电力电子与现代控制(电机的控制理论和控制系统)第二部分

合集下载

《现代控制理论基础》第2版 现代控制理论基础_上海交通大学_施颂椒等_PPT_绪论

《现代控制理论基础》第2版 现代控制理论基础_上海交通大学_施颂椒等_PPT_绪论
第一章 线性系统的数学描述 第二章 线性系统的响应 第三章 系统的稳定性 第四章 系统的能控性和能观性 第五章 最小实现 第六章 状态反响和状态观测器
(含最优控制)
学科分支:如线性系统理论,最优控制,最优估计, 系统辨识,自适应控制,鲁棒控制等
本课程是以线性系统理论为根底,以自动控制系统 为研究对象。是现代控制理论的根底。
课程取名为“现代控制理论根底〞
一、现代控制理论根底研究对象和内容 1、研究对象 现代控制理论根底以线性控制系统为对象, 主要研究其动态属性
绪论
现代控制理论源于上世纪60年代,以Pontriagin的极大 值原理、Bellman动态规划和Kalman滤波技术为形成 标志 研究对象:多变量系统 研究方法:状态空间方法 最大特点:建立在线性空间理论的根底上
在时域中研究系统 可以定量地进行系统的分析和设计 深刻地揭示了线性系统的许多根本特点 和性质
x(t)A(t)x(t)B(t)u(t) y(t)C(t)x(t)D(t)u(t)
建模方法 数学推导方法:根据系统的物理机理,应用物理
学的定律,用数学推导求取状态 空间描述 求最小实现方法: 从系统的传递函数(阵)求取状态空 间描述
⑵ 系统分析 定量分析 用解析法求解系统的运动方程 定性分析 定性地确定系统的根本性质,以及 它们和系统结构参数之间的关系, 包括:系统的稳定性
系统的能控性和能观性--现代控制理论 最根本的概念
⑶ 系统设计与综合
系统设计:在系统分析的根底上,寻求改善系统 动态性能的方法。 系统综合:对给定设计要求(目标),求取一个适宜 的控制律(主要是反响方式和控制算法),满足 的目标。 (注:设计与综合有不同的定义)
主要方法: 状态反响和状态观测器方法特殊控制律:解耦和无静差跟踪控制

《现代电机控制技术》课件

《现代电机控制技术》课件

03 现代电机控制技术实现
数字信号处理器(DSP)在电机控制中的应用
数字信号处理器(DSP)是一种专用的微处理器,特别适合于进行高速数字信号处 理计算。
在电机控制中,DSP可以用于实时计算复杂的控制算法,实现精确的速度和位置控 制。
DSP通过接收编码器的反馈信号和输入的参考信号,计算出电机的控制量,并输出 到驱动器来控制电机的运行。
数字化与智能化
高效与节能
随着数字化和智能化技术的不断发展,电 机控制技术将更加智能化和自适应性。
未来电机控制技术将更加注重高效和节能 ,以适应绿色环保的需求。
网络化与远程控制
多学科交叉融合
网络化技术的发展将使得电机控制更加便 捷和远程化,提高设备的可维护性和安全 性。
电机控制技术将与多个学科交叉融合,如 人工智能、机器视觉和物联网等,以实现 更广泛的应用和创新。
02 电机类型和控制原理
直流电机及其控制原理
01
02
03
直流电机
利用直流电能转换为机械 能的电动机,具有较好的 调速性能和启动转矩。
控制原理
通过改变电机的输入电压 或电流,实现对电机转速 和转矩的控制。
调速方法
改变电枢电压、改变励磁 电流、串电机
利用交流电能转换为机械 能的电动机,具有结构简 单、价格便宜、维护方便 等优点。
交通运输
电机控制技术在交通领域有广泛应用 ,如电动汽车、轨道交通和航空电子 等。
能源转换与利用
电机控制技术有助于提高能源转换效 率和利用率,如风力发电、太阳能逆 变器和智能电网等。
智能家居与楼宇自动化
电机控制技术为智能家居和楼宇自动 化提供了技术支持,如智能家电、自 动门和安防系统等。
电机控制技术的未来趋势

《现代控制系统》

《现代控制系统》

《现代控制系统》《现代控制系统》是一本经典的自动控制理论教材,被广泛应用于控制工程专业的教学和研究领域。

本书系统地介绍了现代控制理论的基本概念、原理与方法,涵盖了自动控制系统的各个方面,具有很高的学术价值和应用价值。

《现代控制系统》一书共分为七个部分。

第一部分主要介绍了自动控制系统的基本概念和分类,包括控制系统的组成、控制系统的分析与设计方法等。

同时,还介绍了自动控制系统的数学模型,并详细讨论了系统的稳定性和可控性、可观性等重要性能指标。

第二部分介绍了时域分析方法,包括脉冲传递函数法、单位脉冲响应法和步跃响应法等。

这些方法可以用于系统的时域特性分析和设计,使控制系统具有良好的动态性能。

第三部分是频域分析方法,主要介绍了系统的频率响应和频域特性。

通过频率响应分析,可以得到系统的幅频特性和相频特性,并进一步研究系统的稳定性和性能。

第四部分是根轨迹法,这是一种常用的图解法,用于系统的稳定性分析和设计。

通过根轨迹图,可以直观地看出系统的稳定、振荡和失稳情况,并对系统进行合适的校正。

第五部分介绍了状态空间方法,这是现代控制理论的重要分支。

状态空间方法通过描述系统的状态方程和输出方程,研究系统的稳定性和性能,并提出了最优控制的概念和方法。

第六部分是线性二次型控制方法,这是一种针对线性系统设计控制器的重要方法。

线性二次型控制通过优化线性二次型指标函数,使系统达到最佳性能。

第七部分介绍了自适应控制和数字控制。

自适应控制是一种能够根据系统变化自动调整控制参数的方法,具有较好的鲁棒性和适应性。

数字控制是控制系统中的一种新兴技术,通过数字化处理和数字信号处理的方法,实现对系统的精确控制。

总之,《现代控制系统》这本书全面而系统地介绍了现代控制理论的基本概念、原理与方法,为读者提供了深入学习和研究自动控制系统的基础。

这本书不仅适合控制工程专业的学生和教师作为教材使用,也适合控制工程领域的研究人员和工程师作为参考书使用,是一本不可多得的优秀教材。

电机与电力电子掌握电动机的控制与驱动技术

电机与电力电子掌握电动机的控制与驱动技术

电机与电力电子掌握电动机的控制与驱动技术电机是现代工业与生活中不可或缺的重要设备,而电力电子作为电机的控制与驱动核心技术,对电机的性能表现和应用提出了更高的要求。

本文将介绍电机的控制与驱动技术,并探讨它们在各个领域的应用。

1. 电机的基本原理电机是将电能转化为机械能的设备。

电机的基本原理是利用电流通过导线产生的磁场与永磁体或电磁体之间相互作用来产生力矩。

根据电机的不同工作原理,可以将其分为直流电机和交流电机。

2. 电机控制技术电机的控制技术是指通过改变电流或电压来控制电机的运行状态。

常见的电机控制技术包括调速、转向、定位等。

其中,电机的调速控制技术是电机控制中最常用的技术之一。

2.1 直流电机控制技术直流电机采用的控制技术主要包括电阻切换控制、PWM控制和矢量控制三种。

2.1.1 电阻切换控制电阻切换控制是通过改变电阻来改变电机的转速。

这种控制技术简单、成本低,但效果较差,不适用于对电机性能要求较高的应用场合。

2.1.2 PWM控制PWM控制是通过改变脉宽来改变电机的转速。

脉宽越大,电机的转速越快。

这种控制技术简单、效果较好,被广泛应用于各种直流电机控制系统中。

2.1.3 矢量控制矢量控制是将直流电机模型转换为交流电机模型进行控制,通过控制电流和电压的相位和幅值来实现电机的精确控制。

矢量控制技术具有高效性能和较高的响应速度,适用于对电机精确度要求较高的应用场合。

2.2 交流电机控制技术交流电机的控制技术主要包括感应电机矢量控制、同步电机矢量控制和直接转矩控制三种。

2.2.1 感应电机矢量控制感应电机矢量控制是通过控制电流和电压的相位和幅值来实现对感应电机的精确控制。

这种控制技术具有较高的效率和较好的响应性能,被广泛应用于传动系统、工业控制等领域。

2.2.2 同步电机矢量控制同步电机矢量控制是通过控制电流和电压的相位和幅值来实现对同步电机的精确控制。

同步电机矢量控制技术具有较高的效率和较好的动态性能,适用于对电机稳定性要求较高的应用场合。

现代控制理论在电机中的应用

现代控制理论在电机中的应用

现代控制理论与电机控制刘北070301071电气工程及其自动化0703班现代控制理论在电机控制中的具体应用:自70年代异步电动机矢量变换控制方法提出,至今已获得了迅猛的发展。

这种理论的主要思想是将异步电动机模拟成直流机,通过坐标变换的方法,分别控制励磁电流分量与转矩电流分量,从而获得与直流电动机一样良好的动态调速特性。

这种控制方法现已较成熟,已经产品化,且产品质量较稳定。

因为这种方法采用了坐标变换,所以对控制器的运算速度、处理能力等性能要求较高。

近年来,围绕着矢量变换控制的缺陷,如系统结构复杂、非线性和电机参数变化影响系统性能等等问题,国内、外学者进行了大量的研究。

伴随着推进矢量控制、直接转矩控制和无传感器控制技术进一步向前发展的是人工智能控制,这是电机现代控制技术的前沿性课题,已取得阶段性的研究成果,并正在逐步实用化。

矢量控制和直接转矩控制技术的一个新的发展方向是直接驱动技术,这种零方式消除了传统机械传动链带来的一系列不良影响,极大地提高了系统的快速响应能力和运动精度。

但是,这种机械上的简化,导致了电机控制上的难度。

为此,需要电机控制技术的进一步提高和创新。

这正是电机现代控制技术有待深入研究和具有广阔开发前景的新领域。

电机的现代控制技术与先进制造装备息息相关,已在为先进制造技术的重要研究领域之一,国内很多学者和科技人员正在从事这方面的研究和开发。

一、三相感应电动机的矢量控制1、 定、转子磁动势矢量三相感应电动机是机电能量转换装置,这种的物理基础是电磁间的相互作用或者磁场能量的变化。

因此,磁场是机电能量转换的媒介,是非常重要的物理量。

为此,对各种电动机都要了解磁场在电动机空间内的分布情况。

感应电动机内磁场是由定、转子三相绕组的磁动势产生的,首先要确定电动机内磁动势的分布情况。

对定子三相绕组而言,当通以三相电流A i 、B i 、C i 时,分别产生沿着各自绕组轴线脉动的空间磁动势波,取其基波并记为A f 、B f 、C f ,显然它们都是空间矢量。

《电力传动控制系统》课程教学大纲

《电力传动控制系统》课程教学大纲

《电力传动控制系统》教学大纲一、课程地位与课程目标(一)课程地位随着电子、信息等高新技术的发展与进步,传统机电技术获得了改造、创新的可能和手段,电气工程及其自动化专业的学生除了需深刻理解电器、机械的原理和系统外,更需要具备运用电子技术((电力电子技术、微电子技术)、现代控制理论/技术实现传统机电系统高新技术改造的能力,为从事与电气工程专业有关的工作和科学研究打下一定的基础。

《电力传动控制系统》是电气工程及其自动化专业和自动化专业的核心课程,既有完整的理论体系,又有很强的实践性,是一门把理论基础和工具应用到工程实践中去的典范课程。

(二)课程目标1. 能够应用自动控制理论解决运动控制系统的设计问题(1.4)。

2. 能够应用自动控制理论分析运动控制系统的复杂工程问题(2.2)。

3. 具有电力拖动控制系统的工程开发和实验的基本能力(3.3)。

4. 能够基于自动控制理论对运动控制系统设计实验、仿真、分析与解释数据(4.3)。

5. 能够针对运动控制系统进行仿真与辅助设计(5.2)。

二、课程目标达成的途径与方法采用课堂教学的方法。

主要讲解转速开环控制的直流调速系统、转速闭环控制的直流调速系统、转速、电流双闭环控制的直流调速系统、直流调速系统的数字控制、基于稳态模型的异步电动机调速系统、基于动态模型的异步电动机调速系统、绕线转子异步电机双馈调速系统、同步电动机变压变频调速系统的概念、实现方法及具体的应用。

通过实例的讲解,使同学们更好地熟悉或掌握运动控制系统设计的方法和步骤,提高学生对电力传动系统的学习兴趣、培养学生应用理论基础和工具解决实际问题的能力。

课堂教学尽量引入互动环节,使同学们能更好地融入课堂教学,提高教学效果。

实验环节安排在专门的实验课程“电气控制专业实验”。

三、课程目标与相关毕业要求的对应关系2.毕业要求须根据课程所在专业培养方案进行描述。

四、课程主要内容与基本要求五、课程学时安排七、推荐教材与主要参考书(一)推荐教材1.《电力拖动自动控制系统-运动控制系统》(第5版).阮毅.机械工业出版社.2016年.(普通高等教育“十一五”国家级规划教材普通高等教育电气工程与自动化类“十三五”规划教材).(二)主要参考书:1. 《电力拖动自动控制系统》.李华德等.机械工业出版社.2009年2月.2. 《电力电子技术》(第五版).王兆安.机械工业出版社.2009年5月.3. 《电气传动实验指导书》. 中国计量大学.。

电机控制技术-课件

电机控制技术-课件

1.2 电力传动系统运动方程
1.2.1 运动方程 一. 单轴电力拖动系统的运动方程
研究运动方程,以电动机的轴为研究对象,电动机 运行时的轴受力如图示。
电力拖动系统正方向的规定:先规定转速n的正方 向,然后规定电磁转矩的正方向与n的正方向相同, 规定负载转矩的正方向与n的正方向相反。
生产机械转矩分为:摩擦阻力产生的和重力 作用产生的。
(3)恒功率负载:负载转矩与转速成反比。 (4)粘滞摩擦负载:负载转矩与转速成正比。
1.4 电力传动系统的机械特性
第 电动机机械特性:电动机的转速与转矩的关系。
一 电动机四象限运行状态:正向电动状态、反向电
章 动状态,正向制动状态、反向制动状态。
电动机固有机械特性: 电动机人为机械特性:
第II象限 第I象限 正向制动 正向电动
变压器
变电站
楼宇
照明 B
高压输电线
制冷 小型发电机 变压器
M
电力系统简单结构图
H/C 加 热
工厂
1.1 电力传动系统的发展
第 电力传动系统:以电动机为动力源,驱动各种设 一 备及电器的系统,以 完成一定的生产任务。 章 目前,电能的三分之二用于电力传动系统。
电力传动系统的基本结构:


电源
指令 控制设备
电动机 传动机构 生产机械
1.1 电力传动系统的发展
第 电力传动系统分类: 一 (1)按控制类型:调速系统、位置随动系统。调 章 速系统又分为直流调速和交流调速。
(2)按电动机类型:直流传动系统、交流传动 系统。
概 (3)按机组形式:单台传动系统、多机传动系 述 统。
(4)按运动方式:单向运转不可逆、双向运转 可逆传动系统 (5)按用途形式:主传动系统、辅助传动系统

电力电子电路及系统-硕士

电力电子电路及系统-硕士

特点:
• • • • • 功率范围大 应用范围广 涉及到的学科多 理论与实践密切相联 发展迅速(几乎每一项与电气工 程相关的技术进步都会推进电力 电子技术的发展)。
构成基本元素与系统构成
• 构成基本元素:二极管,IGBT等, 电容,电感,电阻,控制电器,导 线。 • 系统构成:主电路及其吸收电路, 控制电路,抗电磁干扰电路。
干扰问题(主要干扰源)
• • • • • • 直流电机换向 接触器与继电器开合 雷电浪涌 静电 白炽灯 大功率用电装置启动
机车辅助电源
• 直交型辅助电源 • 交直交型辅助电源
焊接电源
图2 第三种单端逆变电路
图5焊接时输出电流波形
使用Tek公司A622电流探头,比 例为10mv/A
洁净能源或可再生能源利用:
• • • • 风能发电 太阳能发电 潮汐发电 生物能发电
通讯电源
特殊电源:
• • • • • • 电子模拟负载 交流牵引电机的实验系统 电力测功机 水电解电源 蓄电池充放电机 补偿式交流稳压电源
电子模拟功率负载
交流牵引电机的实验系统
• • • • • 能四象限运行 零转速时保持恒转矩 计算机集中控制及良好的人机接口 各种参变量的实时采集测量 试验分析
系统结构
上位机
DSP
DSP
DSP
DSP
调 压 器
D
F
升压 电路
能馈 逆变
电 网
系统A
系统B
系统C
系统D
主电路结构
调 电 网 压 器 D F 升 压 电 路 能 馈 逆 变
• 第六章
谐振变换器与软开关技术(4学时) 谐振逆变器 零电压开关 零电流开关 零电压(零电流)多象限逆变器 谐振链逆变器 • 第七章 电力电子技术在FACTS技术中的应 用(4学时) 功率因数补偿 谐波补偿 动态电压补偿器 潮流控制器
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁链方程:
d Ld id Lad i fd Lad iDd
q fd
Lqiq LaqiDq Lad id L fd i fd
Lad iDd
Dd
Lad id
Lad i fd
LDd iDd
Dq Laqiq LDqiDq
iq*1
iq1
id*1 0
id1
i*fd
u *fd
i fd
uq*1
电 dq 流坐

控系 下
制的 两 相
方交 流
法控 制
iq*1 iq1
id1 iq1 r
id*1 id1
id1 iq1 r
u~q*1
uq*1
uq*1
r1iq1 r (Ldid1 m)
u~d*1
ud*1
ud*1
r1id1 r Lqiq1
ud (r1 Ld s)id r Lqiq
uq
(r1
Lq s)iq
s
us
从右上图可见,在定子磁场定向控制方式下, isr
定子电压矢量和定子电流矢量在空间上保持同相
jr s
id
q Lqiq
位,即功率因数恒定为1,这样将可大大提高系统 设备的利用率。另外,在定子磁场定向控制方式
is
iq
d
Ldid d轴 r
M i afd0 fd
下,如不考虑d轴和q轴电感的差别,即认为:
r
A轴
磁电流值。
定子磁场控制下同步电机矢量图(忽略凸极效应)
气隙磁场定向矢量控制理论
q轴
s
Lslis
m
同步电机的气隙磁链定义为:
m dm j qm
us
dm Lad id M afd 0i fd qm Laqiq
is r
由于:Ld Lsl Lad , Lq Lsl Laq
永磁同步电动机dq轴电流的确定
永磁同步电动机的电压方程为: 永磁同步电动机的电压限制为:
ud r1id p d q p uq r1iq p q d p
磁链方程为:
d Ldid m q Lqiq
(ud2 uq2 ) r2[(Lqiq ) (Lqiq )2 (Ldid
仿真事例1
仿真事例2
永磁同步电机的控制
➢ 磁场定向控制理论及系统 1、基本理论及转矩的控制方法 2、电流控制方法 3、弱磁控制方法 4、控制系统
➢ 直接转矩控制理论及系统 1、基本理论及转矩和磁链的控制方法 2、磁链和转矩的计算 3、控制系统
磁场定向控制的基本理论和转矩控制方法
永磁同步电机的电压方程为:
可见,此时同步电机的电磁转矩为定子磁链
s
Tem
3 2
np ( diq
qid
)
3 2
n
p
s
is
和电流 is 这两个在空间上正交的量的乘积,只要 在电控机制的中电保磁持转矩s与的其幅定值子为电恒流定is值的,幅那值么成此正时比同,步
这就是同步电机定子磁场定向控制的基本原理。
q轴
变励磁定子磁场定向矢量控制理论
子电流 is 的幅值成正这比就,是同步电机气隙磁场定向
控制的基本原理。
变励磁气隙磁场定向矢量控制理论
q轴
s
Lslis
m
从右上图可见,在气隙磁场定向控制方 式下,定子电压矢量和定子电流矢量在空间 上相位差很小(由定子漏抗造成的),功率 因数接近为1,这样将可大大提高系统设备的 利用率。另外,与定子磁场定向控制类似, 在气隙磁场定向控制方式下,如认为
1
d轴
1
d Mafd0i fd
A轴
转子励磁磁场定向控制空间矢量图(忽略定子电阻压降)
同步电机转子励磁磁场定向控制系统
同步电机的电压方程为: n*
ud r1id p d q p
uuqfd
r1iq rfd
i fd
p q p fd
d
p
n
0 rDdiDd p Dd
0 rDqiDq p Dq
r
(Ld id
m)
永磁同步电动机励磁磁场定向控制系统
AC
n*
iq*1
T * iq*1 f (Te*m,n) em
iq1
u~q*1 r1iq1 r (Ldid1 m)
uq*1
ua*1
uq*1
dq/ abc
ub*1
SPWM
AC 变换器
n
i*
id*1 f (Te*m,n) d1
id1
u~d*1
r1id1 r Lqiq1
M aDq0iDqid )]
3 2 np[M afd 0i fd iq M aDd 0iDd iq ]
(id 0时)
注:id≠0时,可以利用磁阻转矩。
同步电机转子励磁磁场定向控制系统的仿真
仿真事例:
1、给定角频率为314rad/s,空载启动到稳态后突加200Nm负载转矩; 2、给定角频率为314rad/s,空载启动再将速度置为零。
A轴
气隙磁场控制下同步电机矢量图(考虑凸极效应)
q轴
us
is
m
Lad is
'
d轴
'
Mafd0ifd m cos'
1
A轴
气隙磁场控制下同步电机矢量图(忽略凸极效应)
转子励磁磁场定向矢量控制理论
同步电机的电磁转矩方程为:
Tem
3 2
n p M afd 0i fd iq
3 2
np (Ld
Lq )id iq
Tem
3 2
np ( diq qid
)
ud r1id r q
i
m
Ld id
d
Lqiq q d轴
3 2
n p [
miq
(Ld
Lq
)iq
]
机械方程为:Tem
Tl
J
dr dt
Bmr
a轴
由永磁同步电机的电磁转矩可见,保持id不变,控制iq就可以获得与此呈线性关系的电磁转矩, 这就是永磁同步电机的转子励磁磁场定向控制理论。一般情况下,永磁同步电机采用id=0的控 制方式,但在高速运行情况下,需要弱磁,id≠0。
电力电子与现代控制
Power Electronic and Modern Control
中国科学院研究生院
电励磁同步电机的控制
➢磁场定向控制 1、基本理论 2、控制系统
➢直接转矩控制 1、基本理论 2、控制系统
同步电机的磁场定向控制理论
对应右图,不考虑阻尼绕组时凸极同步电机的电压、 磁链和转矩方程分别为:
u u * d1
转换
* c1 SVPWM
ud*1
1
abc/ dq
iabc
转换
速度计算
r
1
PMSM
位置传感器
永磁同步电机id1和iq1的给定值由力矩Tem的给定值和电机转速n来决定,其原则有:
12、、TTeemm
/ /
(id21 iq21)最大(恒转矩运行);
(
2 d1
2 q1
)最大(弱磁运行);
3、 (id21 iq21) i1max ; (ud21 uq21) u1max。
Ld Lq
此时,同步电机气隙磁场定控制方式下的
矢量图见左下图所示。则有:
i fd
m M afd 0 cos '
可见随着负载增加,即内功率角的增 加,为了保持气隙磁链恒定,必须大幅度 的增大励磁电流值。
us
is r
jr s
is id
qm Laqiq
' iq
'
dm
Ladid d轴
r
M afd0i fd
is r
jr s
is iq
q Lqiq
d Mafd0ifd
d轴 r
uuqd
rid riq
p d p q
1 q 1 d
1Lqiq riq Lq piq
1M afd 0i fd
A轴
u
fd
rfd i fd
d M afd 0i fd 磁链方程: q Lqiq
fd L fd i fd
q轴
iDq uDq
b轴
ub ib
电压方程:uudq
rid riq
p d p q
r q r d
u fd rfd i fd p fd
磁链方程:
d q
Ld id Lqiq
M afd 0i fd
fd
3 2 M i afd 0 d
L fd i fd
电磁转矩方程:
iq
r
c轴
uc ic
SN
ia
ud r1id p d q p uq r1iq p q d p
磁链方程为:dq
Ld id Lqiq
m
则电压方程可为:
q轴
i r1
u
uq r1iq r d
u,
jr
'
d jq
ud (r1 Ld s)id r Lqiq
uq
(r1
Lq s)iq
r (Ldid
m)
电磁转矩为:
is r
定子电流矢量与磁链矢量垂直,此 时,就有下面关系式成立:
jr s
id
q Lqiq
d
q
id
s s
is
cos sin sin
is
iq
d
Ldid d轴 r
M i afd0 fd
A轴
iq is cos
定子磁场控制下同步电机矢量图(考虑凸极效应)
将上式带入同步电机电磁转矩方程, 得:
相关文档
最新文档