工程材料科学与设计 答案

合集下载

材料科学:材料科学与工程考试卷及答案(最新版).doc

材料科学:材料科学与工程考试卷及答案(最新版).doc

材料科学:材料科学与工程考试卷及答案(最新版) 考试时间:120分钟 考试总分:100分遵守考场纪律,维护知识尊严,杜绝违纪行为,确保考试结果公正。

1、多项选择题 各种纤维在拉伸断裂前不发生任何屈服,但在SEM 下观察到( )A 、Kevlar 纤维呈韧性断裂,有径缩及断面减小。

B 、碳纤维呈韧性断裂,有断面收缩。

C 、玻璃纤维呈韧性断裂,有断面收缩。

D 、碳纤维、玻璃纤维呈脆性断裂,无断面收缩。

本题答案: 2、填空题 退火有三种方法完全退火、( )退火和( )退火。

本题答案: 3、判断题 螺杆加料段第一个螺槽的容积与均化段最后一个螺槽容积之比称为压缩比。

本题答案: 4、多项选择题 MMC 制备工艺中,固态法与液态法相比( )A 、增强材料与基体浸润性要求可以降低。

B 、增强材料在基体中分布更均匀。

C 、增强材料仅局限于长纤维。

D 、增强材料/基体界面反应更剧烈(如果存在界面反应时)。

本题答案: 5、问答题姓名:________________ 班级:________________ 学号:________________--------------------密----------------------------------封 ----------------------------------------------线----------------------试写出少量MgO掺杂到Al2O3中和少量YF3掺杂到CaF2中的缺陷方程。

(a)判断方程的合理性。

(b)写出每一方程对应的固溶式。

本题答案:6、问答题复合材料的基体和增强体在材料中分别起什么作用?本题答案:7、名词解释界面能本题答案:8、问答题当锌向铜内扩散时,已知在x点处锌的含量为2.51017个锌原子/cm3,300℃时每分钟每mm2要扩散60个锌原子,求与x点相距2mm处锌原子的浓度。

(已知锌在铜内的扩散体系中D0=0.3410-14m2/s;Q=4.5kcal/mol)本题答案:9、填空题自游基链转移有多种方式,可向()、()、()、()或()转移。

材料科学:材料科学与工程考试题及答案(最新版)_2.doc

材料科学:材料科学与工程考试题及答案(最新版)_2.doc

材料科学:材料科学与工程考试题及答案(最新版) 考试时间:120分钟 考试总分:100分遵守考场纪律,维护知识尊严,杜绝违纪行为,确保考试结果公正。

1、判断题 MMC 具有比其基体金属或合金更高的比强度和比模量。

本题答案: 2、单项选择题 形成临界晶核时体积自由能的减少只能补偿表面能的( )。

A.1/3 B.2/3 C.3/4 D.1/2 本题答案: 3、填空题 在通常的加工条件下,聚合物形变主要由高弹形变和粘性形变所组成。

从形变性质来看包括( )和( )两种成分,只是由于加工条件不同而存在着两种成分的相对差异。

本题答案: 4、填空题 铁路旅客运输服务质量是指铁路旅客运输服务l 本题答案: 9、问答题 当锌向铜内扩散时,已知在x 点处锌的含量为2.51017个锌原子/cm3,300℃时每分钟每mm2要扩散60个锌原子,求与x 点相距2mm 处锌原子的浓度。

(已知锌在铜内的扩散体系中D0=0.3410-14m2/s ;Q=4.5kcal /mol ) 本题答案:姓名:________________ 班级:________________ 学号:________________--------------------密----------------------------------封 ----------------------------------------------线----------------------10、填空题材料力学性能的硬度表征:布氏硬度、()、维氏硬度等。

本题答案:11、单项选择题下列选项中,不是催化剂的原理的是()A.吸附表面催化B.生成中间化合物(中间体)C.传递电子D.加快反应速率本题答案:12、填空题塑料的品质指标有()、()和()。

本题答案:13、填空题聚合物液体在管和槽中的流动时,按照受力方式划分可以分为压力流动、收敛流动和拖拽流动按流动方向分布划分()、()和()。

《材料科学与工程基础》题集

《材料科学与工程基础》题集

《材料科学与工程基础》题集大题一:选择题1.下列哪一项是材料的基本属性?A. 密度B. 颜色C. 形状D. 体积2.材料的力学性能主要包括哪一项?A. 导电性B. 耐腐蚀性C. 强度D. 透明度3.下列哪一项不是金属材料的常见类型?A. 钢铁B. 铝合金C. 陶瓷D. 铜合金4.材料的硬度是指其抵抗什么的能力?A. 拉伸B. 压缩C. 弯曲D. 刻划5.下列哪一项是热塑性材料的特性?A. 在加热后不能变形B. 在加热后可以永久变形C. 在冷却后可以恢复原形D. 在任何温度下都不易变形6.材料的韧性是指其在受力时什么的能力?A. 易碎B. 易弯曲C. 吸收能量而不破裂D. 迅速恢复原形7.下列哪一项是陶瓷材料的主要成分?A. 金属B. 塑料C. 无机非金属D. 有机物8.复合材料是由哪两种或多种材料组合而成的?A. 同一种材料的不同形态B. 不同性质的材料C. 相同性质的材料D. 任意两种材料9.下列哪一项不是高分子材料的特性?A. 高强度B. 高韧性C. 低密度D. 低耐温性10.材料的疲劳是指其在什么条件下性能逐渐降低的现象?A. 持续受力B. 持续加热C. 持续冷却D. 持续暴露在潮湿环境中大题二:填空题1.材料的密度是指单位体积内材料的______。

2.材料的导电性是指材料传导______的能力。

3.金属材料的晶体结构常见的有______、体心立方和面心立方。

4.陶瓷材料因其______、高硬度和高耐温性而被广泛应用于高温和腐蚀环境。

5.复合材料的优点包括高强度、高刚性和良好的______。

6.高分子材料的分子结构特点是具有长链状的______结构。

7.材料的疲劳强度是指材料在______作用下抵抗破坏的能力。

大题三:判断题1.材料的力学性能只包括强度和硬度。

()2.金属材料都是良好的导体。

()3.陶瓷材料的主要成分是金属。

()4.复合材料的性能总是优于其单一组分的性能。

()5.高分子材料的耐温性一般较低。

《材料科学与工程基础》-第二章-课后习题答案.pdf

《材料科学与工程基础》-第二章-课后习题答案.pdf

材料科学与工程基础第二章课后习题答案1. 介绍材料科学和工程学的基本概念和发展历程材料科学和工程学是研究材料的组成、结构、性质以及应用的学科。

它涉及了从原子、分子层面到宏观的材料特性的研究和工程应用。

材料科学和工程学的发展历程可以追溯到古代人类使用石器和金属制造工具的时代。

随着时间的推移,人类不断发现并创造出新的材料,例如陶瓷、玻璃和合金等。

工业革命的到来加速了材料科学和工程学的发展,使得煤炭、钢铁和电子材料等新材料得以广泛应用。

2. 分析材料的结构和性能之间的关系材料的结构和性能之间存在着密切的关系。

材料的结构包括原子、晶体和晶界等方面的组成和排列方式。

而材料的性能则反映了材料在特定条件下的机械、热学、电学、光学等方面的性质。

材料的结构直接决定了材料的性能。

例如,金属的结晶结构决定了金属的塑性和导电性。

硬度和导电性等机械和电学性能取决于晶格中原子的排列方式和原子之间的相互作用。

因此,通过对材料的结构进行了解,可以预测和改变材料的性能。

3. 论述材料的性能与应用之间的关系材料的性能决定了材料的应用范围。

不同的材料具有不同的性能特点,在特定的应用领域中会有优势和局限。

例如,金属材料具有良好的导电性和导热性,适用于制造电子器件和散热器件。

聚合物材料具有良好的绝缘性和韧性,适用于制造电线和塑料制品等。

陶瓷材料具有良好的耐高温性和耐腐蚀性,适用于制造航空发动机和化学设备等。

因此,在材料科学和工程学中,对材料性能的研究是为了确定材料的应用和优化材料的性能。

4. 解释与定义材料的特性及其测量方法材料的特性是指材料所具有的特定性质或行为。

它包括了物理、化学、力学、热学、电学等方面的特性。

测量材料的特性需要使用特定的实验方法和设备。

例如,材料的硬度通常可以通过洛氏硬度试验仪或布氏硬度试验仪进行测量。

材料的强度可以通过拉伸试验或压缩试验来测量。

材料的导电性可以通过四探针法或霍尔效应进行测量。

通过测量材料的特性,可以对材料的性能进行评估和比较,并为材料的应用提供参考。

《材料科学与工程基础》-第二章-课后习题答案.pdf

《材料科学与工程基础》-第二章-课后习题答案.pdf

材料科学与工程基础 - 第二章 - 课后习题答案2.1 选择题1.D2.B3.C4.A5.D2.2 填空题1.结构、性质、性能、制备、应用2.金属、陶瓷、聚合物3.晶体4.金属材料、陶瓷材料、聚合物材料、复合材料5.原子、分子2.3 简答题1.材料科学与工程的基础概念和特点有:–材料科学:研究材料的结构、性质、制备和性能等方面的科学。

–材料工程:研究通过控制材料的结构和制备方法,得到具有特定性能和使用寿命的材料并应用于工程中。

材料科学与工程的特点包括:–综合性:材料科学与工程是一门综合性的学科,涉及物理、化学、力学、热学等各个学科。

–实用性:材料科学与工程以实际应用为目的,研究如何通过控制材料的结构和性能,满足工程和产品的需求。

–发展性:随着科技的进步和社会的发展,材料科学与工程也在不断发展,涌现出各种新材料和新技术。

2.不同材料的结构特点及其对材料性能的影响–金属材料:金属材料具有密排列的晶体结构,其晶粒间有较好的连续性,导致金属材料具有良好的导电性、导热性和机械性能。

–陶瓷材料:陶瓷材料以离子键或共价键为主要结合方式,具有非常硬、脆和耐高温的特点,但导电性差。

–聚合物材料:聚合物材料由长链状分子构成,具有良好的绝缘性、柔韧性和可塑性,但强度和硬度较低。

–复合材料:复合材料由不同的两种或更多种材料组成,通过它们的相互作用产生优异的整体性能。

同时,复合材料的结构也决定其性能。

3.材料的制备方法包括:–金属材料的制备方法有铸造、锻造、挤压、焊接等。

–陶瓷材料的制备方法有干法制备和湿法制备等。

–聚合物材料的制备方法有合成聚合法、溶液聚合法、熔融聚合法等。

–复合材料的制备方法有增强相法、混合相法、层压法等。

4.材料性能的测试方法包括:–机械性能的测试方法有拉伸试验、压缩试验、弯曲试验等。

–热性能的测试方法有热膨胀试验、热导率测试等。

–电学性能的测试方法有导电性测试、介电常数测试等。

–光学性能的测试方法有透光率测试、折射率测试等。

材料科学与工程专业英语课后答案

材料科学与工程专业英语课后答案

1.“Materials science"involves investigating the relationships that exist between the structures and properties of materials. In contrast, "Materials engineering" involves, on the basis of these structur e-property correlations, designing or engineering the structure of a material to produce a predeter mined set of properties.“材料科学”涉及研究材料的结构和性能之间的关系。

相反,“材料工程”是指在这些结构和性能相关性的基础上,基于预期的性能来设计或生产有预定性能的材料。

2.Virtually all important Properties of solid materials may be grouped into six different categories: mechanical, electrical, thermal, magnetic, optical, and deteriorative实际上,固体材料的所有重要性质都可以分为六类:机械、电气、热、磁、光学和腐蚀性。

3.In addition to structure and properties, two other important components are involved in the scien ce and engineering of materials- namely“processing”and“performance”.除了结构和性能之外,材料科学和工程还涉及另外两个重要的组成部分,即“加工”和“性能”。

顾宜《材料科学与工程基础》课后题答案

顾宜《材料科学与工程基础》课后题答案

顾宜《材料科学与工程基础》课后题答案第一章:引言1.1 材料科学与工程基础的重要性材料科学与工程基础是现代工程领域不可或缺的一门基础课程。

它包括了材料科学与工程学科的基本原理和方法,为后续学习和研究提供了必要的基础知识。

材料是任何工程的基础,它在各个领域中都扮演着重要角色,如机械工程、电子工程、航空航天工程等。

因此,熟悉材料的结构、性质和应用对于工程师来说至关重要。

1.2 材料科学与工程基础的学习目标材料科学与工程基础的学习目标如下: - 理解材料的基本概念和分类方法; - 掌握材料制备、表征和性能分析的基本技术; - 理解不同材料的特性和应用; - 开发解决材料工程问题的能力。

第二章:晶体结构与晶体缺陷2.1 晶体的结构晶体是由原子、离子或分子按照一定的排列方式组成的长程有序固体结构。

晶体的结构可以通过晶体的晶胞来描述,晶胞是最小的重复单元。

2.2 晶体的缺陷晶体的缺陷指的是在晶体结构中存在的不完整或不规则的区域。

晶体的缺陷可以分为点缺陷、线缺陷和面缺陷三种类型。

点缺陷包括空位、插入原子和替代原子等。

线缺陷包括位错和脚位错。

面缺陷包括晶界和层错。

第三章:物理性能与力学性能3.1 物理性能物理性能是指材料的一些基本物理特性,如密度、热导率、电导率等。

物理性能的好坏对材料的应用和工程设计具有重要影响。

3.2 力学性能力学性能是指材料在力学作用下的表现。

常见的力学性能包括强度、硬度、韧性、可塑性等。

力学性能的好坏决定了材料在工程中的使用范围和耐久性。

第四章:金属材料4.1 金属的结构与特性金属是指电子云密度较大、以金属键连接的材料。

金属的结构特点是具有密堆结构和离域电子特性。

4.2 金属的物理性能与力学性能金属材料具有良好的导电性、导热性和延展性,对磨损和腐蚀有较好的抵抗能力。

金属材料的力学性能受材料的组织和处理方式的影响。

第五章:陶瓷材料与玻璃材料5.1 陶瓷材料的分类与特性陶瓷材料是以非金属元素为主要成分的材料,分为晶体陶瓷和非晶态陶瓷两大类。

材料工程基础答案

材料工程基础答案

材料工程基础1.材料科学与材料工程研究的对象有何异同?材料科学侧重于发现和揭示组成与结构、性能、使用效能,合成与加工等四要素之间的关系,提出新概念、新理论。

而材料工程指研究材料在制备过程中的工艺和工程技术问题,侧重于寻求新手段实现新材料的设计思想并使之投入使用,两者相辅相成。

2.材料的制备技术或方法主要有哪些?金属:铸造(砂型铸造、特种铸造、熔模铸造、金属型铸造、压力铸造、低压铸造、离心铸造、连续铸造、消失模铸造),塑性加工(锻造、板料冲压、轧制和挤压、拉拔),热处理,焊接(熔化焊、压力焊、钎焊)橡胶:塑炼、混炼、压延、压出、硫化五部分高分子:挤制成型、干压成型、热压铸成型、注浆成型、轧膜成型、等静压成型、热压成型和流延成型3.如何区分传统材料与先进材料?传统材料指已经成熟且已经在工业批量生产的材料,如水泥、钢铁,这些材料量大,产值高,涉及面广,是很多支柱产业的基础,先进材料是正在发展,具有优异性能和应用前景的一类材料。

二者没有明显界限,传统材料采用新技术,提高技术含量、性能,大幅度增加附加值成为先进材料;先进材料长期生产应用后成为传统材料,传统材料是发展先进材料和高技术基础,先进材料推动传统材料进一步发展。

.4.纳米材料与纳米技术的异同?它们对科技发展的作用?纳米材料指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料。

纳米技术:能操作细小到1-100nm物件的一类新发展的高技术。

作用:对于高端的技术,如在超导的应用方面,集成电路的发展方面纳米技术有重要作用。

5.简述芯片的主要制备工艺步骤?步骤如下:1、氧化;2、光刻;3、浸蚀;4、扩散;5、离子注入;6、互连;7、封装;8、装配。

6.简述熔体法生长单晶的特点以及主要方法?答:特点:液相是均匀的单相熔体,熔点以下不发生相变。

方法:提拉法,坩埚下降法,水平区熔法,浮区法,尖端形核法。

7.为什么纤维通常具备高强度、高模量且韧性好的特点?当纤维材料制成时,拉伸强度变大是因为物体愈小,表面和内部包含一个能导致其脆性断裂的危险裂纹的可能性越小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Problems - Chapter 5 1. FIND: Calculate the stress on a tensioned fiber.GIVEN: The fiber diameter is 25 micrometers. The elongational load is 25 g. ASSUMPTIONS: The engineering stress is requested.DATA: Acceleration due to gravity is 9.8 m/sec 2. A Newton is a kg-m/sec 2. A Pascal is a N/m 2. A MPa is 106 Pa.SOLUTION: Stress is force per unit area. The cross-sectional area is πR 2 = 1963.5 square micrometers. The force is 25 g (kg/1000g)(9.8 m/sec 2) = 0.245 N. Thus, the stress isσ = F/A =02451960100125262..N umum m MPa⨯☞☟☝✋ ☺=COMMENTS: You must learn to do these sorts of problems, including the conversions. 2. GIVEN: FCC Cu with a o = 0.362nmREQUIRED: A) Lowest energy Burgers vector, B) Length in terms of radius of Cu atom, C) Family of planesSOLUTION: We note that the Burgers vector is the shortest vector that connects crystallographically equivalent positions. A diagram of the structure is shown below:FCC structure with (111) shownWe note that atoms lying along face diagonals touch and are crystallographically equivalent. Therefore, the shortest vector connecting equivalent positions is ½ face diagonal. For example,one such vector is10]1[ 2a o as shown in (111).A. The length of this vector is0.256nm = 20.362= 2a= 4a+ 4a o 2o 2oB. By inspection, the size of the vector is 2 Cu atom radii.C. Slip occurs in the most densely packed plane which is of the type {111}. These are thesmoothest planes and contain the smallest Burgers vector. This means that the dislocations move easily and the energy is low.3. GIVEN:∣b∣ = 0.288nm in AgREQUIRED: Find lattice parameterSOLUTION: Recall the Ag is FCC. For FCC structures the Burgers vector is ½ a facediagonal as shown. We see that4. A. FCC structureThe (111) plane is shown in a unit cell with all atoms shown. Atoms touch along face diagonals. The (111) plane is the most closely packed, and the vectors shown connect equivalent atomic position. Thus 10]1[ 21= b etc. Then in general >110< 2a= bB. For NaC1We see that the shortest vector connecting equivalent positions is 10]1[ 2aas shown. Thisdirection lies in both the {100} and {110} planes and both are possible slip planes. However {110} are the planes most frequently observed as the slip planes. This is because repulsive interionic forces are minimized on these planes during dislocation motion. Thus we expect 1/2<110> Burgers vectors and {110} slip planes.5.GIVEN:Mo crystal0.272nm = ba o = 0.314nmREQUIRED: Determine the crystal structure.If Mo were FCC, then 0.222nm = 20.314= b __but |b| = 0.272 ⇒ Mo is not FCC.Assuming Mo is BCC, then 0.272nm.= 0.314 X 23 = b __Thus the Burgers vector isconsistent with Mo being BCC.6.FIND: Is the fracture surface in ionic solids rough or smooth?SOLUTION: Cleavages surfaces of ionic materials are generally smooth. Once a crack is started, it easily propagates in a straight line in a specific crystallographic direction on a specificcrystallographic plane. Ceramic fracture surfaces are rough when failure proceeds through the noncrystalline boundaries between small crystals.7. GIVEN: BCC Cr with |b| = 0.25nmREQUIRED: Find lattice parameter aASSUME: >111< 2a= b for BCC structureSOLUTION:2a 3= 4a+ 4a+ 4a= b 222__from the formula for the magnitude of a vector:8. GIVEN: Normal stress of 123 MPa applied to BCC Fe in [110] directionREQUIRED: Resolved shear in [101] on (010)SOLUTION: Recall that the resolved shear stress is given by:τ = σ cos θ cos φ (1)where θ = angle between slip direction and tensile axis; φ = angle between normal to slip plane and tensile axisThus MPa 43.5 = 2121 123 = ⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛τ9. GIVEN: Stress in [123] direction of BCC crystalREQUIRED: Find the stress needed to promote slip if τcR = 800 psi. The slip plane is (11_0) and slip direction is [111]. SOLUTION: Recall τ = σ cos θ cos φ (1)θ = [123] [111][123] ⋅ [111] = ∣[123]∣ ∣[111]∣cos θφ = [123] [11_0][123] ⋅ [11_0] = ∣[123]∣ ∣[11_0]∣cos φ10.Burgers vectors lie in the closest packed directions since the distance between equivalentcrystallographic positions is shortest in the close-packed directions. This means that the energy associated with the dislocation will be minimum for such dislocations since the energy is proportional to the square of the Burgers vector.11. Close packed planes are slip planes since these are the smoothest planes (on an atomic level) and would then be expected to have the lowest critical resolved shear stress.12.GIVEN: Dislocation lies on (11_1) parallel to intersection of (11_1) and (111) with Burgers vector parallel to [1_1_0]. Structure is FCC.REQUIRED: A) Burgers vector of dislocation and, B) Character of dislocation.SOLUTION: A) Since the structure is FCC, the Burgers vector is parallel to <110> and has magnitude. 2a For a Burgers vector parallel to [1_1_0] the scalar multiplier must be a/2. Thus b _ = a/2 [1_1_0]. B) We must determine the line direction of the dislocation. From the diagramwe see that the BV and line direction are at 60o which means the dislocation is mixed.13. GIVEN: Dislocation reaction below:REQUIRED: Show it is vectorially correct and energetically proper. SOLUTION: [100] a =] 111[ 2a+[111] 2aThe sum of the x, y & z components on the LHS must be equal to the corresponding component on the right hand side.x component (LHS) = x component (RHS)y component (LHS) = y component (RHS)z component (LHS) = z component (RHS)Energy: The reaction is energetically favorable if | b 1 | 2 + | b 2 | 2 > | b 3| 3Thus the reaction is favorable since a > a 43+ a 4322214. GIVEN: Dislocation in FCCParallel to [1_01] i.e. t_ = [1_01]REQUIRED: Character and slip planeSOLUTION: Character is found by angle between b_ and t_. Note b_ t_∙ = -1 + 0 + 1 = 0. Thus b__t_. Since b__t_the dislocation is pure edge.To find the slip plane we note that the cross produce of t_ & b_gives a vector that is normal to the plane in which t_ & b_lie. This vector so formed has the same indices as the plane since we have a fundamentally cubic structure.We see from the diagram that these vectors lie on (010).Thus, we have the plane (01_0) which is the same as the (010) plane. This does not move by glide since planes of the kind {100} are not slip planes for the FCC structure.15.FCC metals are more ductile than BCC or HCP because: 1) there is no easy mechanism for nucleation of microcracks in FCC as there is for BCC and HCP; 2) the stresses for plastic deformation are lower in FCC due to the (generally) smoother planes. This means that the microcracks that form in BCC & HCP will have high stresses tending to make them propagate. 16.For a simple cubic system, the lowest energy Burgers vectors are of the type <001> since this is the shortest distance connecting equivalent atomic positions. This means that the energy is lowest since the strain energy is proportional to the square of the Burgers vector. 17.GIVEN:At. wt. 0 = 16At. wt. Mg = 24.32 Same structure as NaCl ρ = 3.65 g/cm 3REQUIRED: Find length of Burgers Vector in MgOSOLUTION: The structure of MgO is shown schematically below along with the shortestBurgers vector. To solve the problem we first note that we require the lattice parameter a o . We can take a sub-section of the unit cell (cross-hatched cube) whose edge is 2a o unitslong.We can calculate the total mass of this cube and the volume and calculate the density. Since the mass is known and the density is known, the volume may be calculated from which a o may beextracted.and ½ Mg ++ ions in our cube. Thus a10 x 3.35 x 8= 8/ a 10 x 2.02) + (1.33= 3.653o-233o-2318.GIVEN: Critical resolved shear stress (0.34MPa), slip system (111)[1_10], and tensile axis [101]REQUIRED: Applied stress at which crystal begins to deform and crystal structure. SOLUTION: (A)The situation is shown belowτcrss = σ cos θ ⋅ cos φθ = angle between tensile axis and slip directionθ = angle between tensile axis and normal to slip planeφ = [111] [101] θ = [101] [1_01][111] ⋅ [101] = ∣[111]∣ ∣[101]∣cos φ [101] ⋅ [110] = ∣[101]∣ ∣[110]∣cos θ(B): To have a {111}<110> slip system, the material must have an FCC structure.19. GIVEN:τcrss = 55.2 MPa, (111)[1_01] slip system, [112] tensile axisREQUIRED: Find the highest normal stress that can be applied before dislocation motion in the [10 1_] direction.SOLUTION: The situation is shown below. Essentially the problem reduces to finding the value of the tensile stress when the critical resolved shear is reached.τcrss = σ cosθ⋅ cosφθ = [112] [1_01] φ = [112] {111}B. Would have exactly the same stress for a BCC metal (φ & θ would be interchanged).20. GIVEN:σ at yield = 3.5 MPa; (111) [11_0] slip system [11_1] tensile axisREQUIRED: Compute τcrssSOLUTION:τcrss = σcosθcosφθ = [11_1] [11_0] φ = [11_1] [111]21. Item Edge ScrewLinear defect? Yes YesElastic Distortion? Yes YesGlide? Yes YesClimb? Yes NoCross-slip? No YesBurgers Vector (BV) ⊥ to line // to lineUnique slip plane? Yes NoOffset // to BV // to BVMotion // to BV ⊥ to BV22. GIVEN: BCC metal with τcrss = 7MPa [001] tensile axis.REQUIRED: (a) Slip system that will be activated and (b) normal stress for plasticdeformation.SOLUTION: Recall that for BCC metals the usual slip system is <111> {110}. Deformation occurs on the plane and direction for which cos θ⋅cos φ is a maximum since this will have the maximum resolved shear stress. The situation is shown below.(Note that the slip directions are shown shortened in this view)Possible slip systems are listed below:sketch (also [11_1] on (011)) (also [1_11] on (01_1)) (also [1_1_1] on (101)) similar to planes shown in sketch. Also [111] on (1_01)We see by inspection that the resolved shear due to a tensile force in [001] will all be the same. The resolved shear on all other {110}<111> systems is zero.B. To compute the normal stress at the onset of plastic deformation we will consider (011) [1_1_1]τcrss = σcos θcos φ = 7θ = [001] [1_1_1]; cos φ = [001] [011]Note if we considered (101) [1_1_1] we would haveand we would obtain exactly the same answer.23. GIVEN: Yielding occurs at normal stress of σ = 170 MPa in [100] direction. Dislocationmoves on (101) in [111_] direction.REQUIRED:τcrss and crystal structuresSOLUTION: Assume an edge dislocation. τcrss = σcos⋅cosφθ = [100] [111_] φ = [100] [101]The - sign means that the slip direction is opposite to the motion of the dislocation. Essentially, we have a negative edge dislocation on (101) as shown below:The edge dislocation moves in [111_] direction but the offset is in [1_1_1] direction.The slip plane and slip direction are representative of BCC structures.24. GIVEN: (1_10)[111] slip system. [123] tensile axisτcrss = 800 psi for BCC crystal τcrss = 80 psi for FCC crystal withσFCC = 457 psi [123] tensile axis and (111)[11_0] system.REQUIRED: Normal stress at yield for BCC metalSOLUTION: The simplest way to solve this problem is to note cos θ⋅cos φ is the same for the BCC and FCC crystal with the meaning of φ and θ interchanged. Let M = cos θ⋅cos φ. (1) (2)(3)25.Here crystallographically equivalent positions join ions at cube corners (b v = a o ), face diagonals )a 2 = b (o v , cube diagonals )a 3 = b (o vThe most densely packed plane is the (110) in which we haveThe shortest vector that will reproduce all elements of the structure is a o . Thus b = a<100> COMMENT: We note that this is not sufficient for general deformation (e.g. a tensile axis ofthe type <100> produces zero shear on the 1<100> Burgers vectors. We expect then a<110> Burgers vectors as well.26. GIVEN:σ = 1.7 MPa [100] tensile axis (111)[101] slip systemsREQUIRED:τcrss, and crystal structure. Also find flaw in problem statement.SOLUTION: Since the slip system is of the type {111}<110> the structure is FCC. Theproblem is misstated since the Burgers vector must lie on the slip plane and [101] does not lieon (111). The slip direction would more appropriately be [101_]. Thus the slip system is(111)[101_] as shown below.27.⊥ = edge dislocation x = start of Burgers circuitb = Burgers vector y = end of Burgers circuit28. FIND: Show energy/area = force/length, that is, surface energy is surface tension in liquids.DATA: The units of energy are J = W/s or N-m. The units of force are N.SOLUTION: Energy/area = J/m2 =N-m/m2 = N/m = force/length29. GIVEN: Two grain sizes, 10μm and 40μmREQUIRED: A) ASTM GS# for both processes, B) Grain boundary area.SOLUTION: Assume that the grains are in the form of cubes for ease of calculation. TheASTM GS# is defined through the equation: n = 2N-1 where n = # grains/in2 at 100X.N=ASTM GS#To solve the problem we first convert the grain size to in. where D = length of cube edge in μm.At 100X linear magnification, the sides of the smaller grains will be:The area of each grain at 100X will beSimilarly the area of the 40μm grains at 100X isFor the 10μm dia grain, the # of grains per in 2 (at box) is645.16 = 10x 1.5501= n3-100X10μgrains/in 2at 100X Similarly 40.31 = 10x 24.811= n 3-100X 40μgrains/in 2at 100X For the 10μm grain size:B. In computing the total g.s. area we will assume 1 in 3 of materials. Since there are 6 facescube and the area of each face is shared by 2 cubes, each cube has an area of 3x Area of face. G.B. Area =d / 3 = d 3 x d 123⎥⎦⎤⎢⎣⎡GB Area (10μ gs) = 3/3.937 x 10-4 = 7620in 2/in 3 GB Area (40μ gs) = 3/15.75 x 10-4 = 1905in 2/in 330.GIVEN:σys = 200MPa at GS#4 = 300MPa at GS#6REQUIRED: σys at GS#9SOLUTION: Recall σys = σo + kd -1/2(1)for low carbon steel.If d = grain size (assume cubes) load = grain diameter at 100X(2)(3)16.82 = d11/24For ASTM GS# 4:For ASTM GS#6:23.78 = d11/24(5) Substituting (4) and (5) into (1) we have200 - σo + k(16.82) (6) 300 = σo + k(23.78) (7)Subtracting (6) from (7):100 = k(23.78 - 16.82)∴k = 14.37Substituting this value of κ into (6) yields 200 = σo + 14.37 x 16.82σo = -41.70 (this is not physically realistic since σo relates to the lattice friction stress which should not be negative)For ASTM GS#9Thus σys = σo + 14.37 x 40 = 41.70 + 574 = 533MPa31.GIVEN: ∣b ∣ = 0.25μm for BCC metal tilt boundary has angular difference of 2.5o REQUIRED: Dislocation density in tilt boundary wall SOLUTION: The physical situation is shown below:If b = Burgers vector, D = spacing between edge dislocation# of dislocations in boundary for a 1cm high boundary isD1(where D is in cm)32.33.FIND: Show D = b / θ.GIVEN: b is the magnitude of the Burger's vector; D is the spacing between dislocations, and θ is the tilt angle.SKETCH: See Fig. 5.3-4.SOLUTION: We can see the geometry more clearly using the following sketch:bFrom the Figure we can immediately write that tan/θ22=b D . Since the tan of a small angle is the angle itself:θ22=b D /, so that D = b / θ, as is written in the margin.34. FIND: How can you detect a cluster of voids or a cluster of precipitates in a material?SOLUTION: This can be a difficult challenge indeed. If the total void volume is large, then the density of the sample will be lower than that of dense material. The same is true for clusters ofprecipitate; however, usually the density difference between host and precipitate is not as greatas between host and air, so the technique does not work as well. Another possible technique is microscopy. Samples can be prepared for microscopy, perhaps by polishing and etching andthe defects observed using optical or electron microscopy. X-ray diffraction can also be used. With a random spacing of void or precipitate there is then an average spacing. SometimesBragg's law can be used to calculate the spacing if an intensity maximum is observed. Note that the angle of the maximum will be very small.COMMENTS: There are many other potential techniques that can potentially be used. Theyall rely on some property difference - magnetic, electrical, optical, or whatever.35. FIND: How can you ascertain whether a material contains both crystalline and noncrystallineregions?GIVEN: Recall that the density (and other properties) of crystalline material is greater than that of noncrystalline material of the same compositionSOLUTION: There are three methods in common usage to establish crystallinity polymers.These methods apply to all materials.1. Density. Measure the density of your sample and compare it to the density of noncrystallineand crystalline samples of the same composition.2. Differential Scanning Calorimetry. Heat your sample in a calorimeter. Samples that arecrystalline will absorb heat at the melting temperature and show a "melting endotherm". Somenoncrystalline samples (such as amorphous metals) will crystallize in the calorimeter and show a huge release of heat prior to melting. This is a "crystallization exotherm".3. X-ray diffraction. Crystalline materials show well-defined peaks.COMMENTS: Knowing whether a material is crystalline or noncrystalline is a commonchallenge to polymers scientists. We often need to quantify the fraction or percent crystallinity.Can you suggest a method for each of the 3 techniques outlined?36. FIND: State examples of materials' applications that require the material to behave in a purelyelastic manner.SOLUTION: There are many such possible examples. Since plastic deformation isnonrecoverable deformation, any application that requires repeated stressing and dimensional stability is a good example. Here are some examples:1. Springs in automobiles - leaf and coil springs2. A diving board3. Trusses in a bridge4. The walls in a building5. A bicycle frame6. Piano wire7. Airplane wings37. As the dislocation density ↑, there are more dislocation/dislocation interactions and the strengthgoes up. At the same time, the degree of “damage” also increases and the ductility decreases.38. If the point defect concentration ↑, the strength will go up as well. This is because the defectsmay migrate to edge dislocations where they cause jogs on the dislocations. A joggeddislocation is much harder to move and may itself require the generation of point defects tomove. In addition the point defects may collapse to form dislocation loops which also impede the motion of other dislocations making the materials stronger. If the defects are interstitials,they may migrate to areas around the dislocations in which the system energy is reduced. For the dislocation to move away from the interstitial an increase in the system energy is requiredwhich means the stress to move the dislocation must increase. If the point defect is asubstitutional atom, similar considerations apply. However, the magnitude of the energyreduction is less because of the less severe distortion. Thus the strength increase is not as high as for intersitital.39. As d↓σys↑ since this means the path over which a dislocation moves ↓. This means that thestress will have to increase to either nucleate or unlock dislocations in adjacent grains. Therelationship quantifying this behavior is the Hall-Petch equation: σys = σo + kd-1/240. The strength may increase as a result of:1. decreasing grain size - should not be too (see previous questions) temperature dependent.2. Adding impurities (e.g. C in Fe). The impurities “lock” the dislocation by associating withthe dislocation to lower the system energy. This will be very temperature dependent for dilute concentrations of impurities as the impurities will diffuse away at high temperatures.3. Adding precipitates - blocks the motion of dislocations through either having a differentcrystal structure or a large strain field. Since the precipitates are usually large compared to the atomistic dimension, strong temperature dependence is not expected.4. Cold work - increase quantity of dislocations.41. GIVEN: = 1012/cm 2 for low C steelREQUIRED: concentration of C atoms (at %) to lock all dislocationsSOLUTION: Recalling the At. weight of Fe is 55.85 and the density is about 7.8 gm/cm 3 we may write10 x 6.02 55.857.8 = N 23Fc(assume 1C atom for every Fe atom along dislocations)42. FIND: Why can you not bend the bar of tin?GIVEN: The bar has been well annealed, so the initial dislocation density is low. You are required to re-bend the bar after cold working.SOLUTION: The deformation has increased the dislocation density and the bar now requires much more stress, or force, to deform it. You are not necessarily a weakling, but you have been taken. Re-anneal the bar and bend it back or use brute force.COMMENTS: It is often difficult to bend a metal back to its original shape and this is just one of many possible reasons that depend on the metal and its thermo-mechanical。

相关文档
最新文档