意的t 不存在.当1k 时,由(2)知存在00x ,使得对任意的任意的0(0),x x ,恒有f()()x g x .此时|f()()|f()()ln(1)k x g x x g x x x ,令2N()ln(1)k ,[0)x x x x x ,+,则有2'1-2-(k+2)1()2=,11x x k N x k x x x故当2(+2(k +2)8(1k)0)k x )(,时,N ()0x ,M()x 在2(2)(k 2)8(1k)[0)k ,上单调递增,故N()(0)0x N ,即2f()()x g x x ,记0x 与2(2)(k 2)8(1k)k 中较小的为1x ,则当21(0)|f()()|xx x g x x ,时,恒有,故满足题意的t 不存在.当=1k ,由(1)知,(0,),x当+|f()()|()()ln(1)x g x g x f x x x ,令2H()ln(1),[0)x x x x x ,+,则有21-2H ()12=,11x xx x x x当0x 时,H ()0x ,所以H()x 在[0+,)上单调递减,故H()(0)0x H , 故当0x 时,恒有2|f()()|x g x x ,此时,任意实数t 满足题意.综上,=1k .解法二:(1)(2)同解法一. (3)当1k 时,由(1)知,对于(0,),x +()f()g x x x ,, 故|f()()|()()k ln(1)k (k 1)x g x g x f x x x x x x ,令2(k 1),01xx x k 解得,从而得到当1k 时,(0,1)x k 对于恒有2|f()()|x g x x ,所以满足题意的t 不存在.当1k 时,取11k+1=12k k k ,从而由(2)知存在00x ,使得0(0),x x 任意,恒有1f()()x k x kxg x .此时11|f()()|f()()(k)2kx g x x g x k xx , 令21k 1k ,022x x x解得,此时2f()()x g x x , 记0x 与1-k 2中较小的为1x ,则当21(0)|f()()|x x x g x x ,时,恒有,故满足题意的t 不存在. 当=1k ,由(1)知,(0,),x当+|f()()|()()ln(1)x g x g x f x x x ,令2M()ln(1),[0)x x x x x =-+-∈∞,+,则有212M ()12,11x x x x x x--'=--=++ 当0x 时,M ()0x ,所以M()x 在[0+∞,)上单调递减,故M()M(0)0x , 故当0x 时,恒有2|f()()|x g x x ,此时,任意实数t 满足题意综上,=1k .考点:导数的综合应用.4.(15年新课标2理科)设函数2()mx f x e x mx =+-。
(1)证明:()f x 在(,0)-∞单调递减,在(0,)+∞单调递增;(2)若对于任意12,[1,1]x x ∈-,都有12|()()|1f x f x e -≤-,求m 的取值围。
考点:导数的应用.。