工程材料科学与设计(原书第2版)课后习题答案(4—8)
武汉理工大学材料科学基础(第2版)课后习题和答案

武汉理工大学材料科学基础(第2版)课后习题和答案第一章绪论1、仔细观察一下白炽灯泡,会发现有多少种不同的材料?每种材料需要何种热学、电学性质?2、为什么金属具有良好的导电性和导热性?3、为什么陶瓷、聚合物通常是绝缘体?4、铝原子的质量是多少?若铝的密度为2.7g/cm3,计算1mm3中有多少原子?5、为了防止碰撞造成纽折,汽车的挡板可有装甲制造,但实际应用中为何不如此设计?说出至少三种理由。
6、描述不同材料常用的加工方法。
7、叙述金属材料的类型及其分类依据。
8、试将下列材料按金属、陶瓷、聚合物或复合材料进行分类:黄铜钢筋混凝土橡胶氯化钠铅-锡焊料沥青环氧树脂镁合金碳化硅混凝土石墨玻璃钢9、Al2O3陶瓷既牢固又坚硬且耐磨,为什么不用Al2O3制造铁锤?第二章晶体结构1、解释下列概念晶系、晶胞、晶胞参数、空间点阵、米勒指数(晶面指数)、离子晶体的晶格能、原子半径与离子半径、配位数、离子极化、同质多晶与类质同晶、正尖晶石与反正尖晶石、反萤石结构、铁电效应、压电效应.2、(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求出该晶面的米勒指数;(2)一晶面在x、y、z 轴上的截距分别为a/3、b/2、c,求出该晶面的米勒指数。
3、在立方晶系的晶胞中画出下列米勒指数的晶面和晶向:(001)与[210],(111)与[112],(110)与[111],(322)与[236],(257)与[111],(123)与[121],(102),(112),(213),[110],[111],[120],[321]4、写出面心立方格子的单位平行六面体上所有结点的坐标。
5、已知Mg2+半径为0.072nm,O2-半径为0.140nm,计算MgO晶体结构的堆积系数与密度。
6、计算体心立方、面心立方、密排六方晶胞中的原子数、配位数、堆积系数。
7、从理论计算公式计算NaC1与MgO的晶格能。
MgO的熔点为2800℃,NaC1为80l℃, 请说明这种差别的原因。
工程材料第二版习题解答

第一章材料的结构与性能一、材料的性能(一)名词解释弹性变形:去掉外力后,变形立即恢复的变形为弹性变形。
塑性变形:当外力去除后不能够恢复的变形称为塑性变形。
冲击韧性:材料抵抗冲击载荷而不变形的能力称为冲击韧性。
疲劳强度:当应力低于一定值时,式样可经受无限次周期循环而不破坏,此应力值称为材料的疲劳强度。
σ为抗拉强度,材料发生应变后,应力应变曲线中应力达到的最大值。
bσ为屈服强度,材料发生塑性变形时的应力值。
sδ为塑性变形的伸长率,是材料塑性变形的指标之一。
HB:布氏硬度HRC:洛氏硬度,压头为120°金刚石圆锥体。
(二)填空题1 屈服强度、抗拉强度、疲劳强度2 伸长率和断面收缩率,断面收缩率3 摆锤式一次冲击试验和小能量多次冲击试验, U型缺口试样和V型缺口试样4 洛氏硬度,布氏硬度,维氏硬度。
5 铸造、锻造、切削加工、焊接、热处理性能。
(三)选择题1 b2 c3 b4 d f a (四)是非题 1 对 2 对 3错 4错(五)综合题 1 最大载荷为2805.021038.5πσ⨯=F b断面收缩率%10010810010⨯-=-=A A A ϕ 2 此题缺条件,应给出弹性模量为20500MP,并且在弹性变形范围内。
利用虎克定律 320℃时的电阻率为13.0130℃时的电阻率为18.01二、材料的结合方式 (一)名词解释结合键:组成物质的质点(原子、分子或离子)间的相互作用力称为结合键,主要有共价键、离子键、金属键、分子键。
晶体:是指原子在其内部沿三维空间呈周期性重复排列的一类物质。
非晶体:是指原子在其内部沿三维空间呈紊乱、无序排列的一类物质。
近程有序:在很小的范围内(一般为几个原子间距)存在着有序性。
(二)填空题1 四,共价键、离子键、金属键、分子键。
2 共价键和分子键,共价键,分子键。
3 强。
4 强。
(三)选择题1 a2 b3 a(四)是非题1 错2 错3 对4 错(五)综合题1晶体的主要特点:○1结构有序;○2物理性质表现为各向异性;○3有固定的熔点;○4在一定条件下有规则的几何外形。
工程材料第二版习题(1-2)章答案

塑性变形的的物理本质: 塑性变形的的物理本质: 滑移和孪生共同产生的塑性变形。 滑移和孪生共同产生的塑性变形。 P24 滑移是晶体的一部分相对另一部分做整 体刚性移动。孪生是在切应力的作用下, 体刚性移动。孪生是在切应力的作用下,晶 体的一部分相对另一部分沿着一定的晶面 孪生面) (孪生面)产生一定角度的切变
2-13、晶粒大小对金属性能有何影响?细化 13、晶粒大小对金属性能有何影响? 晶粒方法有哪些? 晶粒方法有哪些? p17 答: 在一般情况下,晶粒愈小,则金属的强度. 在一般情况下,晶粒愈小,则金属的强度.塑 性和韧性愈好. 性和韧性愈好. 细化晶粒是提高金属性能的重要途径之一, 细化晶粒是提高金属性能的重要途径之一, 晶粒愈细,强度和硬度愈高, 晶粒愈细,强度和硬度愈高,同时塑性韧性 愈好。 愈好。 细化晶粒方法有: 细化晶粒方法有: 增大过冷度; 2.变质处理 变质处理; 3.附加振 增大过冷度; 2.变质处理; 3.附加振 动或搅动等方法; 动或搅动等方法;
5、晶粒 p11 晶粒---每个小晶体具有不规则的颗粒状外形。 ---每个小晶体具有不规则的颗粒状外形 晶粒---每个小晶体具有不规则的颗粒状外形。 何谓空间点阵、晶格、晶体结构和晶胞? 2-2、何谓空间点阵、晶格、晶体结构和晶胞? 常用金属的晶体结构是什么?划出其晶胞, 常用金属的晶体结构是什么?划出其晶胞, 并分别计算起原子半径、配位数和致密度? 并分别计算起原子半径、配位数和致密度? 1、空间点阵 p9 空间点阵-----为了便于分析各种晶体中的原子 空间点阵---为了便于分析各种晶体中的原子 排列及几何形状, 排列及几何形状,通常把晶体中的原子假想为 几何结点,并用直线从其中心连接起来,使之 几何结点,并用直线从其中心连接起来, 构成一个空间格子。 构成一个空间格子。
工程材料与机械制造基础第二版课后练习题含答案

工程材料与机械制造基础第二版课后练习题含答案第一章金属材料选择题1.金属的基本结构单位是()。
A. 原子 B. 分子 C. 离子 D. 高分子2.金属的导电性好,是因为()。
A. 金属原子共用周围电子形成了一个电子云 B. 金属原子之间的原子序数很大 C. 金属原子之间的距离很远D. 金属原子的原子半径很大3.现代材料科学的研究表明,金属的显微结构主要包括()两种结构。
A. 晶体和非晶体B. 多晶和单晶C. 非晶体和薄层结构D. 单晶和二晶轴4.在常温下铁、钨属于()。
A. 非晶态材料 B. 晶态材料 C. 二相材料 D. 单晶体材料5.劈铅试验所测试的是材料()。
A. 塑性 B. 韧性 C. 硬度 D. 强度简答题1.什么是金属材料?金属材料具有哪些特点?2.金属的结晶状态有哪些?请简述它们的特点。
3.介绍一下金属断裂的过程。
4.解释一下热处理和强化的含义。
答案选择题:1. A 2. A 3. B 4. B 5. D简答题:1.金属材料是一类以金属元素为主要组成成分的工程材料,具有一系列特点,如:密度大,强度高,塑性良好,导电导热性好等。
同时,也具有一些不足之处,如:易受腐蚀,疲劳寿命相对较短等。
2.金属的结晶状态主要有三种,分别为单晶、多晶以及非晶态。
单晶指的是具有完整晶格结构的材料,其具有优异的物理性能,但制造成本较高。
而多晶则指晶粒较小、有多个晶粒构成的材料。
这类材料具有低成本、高韧性等特点。
非晶态指材料的内部没有固定的原子排列方式,呈无序状态。
这类材料具有高强度、低应力腐蚀等特点。
3.金属断裂的过程主要包括两个阶段,分别为起始裂纹形成阶段和扩展裂纹阶段。
在起始裂纹形成阶段,由于外力作用,材料内部会出现微小的损伤,如缺陷、气孔等,这些损伤会在外力作用下产生应力集中。
当应力集中超过材料强度极限时,就会出现一条裂纹。
在扩展裂纹阶段,裂纹会不断扩大,细微损伤逐渐聚集,最终导致材料破裂。
(完整版)工程材料课后习题参考答案

工程材料第一章金属的晶体结构与结晶1.解释下列名词点缺陷:原子排列不规则的区域在空间三个方向尺寸都很小,主要指空位间隙原子、置换原子等。
线缺陷:原子排列的不规则区域在空间一个方向上的尺寸很大,而在其余两个方向上的尺寸很小。
如位错。
面缺陷:原子排列不规则的区域在空间两个方向上的尺寸很大,而另一方向上的尺寸很小。
如晶界和亚晶界。
亚晶粒:在多晶体的每一个晶粒内,晶格位向也并非完全一致,而是存在着许多尺寸很小、位向差很小的小晶块,它们相互镶嵌而成晶粒,称亚晶粒。
亚晶界:两相邻亚晶粒间的边界称为亚晶界。
刃型位错:位错可认为是晶格中一部分晶体相对于另一部分晶体的局部滑移而造成。
滑移部分与未滑移部分的交界线即为位错线。
如果相对滑移的结果上半部分多出一半原子面,多余半原子面的边缘好像插入晶体中的一把刀的刃口,故称“刃型位错”。
单晶体:如果一块晶体,其内部的晶格位向完全一致,则称这块晶体为单晶体。
多晶体:由多种晶粒组成的晶体结构称为“多晶体”。
过冷度:实际结晶温度与理论结晶温度之差称为过冷度。
自发形核:在一定条件下,从液态金属中直接产生,原子呈规则排列的结晶核心。
非自发形核:是液态金属依附在一些未溶颗粒表面所形成的晶核。
变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒,这种处理方法即为变质处理。
变质剂:在浇注前所加入的难熔杂质称为变质剂。
2.常见的金属晶体结构有哪几种?α-Fe 、γ- Fe 、Al 、Cu 、Ni 、Pb 、Cr 、V 、Mg、Zn 各属何种晶体结构?答:常见金属晶体结构:体心立方晶格、面心立方晶格、密排六方晶格;α-Fe、Cr、V属于体心立方晶格;γ-Fe 、Al、Cu、Ni、Pb属于面心立方晶格;Mg、Zn属于密排六方晶格;3.配位数和致密度可以用来说明哪些问题?答:用来说明晶体中原子排列的紧密程度。
材料科学基础课后习题答案(部分)_第2版_西安交通大学_石德珂主编演示教学

CV
A exp(
EV kT
)
每个原子的质量是:
107 .9 g / mol 6.02 10 23 个 / mol
1.79 10 22 g / 个
1cm 3的原子数为:
9.58 g / cm 3 1.79 10 22 g / 个
5.35 10 22 个
2.N N0 6.021023 9.58106 5.341028 / m3
M
107.9
ne exp
N
kT
kT ln ne
N
1.381023 1073ln
3.6 1023 5.34 1028
1.761019
3.自己看
4.不用看
5. (1)1点为正刃位错,2点为右螺位错, 3 点为负刃位错,4点为左螺位错。
1 3 . V m 6 .0 2 ( 1 3 0 5 2 .3 4 5 3 ( 0 .2 2 7 2 8 .9 9 2 )) 3 4 1 0 2 1 2 .2 6 g /c m 3
14-17不用看 18自己看
第四章
1.8500C:C1Aexp(EV kT1)L200C:C2Aexp(EV kT2) C C1 2 expkEV(T12T 11)exp11..3581100 1283(21 9311123) exp274
7.在两根位错线上12,34为刃位错,其余 为螺位错。
(2)OS上的各段位错都可在该滑移面内 滑移,O’S’上的12,34位错不能运动, 其余各段都可在该滑移面内滑移。
8.(1)AB和CD位错线的形状都不变, 但AB的长度缩短b2,CD的长度增加b1
(2)AB位错上形成右螺型扭折,EF上 形成左螺型扭折。
工程材料徐自立主编课后习题答案

工程材料徐自立主编课后习题答案第一章材料的性能1-1什么是金属材料的力学性能?金属材料的力学性能包含哪些方面?所谓力学性能,是指材料抵抗外力作用所显示的性能。
力学性能包括强度刚度硬度塑性韧性和疲劳强度等1-2什么是强度?在拉伸试验中衡量金属强度的主要指标有哪些?他们在工程应用上有什么意义?强度是指材料在外力作用下,抵抗变形或断裂的能力。
在拉伸试验中衡量金属强度的主要指标有屈服强度和抗拉强度。
屈服强度的意义在于:在一般机械零件在发生少量塑性变形后,零件精度降低或其它零件的相对配合受到影响而造成失效,所以屈服强度就成为零件设计时的主要依据之一。
抗拉强度的意义在于:抗拉强度是表示材料抵抗大量均匀塑性变形的能力。
脆性材料在拉伸过程中,一般不产生颈缩现象,因此,抗拉强度就是材料的断裂强度,它表示材料抵抗断裂的能力。
抗拉强度是零件设计时的重要依据之一。
1-3什么是塑性?在拉伸试验中衡量塑性的指标有哪些?塑性是指材料在载荷作用下发生永久变形而又不破坏其完整性的能力。
拉伸试验中衡量塑性的指标有延伸率和断面收缩率。
1-4什么是硬度?指出测定金属硬度的常用方法和各自的优缺点。
硬度是指材料局部抵抗硬物压入其表面的能力。
生产中测定硬度最常用的方法有是压入法,应用较多的布氏硬度洛氏硬度和维氏硬度等试验方法。
布氏硬度试验法的优点:因压痕面积较大,能反映出较大范围内被测试材料的平均硬度,股实验结果较精确,特别适用于测定灰铸铁轴承合金等具有粗大经理或组成相得金属材料的硬度;压痕较大的另一个优点是试验数据稳定,重复性强。
其缺点是对不同材料需要换不同直径的压头和改变试验力,压痕直径的测量也比较麻烦;因压痕大,不宜测试成品和薄片金属的硬度。
洛氏硬度试验法的优点是:操作循序简便,硬度值可直接读出;压痕较小,可在工件上进行试验;采用不同标尺可测定各种软硬不同的金属厚薄不一的式样的硬度,因而广泛用于热处理质量检验。
其缺点是:因压痕较小,对组织比较粗大且不均匀的材料,测得的结果不够准确;此外,用不同标尺测得的硬度值彼此没有联系,不能直接进行比较。
材料科学与工程 课后习题

2:求[11-1]和[20-1]两晶向所决定的晶面。
3 在铅的(100)平面上,1mm2 有多少原子?已知铅为 fcc 面心立方结构,其原子半径 R=0.175×10-6mm。
4 在面心立方 fcc 晶胞中,﹤110﹥方向中位于(111)平面上的有哪些方向。
5 画出一个体心立方晶胞,在晶胞上画出: 1 发生滑移的一个晶面 2 在这个面上发生滑移的几个滑移方向。
21. 原子排列最密的晶面,其面间距______________(最大或最小)。 22. 公式 d=a/h2+k2+l2 只适用于计算______________________结构相平行晶面间的距离。
2. 判断 1. -Fe 致密度比 -Fe 小,所以 -Fe 溶解碳比 -Fe 多。( ) 2. 立方晶系中具有相同指数的晶面与晶向必定相互垂直。( ) 3. 原子半径大小与其在晶体中配位数无关。( ) 4. 密排六方结构不能称作一种空间点阵。( ) 5. 铁素体的点阵常数比 a-Fe 的点阵常数小。( ) 6. 金属键无方向性及饱和性。( ) 7. 在立方晶系中,[-111](1-1-1)。( ) 8. 在 fcc 和 bcc 结构中,一切相邻的平行晶面间的距离可用公式:d=a/√h2+k2+l2 ( ) 9. 结构原子体积是指结构晶胞中每个原子的体积。( ) 10. 立方晶系的(100),(010)和(001)面属于同一个晶带。( ) 11. 由 -Fe 转变为 -Fe 时,原子半径增大( ),发生体积膨胀( )。 12. Fcc 和 bcc 结构中的八面体间隙均为正八面体。( ) 13. 空间点阵中每个阵点周围具有等同的环境。( ) 14 一个面心立方结构相当于体心正方结构。( ) 15. 从实用观点来看体心立方金属中的空隙比面心立方金属中的更为重要。( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Solutions to Chapter 41. FIND: What material has a property that is hugely affected by a small impurity level?SOLUTION: Electrical conductivity spans a wide range. Incorporation of a few parts per million impurities can change electrical conductivity orders of magnitude. Small cracks in brittle materials decrease their tensile strength by orders of magnitude. Small additions of impurity can change the color of gems.COMMENTS: These are but a few examples.2. COMPUTE: The temperature at which the vacancy concentration is onehalf that of 25o C.GIVEN: C 2 = C C 25v C 35vo oEQUATION:⎪⎪⎭⎫⎝⎛RT Q - = C fv v expwhere C v = vacancy concentrationQ fv = activation energy for vacancy information R = gas constant 8.314 J/mole-KT = absolute temperatureIn the present problem C)25(C = C C);35(C = C o v 2v o v 1vand T1 = 35 + 273 = 308K T2 = 25 + 273 = 298Kalso C v(35o C) = 2C v(25o C)Thus, Solving for Q fv we get Q fv = 52893.5 J/mole.Using this value of Q fv , the C v (25o C) can be calculatedThe problem requires us to calculate the temperature at which thevacancy concentration is ½ C v (25o C).½ C v (25o C) = 2.675 x 10-10Thusfor solving T, we get: T = 288.63K or 15.63o C. 3.COMPUTE:C)80( C 3 = (T) C ov vGIVEN: C) 80( C 41 = C) 25( C o v ovEQUATION:⎪⎭⎫⎝⎛298.R Q - C) 25( C Sv o v expDividing (1) by (2) we get:Solving for Q, we get: Q = 22033.56 J/mole= exp(-7.511)= 5.46 x 10-4The problem requires computing a temperature at which C v = 3C v (80o C).3C v (80o C) = 3 x 5.46 x 10-4= 1.63 x 10-3⎪⎭⎫⎝⎛T x 8.3122033.56- = 10 x 1.633-ex psolving for T, we get: T = 413.05K or 140.05o C 4. 5.FIND: Are Al and Zn completely soluble in solid solution?If Al-Zn system obeys all the Hume-Rothery rules. Then it is expected to show complete solubility.(i)The atomic radii of Al and Zn are 0.143nm and 0.133 nmrespectively. The difference in their radii is 7.5% which is less than 15%.(ii) The electronegativities of Al and Zn are 1.61 an 1.65 respectivelywhich are also very similar.(iii) The most common valence of Al is +3 and +2 for Zn.(iv) Al has an FCC structure where Zn has a HCP structure.It appears that Al-Zn system obeys 3 out of 4 Hume-Rothery rules. In this case they are not expected to be completely soluble.6. SHOW: The extent of solid solution formation in the following systemsusing Hume-Rothery Rules.(a) Al in NiSize: r(Ni) = 0.125nm; r(Al) = 0.143nm difference = 14.4%Electronegativity: Al = 1.61; Ni = 1.91Most Common Valence: Al3+; Ni2+Crystal Structure: Al: FCC; Ni:FCCThe crystal structure of Al and Ni are the same and the most commonvalencies are also comparable. However, the size difference is close to 15% and the difference is electronegativities is rather significant.Based on this, it appears that Ni and Al would not form a solid solution over the entire compositional range.(b) Ti in NiSize: r(Ti) = 0.147 nm, r(Ni) = 0.125nm difference = 17.6%Electronegativity: Ti: 1.54; Ni: 1.91Valence: Ti4+; Ni2+Crystal Structure: Ti:HCP; Ni FCCTi in Ni would not exhibit extensive solid solubility(c) Zn in FeSize r(Zn) = 0.133nm; r(Fe) - 0.124nm difference = 7.25%Electronegativity: Zn = 1.65; Fe = 1.83Most Common Valence: Zn2+; Fe2+Crystal Structure: An: HCP; Fe: BCCSince electronegativities and crystal structures are very different, Zn - Fe will not exhibit extensive solid solubility.(d) Si in AlSize r(Si) = 0.117 nm; r(Al) = 0.143nm; difference = 22.2%Electronegativity: (Si) = 1.90; Al = 1.61Valence: Si4+; A;3+Crystal Structure: Si: Diamond Cubic; Al: FCCSince the size difference is greater than 15%, and the crystalstructures are different, Si-Al would not exhibit extensive solid solubility.(e) Li in AlSize r(li): 0.152, r(Al): 0.143; difference - 6.29%Electronegativity: Li: 0.98; Al: 1.61Most Common Valence: Li1+; Al3+Crystal Structure: Li:BCC; Al: FCCSince electronegativity and crystal structures are very different, Li-Al will not exhibit extensive solid solubility.(f) Cu in AuSize r(Cu) = 0.125nm; r(au) = 0.144nm; difference = 12.5% Electronegativity: Cu = 1.90; Au = 1.93Most Common Valence: Cu+; Au+Crystal Structure: Cu:FCC; Au:FCCCu-Au will exhibit extensive solid solubility.(g) Mn in FeSize r(Mn) = 0.112, r(Fe) = 0.124 difference = 10.71%Electronegativity: Mn 1.55; Fe 1.83Most Common Valence: Mn2+; Fe2+Crystal Structure: Mn:BCC; Fe BCCThe difference in electronegativity is high but Mn-Fe does obey the other 3 Hume-Rothery rules. Therefore, it will form solid solutions but not over the entire compositional range.(h) Cr in FeSize r(Cr) = 0.125nm, Fe = 0.144nm difference = 12.5%Electronegativity: Cr = 1.66; Fe = 1.83Most Common Valence: Cr3+; Fe2+Crystal Structure: Cr:BCC; Fe:BCCCr in Fe will exhibit extensive solid solubility but not over the entire compositional range since it obeys only 3 of 4 Hume-Rothery rules.(i) Ni in FeSize r(Ni) = 0.125nm, r(Fe) = 0.124nm difference = 0.8%Electronegativity: Ni: 1.91; Fe 1.83Most Common Valence: Ni3+; Fe3+Crystal Structure: Ni:FCC; Fe: BCCNi and Fe obeys 3 of the 4 Hume-Rothery rules therefore, extensive solid solution will be exhibited but not over the entire compositional range.7. (a) When one attempts to add a small amount of Ni to Cu, Ni is thesolute and Cu is the solvent.(b) Based on the relative sizes of Ni and Cu, radius of Ni = 0.128nm,radius of Cu = 0.125nm, these two are expected to form substitutionalsolid solutions.(c) Ni and Cu will be completely soluble in each other because theyobey all four Hume-Rothery rules.8. FIND: Predict how Cu dissolves in Al.DATA: Cu Alatomic radius (A) 1.28 1.43electronegativity 1.90 1.61valence 1+,2+ 3+crystal structure FCC FCCSOLUTION: All of Hume-Rothery's rules must be followed for asubstitutional solution. In this case, the valences do not match. Cuwill not go into substitutional positions in Al to a large extent.COMMENTS: This principle is often used to precipitation harden Al using Cu.9. What type of solid solution is expected to form when C is added to Fe?The radius of carbon atom is 0.077nm and that of an Fe atom is 0.124nm.The size difference between these two is ~61% which is much grater than ~15%. Thus, these two are not expected to form substitutional solid solution.If we compare the size ratio of C to Fe atoms with the size oftetrahedral and octahedral interstitial sites in BCC iron, we find thatC does not easily fit into either type of interstitial position. C,however, forms an interstitial solid solution with Fe but the solubility is limited.10. FIND: Calculate the activation for vacancy formation in Fe.GIVEN: The vacancy concentration at 727 C = 1000K is 0.00022.SOLUTION: We use equation 4.2-2 to solve this problem:C v = exp (-Q fv/RT)Solving for Q fv:Q fv = -RT ln C v = -(8.31 J/mole-K)(1000K) ln 0.00022 = 7.0 x 104 J/mole11. SHOW: A Schottky and Frenkel defect in MgF2 structuresA 2-D representation of the MgF2 structure containing a Schottky defectand a Frenkel defect is shown below.12. Explain why the following statement is incorrect: In ionic solids thenumber of cation vacancies is equal to the number of anion vacancies.In ionic crystals, even in the presence of vacancies, the chargeneutrality must be maintained. Therefore, single vacancies do not occur in ionic crystals since removal of a single ion would lead to chargeimbalance. Instead the vacancies occur in a manner such that the anion: cation vacancy ratio render the solid electrically neutral. This,however, does not mean that the anion vacancies are equal to cationvacancies. For example, a Schottky defect in MgCl2 or MgF2 involves two Cl - or F- cation vacancies for every Mg2+ anionvacancy to maintain electrical neutrality.The number of cation vacancies equals the number of anion vacancies only for the limiting case where the chemical formula of the compound is MX.13. Calculate the number of defects created when 2 moles of NiO are added to98 moles of SiO2. Also, determine the type of defect created.GIVEN: Neglect interstial vacanciesWe have 2 moles of NiO and 98 moles of SiO2. Since NiO is a 1:1compound there are 2 moles of Ni2+ ions and 2 moles of O2- ions present.SiO2 on the other hand is a 1:2 compound; therefore, there are 98 moles of Si4+ and 196 moles of O2-. The total number of each type of ion is N Ni = 2 molesN Si = 98 molesN O2 = 196 molesThe total number of moles of ions in the system isN T = N Ni + N Si + N O = 2 + 98 + 196 = 196 molesEach substitution of an Ni2+ for Si4+ results in a loss of 2 positivecharges. If no interstitials are created, this loss of positive charge is balanced by the creation of anion vacancies. Charge neutralityrequires one oxygen vacancy created for every Ni2+ ion. Therefore, thenumber of oxygen vacancies isN Ov = N Ni = 2 molesThere are 2 moles of oxygen ion vacancies created with the addition of 2 moles of NiO to 98 moles of SiO2.14. Calculate the number of defects created when 1 mole of MgO is added to99 moles of Al2O3.MgO is a 1:1 compound, therefore there is 1 mole of Mg2+ ions and 1 mole of O2- ions in the system.From Al2O3, there are 198 moles of Al3+ ions and 297 moles of O2- ions inthe system.Each substitution of an Mg2+ ion for Al3+ ion results in a loss of onepositive charge. This loss of positive charge is balanced by oxygenvacancy. Charge neutrality requires one oxygen vacancy to be createdfor every two Mg2+ ion3. Therefore the number of oxygen ion vacanciescreated is0.5 moles of oxygen ion vacancies are created by the addition of 1 moleof MgO to 99 moles of Al2O3.15. COMPUTE: Relative concentration of cation vacancies, anion vacanciesand cation interstitials.GIVEN:Q Cv = 20kJ/moleQ Av = 40kJ/moleQ CI = 30kJ/moleASSUMPTION: assume room temperatureT = 298KConcentration of cation vacancies, C Cv is given bySimilarly for anion vacanciesand for cation interstitials16. (a) Describe a Schottky defect in U2(b) Would you expect to find more cation or anion Frenkel defects inthis compound? Why?UO2 has a fluorite structure with U4+ ions occupying FCC lattice sitesand O2- occupying tetrahedral interstitial sites.(a) A Schottky defect in UO2 will involve one U4+ cation vacancy and 2O2- anion vacancies.(b) In general cation Frenkel defects are more common than anionFrenkel defects because cations are usually smaller. In this case, the radii of U4+ is 0.106nm and that of O2- is 0.132nm. The U4+ cation issmaller than the O2- anion. However, the size difference is not veryhigh. Still, cation Frenkel defects are expected to be more.17. Ionic compound Li2O(a) Describe a Schottky defect(b) Describe a Frenkel defectLi2O has an antifluorite structure. O2- ions occupy FCC lattice sitesand Li+ occupies tetrahedral interstitial sites.(a) A Schottky defect in Li2O involves 2 Li2+ cation vacancies and oneO2- anion vacancy(b) The ionic radii of Li+ and O2- are 0.078nm and 0.132nm respectively.This material is most likely to exhibit cation Frenkel defect since the size of the cation is much smaller than the anion.18. DETERMINE:(a) Interstitial Na+ ions(b) Interstitial O2- ions(c) Vacant Na+ sites(d) Vacant O2- sites in Na2OGIVEN: r(Na+) = 0.098nmr(O2-) = 0.132nmNa2O structure is similar to antifluorite structure. Na+ ions occupytetrahedral interstitial sites and O2- ions occupy FCC lattice sites.Since the ratio of Na:0 is 2:1 for this materials, a Schottky defectresults in 2 cation vacancies for every one anion vacancy.no. of vacant Na+ sites = 2 x no. of vacant O2- sitesA cation Frenkel defect is more likely to occur in this material(a) Interstitial Na+ ions = 1(b) Interstitial O2- ions = 0(c) Vacant Na+ sites = 2(d) Vacant O2- sites = 119. SOLVENT: AuSOLUTE: N, Ag or CsDETERMINE: (a) which element is most likely to form an interstitialsolid solution.(b) which element is most likely to form a substitutional solid solution.r(Au) = 0.144nmr(N) = 0.071nmr(Ag) = 0.144nmr(Cs) = 0.265nm(a) Based on atomic radii N is most likely to form are interstitialsolid solution with Au as solvent.(b) Ag is most likely to form a substitutional solid solution becausethe size difference between Au & N and Au & Cs is more than 15%.In addition, Au and Ag have similar valence, and crystal structure. The electronegativities are not quite similar, but since Ag-Au system obeys3 out of4 of the Hume-Rothery rules, Ag is the most likely element withwhich Au forms a substitutional solid solution.Section 4.4 Diffusion20. Under what condition c an Fick’s first law be used to solve diffusionproblems.The Fick’s first law can be used to solve diffusion problems provided the concentration gradient does not change with time.21. GIVEN: 1 wt% B is added to Fe.FIND: (a) if B would be present as an interstitial impurity orsubstitutional impurity, (b) fraction of sites occupied by B atoms, (c) if Fe containing B were to be gas carburized, would the process befaster or slower than for Fe which has no B? Explain.r(B) = 0.097nmr(Fe) = 0.124nm(a) Based on the atomic radii B would be present as an interstitial impurity(b) amount of B present = 1 wt%As a basis of calculation assume 100gms of material.Determine the no. of moles of Fe and B present.Total no. of moles of Fe and B = 1.773 + 0.092 = 1.865 moles. Fraction of sites occupied by B atoms = 1.8650.092 = mole fraction of B = 0.049Thus, B roughly occupies 5% of the sites.(c) If Fe containing B were to be gas carburized the process would beslower than for Fe which has no B simply because the presence of B atoms already in interstitial sites leave fewer sites for interstitial C todiffuse through.22. Determine which type of diffusion would be easier(a) C in HCP Ti(b) N in BCC Ti(c) Ti in BCC Tir(C) << r(Ti) so we can predict that diffusion occurs via aninterstitial mechanism r(N)<<r(Ti). In this case the diffusion alsooccurs via interstitial mechanism.Ti in BCC Ti is a case of self-diffusion and self-diffusion occurs via a vacancy mechanism. In general the activation energy for self diffusion is higher than interstitial mechanism because vacancy mechanism involves two steps. One is to create a vacancy and second is to promote avacancy/atom exchange. Thus Ti in BCC Ti will be the slowest.The activation energy for diffusion via interstitial mechanism is justthe energy necessary to move an atom into a neighboring interstitialsite. An open crystal structure, as opposed to a dense structure,should have a lower activation energy. Between BCC Ti and HCP Ti, BCCTi has a more open structure (lower APF) than HCP Ti.Thus, N in BCC Ti diffusion would be the easiest by virtue of its lowest activation energy.23. GIVEN: C1 = 0.19 at % at surfaceC2 = 0.18 at % at 1.2mm below the surfaceD = 4 x 10-14 m2/seca o = 4.049 A oCOMPUTE: Flux of copper atoms from surface to interior.We must first calculate the concentration gradient in terms of [copperatoms/cm3/cm]. It can be calculated as follows:The concentration gradient is then24. FIND: Predict whether diffusion is faster in vitreous or crystalline silica.GIVEN: Diffusion is the movement of atoms through the material one step at a time. The ease of movement is in part determined by theamount of space that surrounds each atom. In more open or less densestructures, atoms have an increased chance of being able to squeeze pasta neighbor into a new position.SOLUTION: Diffusion can be thought of as an Arrhenius process. Theactivation energy is that required to move an atom from one position to another, as shown in Fig. 2.3-2. In a crystal the activation energy will be greater than in a glass, since the density is higher and there is less free, or unoccupied, volume. Thus, we expect diffusion to be slower in crystal than in glasses at the same temperature.COMMENTS: When a noncrystalline material is raised to a temperature above the glass transition temperature, diffusion increases enormously. Inmetals this brings about rapid crystallization. In some ceramic and polymer systems, crystallization may be slow or absent.25. FIND: Do textile dyes more readily penetrate crystalline ornoncrystalline regions?GIVEN: Most textile fibers are semicrystalline, containing bothcrystalline and noncrystalline regions. The density of thenoncrystalline regions is less than that of the crystalline regions. Often dyeing is conducted at a temperature at which the noncrystalline regions are above their glass transition temperature.SOLUTION: Dye penetration through the glass will be greater than that through the crystal; however, the rate of dyeing is not sufficiently high to be commercially feasible. The temperature must be raised so that the noncrystalline polymer is in the rubber state. Diffusionbecomes rapid (radially inward) into the small fibers.COMMENTS: One of the key lessons that dye houses learn is that asufficient amount of noncrystalline poorly oriented polymer must bepresent in the fiber. The temperature of the dye bath needs to be above the glass transition temperature. Sometimes water and carriers are used to swell the noncrystalline regions to get yet a greater diffusion rate. The dyes may attach to the polymer using ionic bonds or covalent bonds. Unattached dye may wash out later.26. CALCULATE: The factor by which the diffusion coefficient of Al in Al 2O 3change when temperature is increased from 1800o C to 2000o CGIVEN: T 1 = 1800o C = 2073KT 2 = 2000o C = 2273KEQUATION: ⎪⎭⎫ ⎝⎛RT Q - D = D o ex pdividing (1) by (2), we getfrom table 4.4-1 of the text Q = 477kJ/mole and R = 8.31 J/mole-KThus, the diffusion coefficient of Al in Al2O3 changes by a factor of11.43 when the temperature is increased from 1800o C to 2000o C.27. FIND: Temperature at which a specimen of Fe must be carburized for twohours to achieve the same diffusion result as at 900o C for 15 hrs.GIVEN:T1 = 900o C = 1173K; Q = 84000 J/molet1 = 15 hrs; D o = 2.00 x 10-6 m2/sec.t2 = 2 hrs; R = 8.31 J/mole-KThe value of flux J is in units of cm 2 per sec. Flux per cm 2 J f = Jx time 3600 x 15 x dx dcD - = J 11f(1) We need the same result in 2 hours.,J = J 2f 1f dividing (1) by (2).28. GIVEN: D = 4 x 10-4 m2/s @ 20o CC1 = 2.2 x 10-3 k mol/m3wall thickness = 3mm, diameter = 50cmheight = 10cmCOMPUTE: Initial rate of mass loss through cylinder.Initially the concentration of He outside the cylinder, C2, is zero.First, we need to convert the concentration of He from kmol/m3 into (atoms/cm3)/cm.C1 = 2.2 x 10-3 kmol/m3 = 2.2mol/m3 = 2.2 x 10-6 mol/cm3 = 2.2 x 10-6 mole/cm3In terms of (atoms/cm3)/cmThe concentration gradient isThe flux of atoms per second per cm2is obtained by using Fick’s firstThe rate of mass loss is 1.766 x 1019 atoms/cm 2 sec. The total surface area of the cylinder is 2r(r+h) where r = radius and h = height.Total surface area = 2x 25 (25 + 10) = 5497.79 cm 2The rate of mass loss per secondNote:(i ) The steady state mass loss is calculated because the initial rate of mass loss (i.e., rate of mass loss at time t = 0) is 0. (ii ) It is assumed that the curvature of the cylinder is large enough to calculate J using the expression for plate geometry.29. Diffusion across a polymer membrane depends not only on size of thediffusing species but also the polarity of the diffusing species. A polar membrane may pass nonpolar species but serve as a barrier to polar species.Saran wrap contains highly polar atoms making it a polar membrane which serves as a barrier to water which is a polar compound. thus, there is no diffusion of water through the package unlike polyethylene, which is a nonpolar membrane and allows diffusion of water molecules which form ice.30. COMPUTE: Temperature required to yield a carbon content of 0.5% at adepth of 0.4mn below the surface of the rod in 48 hours.GIVEN: Carbon concentration the interior = 0.2w/oCarbon concentration in the furnace = 1.0w/o secsec secmoles 0.16 = .atoms 10 x 9.709 =cm 5497.79 x - cm atoms 10 x 1.766 =222219Base material: HCP TiEQUATION: In this problem c(x, t) = 0.5wt%c o = 0.2 wt%c s = 1.0 wt% From figure 4.4-11, when From Metals Handbook, Desk Edition, Pg. 28.66 for C diffusion in Ti, D o = 3.02 x 10-3 cm 2/sec, Q = 20,000 cal/mole = 83682 J/mole.31. The diffusion process through vacancy-interchange mechanism depends oncreation of vacancies and vacancy/atom interchange.At comparable homologous temperatures, for Ge and Cu the diffusioncoefficient for that material which has a higher vacancy concentration would be higher.A covalent bond as opposed to a metallic bond is stronger anddirectional. It is also difficult to create vacancies in a covalently bonded material due to its strong bonding. Therefore, the activation energy for vacancy creation in a covalently bonded material such as Ge is larger than Cu which has a weak metallic bond.The directional nature of a covalent bond places geometricalrestrictions on the vacancy atom interchange which again results in an increase in the activation energy.Therefore, at comparable temperatures the diffusion coefficient for Ge will be larger.32. FIND: Describe the energy and entropy in Fig. 4.4-5a, b, and c.SOLUTION: The order in part a is high. The materials is perfect. There is only one way to arrange the atoms in such a system. The entropy is low. In part b there is less order, more disorder, and the entropy hasincreased. Part c is nearly random. It has low order and high entropy. Energy contains a contribution from entropy: E = H -TS, where E is energy, T is absolute temperature, and S is entropy. Assuming all othercontributions to energy change negligibly (T and H), the energy of part c is the low, part a is high and part b is intermediate.COMMENTS: What is shown in going from a to c is the entropy of mixing.33. GIVEN: After 10 hrs at 550o C an oxide layer of thickness 8 m is formed.COMPUTE: Thickness after 100 hrs.Using the definition of effective penetration distance and equation 4.4-11 of text, with = 2 we have Dt 2 x eff ≈.In this case34. GIVEN: D w = 1.0 x 10-12 m 2/s (water)m25.3 = x 100hr 10hr = x m8t t = t D t D = x x100hr = t 10hr = t? = x m 8 = x 2eff 2eff2122111eff 1eff 212eff 1eff μμμD dc = 1.0 x 10 (dye carrier)D d = 1.0 x 10-14 m 2/s (dye)COMPUTE:(a) Times required for the water, dye and carrier to penetrate to the center of the fiber.(b) Same as (a) but fiber diameter doubles (c) If thermal diffusivity of PET is sec m 10 x 828-how long will it take for the heat to penetrate to the center of a 50m diameter fiber.(a) using equation 4.4-11 of text with = 2.for water,for dye carriersimilarly for dye t = 6.25secs. Dt 2 = x eff minutes2.60 or secs 156 = tt x 10 x 1.0 = 10 x 625.00t x 10 x 1.0 = 2)10 x (25.0m 10 x 25 = x/s m 10 x 1.0 = D 12-12-12-6-26-eff 2-12w ⎪⎪⎭⎫ ⎝⎛ minutes26.04 = secs 15.63 = tm 10 x 25 = x/s m 10 x 1.0 = D 6-eff 2-13dc(b) If the diameter fiber is doubled x eff = 50 x 10-6 mfor water,similarly for dye carrier t = 6250 secsand for dyet = 6.25 x 104 secs(c) Substituting D with D th , we can use the same equation to calculate the time required for heat to penetrate the center of fiber diameter = 50m.Note: The units of thermal diffusivity is m 2/sec and notK - m Watt as printed in text secs.625 = 10 x 1.0)10 x 50 ( = tt x D = 2)10 x (5010 x 50 = x/s m 19 x 1.0 = D 12-26-26-6-eff 2-12w35. FIND: How long will it take to case carburize a steel chain to a depth of 1/16 inch?GIVEN: It requires 4 hours to carburize a plate of similarcomposition to a depth of 1/16 inch.ASSUMPTIONS: All carburization conditions are the same in bothtreatments.SOLUTION: Equation 4.4-11 is used to solve the problem:x eff = γ(Dt)1/2.In this situation we set up a ratio for the plate (1) and the chain (2):x x Dt Dt 121122=γγ, where γ is 1 for the plate and 2 for the chain. Subscripts were omitted for the D's, since diffusion is the same in the two cases. Similarly, x 1 = x 2 = 1/16 inch. Reducing the equation gives:112411122212212=⇒= ☺= ☺=γγγγt t t t hrs hr 36. GIVEN: D m = 1 x 10-11m 2/s for moisture through wool or cottond w = 25md c = 2m secs0.00195 = t10 x 81 x 210 x 25 = _tt x 10 x 8 = 210 x 25t x D 2 = x 8-6-28-6-2th eff ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛using equation 4.4-11 of textwe need to find t required to reach equilibriumWoolCotton (b) for a tightly packed cubic baleof fiberwith side length of 1 meter.A cube has six sides and diffusion is expected to occur through all six sides. The time required to reach equilibrium Dx = t 2eff Here x eff = 0.5mNote: This solution overestimates time. A more precise solution can be obtained by setting up the problem in 3D and solving the Fick’s secondlaw for a cube geometry.37. EXPLAIN: Why fizz reduction is higher in plastic bottles compared toglass bottles and metal cans.Plastic bottles are soft and can be squeezed. Upon squeezing the airinside the bottle is driven out and to maintain the equilibrium pressure over the soda, CO2 comes out of the liquid.Such is not the case for bottles and metal cans. It is for this reason, the fizz reduction is high in plastic bottles.38. Compare the diffusion coefficient of methane in rubber at 239K to thediffusion of Cu in Ag at the same temperature.The diffusion coefficient of methane in rubber at 293K is 1.515 x 10-6m2/sec whereas that of Cu in Ag is 1.20 x 10-4m2/sec. The difference isexpected because the diffusion process in polymers such as rubberdepends on the size of the diffusing species such as CH4 in this example.Compared to the diffusion process of Cu in Ag, which occurs due tovacancy-interchange, the size of the methane molecule is large, also,the individual mers in the polymer chains are not free to moveindependently.39. FIND: Make a schematic plot of D vs. T in natural rubber.GIVEN: Natural rubber has a T g of about 0 C.SKETCH:TemperatureSOLUTION: The sketch above is diagrammatic. We know that before and after the glass transition temperature the diffusion coefficient behaves as an Arrhenius function:D = D o exp (-Q/RT),so that ln D is linearly proportional to 1/T. Q is large below T g.40. EXPLAIN: Will PTFE work as a membrane to separate water vapor from benzene?PTFE is Teflon.Based on the structure of PTFE (Teflon), it appears to be a non-polar membrane.Non-polar membranes allow passage of polar molecules such as water.Furthermore, the size difference between water vapor molecule andbenzene also plays an important role. A water vapor molecule is muchsmaller than a benzene molecule and can easily pass through a Teflonmembrane whereas benzene being a large molecule will not pass.Thus, PTFE will work as an effective membrane to separate water vapor and benzene.41.The solution to Fick’s second law for a thick plate is。