3.4.2位错的伯氏矢量

合集下载

第1章 位错的定义及柏氏矢量

第1章 位错的定义及柏氏矢量
这种方法记为RH/FS法。在确定柏氏矢量时,若位错线的正向 相反时,所得的柏氏矢量也同时反向。
刃位错的柏氏回路和柏氏矢量
b指向半原
子面
左螺位错的柏氏 回路和柏氏矢量
柏氏矢量是位错线的一个特征量,可以用它来明确地定义位错 的类型: ξ b b 右螺位错, ξ b b 左螺位错 ξ b 0 刃位错; 位错线和其柏氏矢量既非垂直又非平行的是混合位错。 右图的顶视投影原子模型图 产生混型位错的Volterra模型
假设一根位错终止在晶体内部绕这根位错作一右旋回路l如果它是根真实的位错那么如果它是根真实的位错如果它是一根真实的位错那么柏氏矢量的某一分量bi为dddd332211xxuxxuxxuxxubiililkkii??????????????如果以回路l为界作一曲面s?它把把位错终点p包含在曲面s?内侧根据stokes定理对l的线积分可换成对s?的面积分0dd2?????ksmliklmlkkiisxxuxxub??????这就产生了原来假设的矛盾这说明假设的前提是错误的
设想的缺陷引入晶体必需要: ①它的晶体学要素不依赖于加力的大小,而由晶体学本 身确定。由它运动导致的变形不破坏晶体结构,只是原 子间的相对运动。所以引入的缺陷不是完全无规而是有 晶体学特性的; ②它能解释变形的不均匀性,即能说明它的结构敏感性; ③它能说明变形过程的传播性; ④引入的这种缺陷是易动的,能解释实验强度比理论强 度低的原因。但它又不能像空位那样易受热起伏的影响; ⑤它应有合理的增殖机制。 现在已经知道,这种缺陷就是这里要讨论的位错。
早在知道有序介质材料中存在线缺陷之前,在20世纪初数学 家沃特拉(V.Volterra)就提出了线缺陷的概念和模型,他是研究 连续弹性介质中的一个半割面两侧变形后从新粘合后的数学奇异 性问题。“制造”沃特拉线缺陷的过程的步骤如下:

2.位错类型及柏氏矢量

2.位错类型及柏氏矢量
一条位错线只有一个柏氏矢量
2)几根位错相遇于一点,其方 向朝着节点的各位错线的柏氏 矢量 b之和等于离开节点之和
如有几根位错线的方向均指 向或离开节点,这些位错 线的柏氏矢量之和值为零
三位错线相遇于一点
柏振海
中南大学材料科学与工程学院 材料科学与工程基础
位错密度
位错类型,柏氏矢量
位错密度计算示意图
用b 表示
柏振海
中南大学材料科学与工程学院 材料科学与工程基础
位错类型,柏氏矢量
柏氏矢量的确定方法
1)人为假定位错线方向 一般是从纸背向纸面或由上向下为位错线正向
2)用右手螺旋法则来确定柏格斯回路的旋转方向 使位错线的正向与右螺旋的正向一致
3)将含有位错的实际晶体和理想的完整晶体相比较
在实际晶体中作柏氏回路,在完整晶体中按相同的路线和 步法作回路,路线终点指向起点的矢量,即“柏氏矢量”
柏振海
谢谢大家!
位错类型,柏氏矢量
螺型位错的柏氏回路和柏氏矢量
柏振海
中南大学材料科学与工程学院 材料科学与工程基础
位错类型,柏氏矢量
从柏氏矢量和位错线取向关系确定位错类型
• (1) 刃型位错:柏氏矢量与位错线相垂直 • (2) 螺型位错:柏氏矢量与位错线相平行,柏氏矢量与位错线同向的则
为右螺型位错,柏氏矢量与位错线反向的则为左螺型位错 • (3) 混合位错:柏氏矢量与位错线成任意角度
混合位错
位错类型,柏氏矢量
每一段位错线均可分解为刃型和螺型两个分量
柏振海
中南大学材料科学与工程学院 材料科学与工程基础
2.3 柏氏矢量
位错类型,柏氏矢量
柏氏矢量是描述位错性质的一个重要物理量
表示位错区原子的畸变特征,包括畸变的位置和 畸变的程度

2.位错类型及柏氏矢量

2.位错类型及柏氏矢量

柏振海 baizhai@
中南大学材料科学与工程学院
材料科学与工程基础
位错类型,柏氏矢量
螺型位错分类
按照螺旋面前进的方向与螺旋面旋转方向的关系分
• 左螺型位错 • 右螺型位错
• 符合右手定则(右手拇指代表螺旋面前进方向,其它四指代表螺旋面旋 转方向)的称为右螺型位错,符合左手定则的称为左螺型位错
中南大学材料科学与工程学院
材料科学与工程基础
位错类型,柏氏矢量
位错的基本类型及特征
工程材料理论切变强度与实际强度相差100~1000倍
晶体中位错的基本类型 1.刃型位错 2.螺型位错 3.混合位错
柏振海 baizhai@
中南大学材料科学与工程学院
材料科学与工程基础
位错类型,柏氏矢量
含有刃型位错的晶体结构示意图
柏振海 baizhai@
中南大学材料科学与工程学院
材料科学与工程基础
位错类型,柏氏矢量
刃型位错线周围的弹性畸变
• 位错线长度有数百个到数万个原子间距,与位错长度相比, 位错宽度非常小,所以把位错看作是线缺陷 刃位错周围原子不同程度地偏离平衡位臵,使周围点阵发生 弹性畸变
中南大学材料科学与工程学院
材料科学与工程基础
位错类型,柏氏矢量
3.柏氏矢量特征
1)柏氏矢量与回路起点选择无关,也与柏氏回路的具体路径, 大小无关
一条位错线只有一个柏氏矢量 2)几根位错相遇于一点,其方 向朝着节点的各位错线的柏氏 矢量 b之和等于离开节点之和 如有几根位错线的方向均指 向或离开节点,这些位错 线的柏氏矢量之和值为零
中南大学材料科学与工程学院
材料科学与工程基础
位错类型,柏氏矢量
刃型位错特征

2.位错类型及柏氏矢量

2.位错类型及柏氏矢量

位τ
τ
受切应力作用原子面移动
7
中南大学材料科学与工程学院 材料科学与工程基础
位错类型,柏氏矢量
晶体局部滑移形成刃型位错
τ
τ
受切应力作用原子面移动
8
中南大学材料科学与工程学院 材料科学与工程基础
位错类型,柏氏矢量
晶体局部滑移形成刃型位错
τ
τ
出现多余半原子面,表面形成台阶
17
中南大学材料科学与工程学院 材料科学与工程基础
位错类型,柏氏矢量
Screw dislocation
18
中南大学材料科学与工程学院 材料科学与工程基础
螺型位错分类
位错类型,柏氏矢量
按照螺旋面前进的方向与螺旋面旋转方向的关系分
• 左螺型位错
• 右螺型位错
• 符合右手定则(右手拇指代表螺旋面前进方向,其它四指代表螺旋面旋 转方向)的称为右螺型位错,符合左手定则的称为左螺型位错
13
中南大学材料科学与工程学院 材料科学与工程基础
位错类型,柏氏矢量
螺型位错(Screw dislocation)
• 右侧晶体上下两部分发生晶格扭动 • 从俯视角度看,在滑移区上下两层原子发生了错动,晶体点阵畸变最严
重的区域内的两层原子平面变成螺旋面 • 畸变区的尺寸与长度相比小得多,在畸变区范围内称为螺型位错 • 已滑移区和未滑移区的交线BC则称之为螺型位错线
螺位错可以有无穷个滑移面 实际上滑移通常是在原子密排面上进行,故滑移面有限
4)螺位错周围的点阵也发生弹性畸变,但只有平行于位错 线的切应变,无正应变(在垂直于位错线的平面投影上, 看不出缺陷)
5)位错线的移动方向与晶块滑移方向、应力矢量互相垂直
20

实际晶体结构中的位错

实际晶体结构中的位错

表4.1 典型晶体结构中单位位错的柏氏矢量
4.3 位错反应(Dislocation Reaction)
位错反应就是位错的合并(Merging)与分 解(Dissociation),即晶体中不同柏氏矢量的 位错线合并为一条位错线或一条位错线分解成 两条或多条柏氏矢量不同的位错线。 位错使晶体点阵发生畸变,柏氏矢量是反 映位错周围点阵畸变总和的参数。因此,位错 的合并实际上是晶体中同一区域两个或多个畸 变的叠加,位错的分解是晶体内某一区域具有 一个较集中的畸变,松弛为两个或多个畸变。
4.4.2 不全位错(Partial Dislocation)

若堆垛层错不是发生在晶体的整个原子 面上而只是部分区域存在,那么,在层错与 完整晶体的交界处就存在柏氏矢量不等于点 阵矢量的不全位错。在面心立方晶体中有两 种重要的不全位错:肖克莱(Shockley)不 全位错和弗兰克(Frank)不全位错。 图4.4为肖克莱不全位错的刃型结构。
4.2 实际晶体中位错的柏氏矢量
实际晶体结构中,位错的柏氏矢量不能是任 意的,它要符合晶体的结构条件和能量条件。晶 体的结构条件是指柏氏矢量必须连接一个原子平 衡位置到另一平衡位置。从能量条件看,由于位 错能量正比于b2,b越小越稳定,即单位位错是 最稳定的位错。 柏氏矢量b的大小和方向用b=C[uvw]表示, 其中:C为常数,[uvw]为柏氏矢量的方向,柏氏 矢量的大小为: C u 2 v 2 w2 。表4.1给出典型晶 体结构中,单位位错的柏氏矢量及其大小和方向。
下半图是把上半图中A层
与C层在(111)面上作投 影。分层使用了不同的符 号,□代表A层,原子呈 密排,▲代表紧接A层之 下的C层,也是密排的。 让A层的右半部滑移至B层 原子的位置,其上部的各 层也跟着移动,但滑移只 限于一部分原子,即右半 部原子。于是右半部的滑 移面上发生了层错,左半 部则没有移动,所以也没 有层错,在两者的交界处 发生了原子的严重错排, 图中滑移后的原子位置用 虚线连接。

《材料科学基础》复习思考题

《材料科学基础》复习思考题

《材料科学基础》复习思考题第一章:材料的结构一、解释以下基本概念空间点阵、晶格、晶胞、配位数、致密度、共价键、离子键、金属键、组元、合金、相、固溶体、中间相、间隙固溶体、置换固溶体、固溶强化、第二相强化。

二、填空题1、材料的键合方式有四类,分别是(),(),(),()。

2、金属原子的特点是最外层电子数(),且与原子核引力(),因此这些电子极容易脱离原子核的束缚而变成()。

3、我们把原子在物质内部呈()排列的固体物质称为晶体,晶体物质具有以下三个特点,分别是(),(),()。

4、三种常见的金属晶格分别为(),()和()。

5、体心立方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),晶胞中八面体间隙个数为(),四面体间隙个数为(),具有体心立方晶格的常见金属有()。

6、面心立方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),晶胞中八面体间隙个数为(),四面体间隙个数为(),具有面心立方晶格的常见金属有()。

7、密排六方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),具有密排六方晶格的常见金属有()。

8、合金的相结构分为两大类,分别是()和()。

9、固溶体按照溶质原子在晶格中所占的位置分为()和(),按照固溶度分为()和(),按照溶质原子与溶剂原子相对分布分为()和()。

10、影响固溶体结构形式和溶解度的因素主要有()、()、()、()。

11、金属化合物(中间相)分为以下四类,分别是(),(),(),()。

12、金属化合物(中间相)的性能特点是:熔点()、硬度()、脆性(),因此在合金中不作为()相,而是少量存在起到第二相()作用。

13、CuZn、Cu5Zn8、Cu3Sn的电子浓度分别为(),(),()。

两种经典位错位错线与柏氏矢量的关系

两种经典位错位错线与柏氏矢量的关系

两种经典位错位错线与柏氏矢量的关系
位错线与柏氏矢量在不同的位错类型中有不同的关系。

刃型位错中,位错线与柏氏矢量是垂直的。

在晶体中,位错是发生滑动的部分,柏氏矢量用于描述晶体中原子排列的一组向量,它表示原子或原子集团在滑移前后位置的变化。

因为刃型位错的滑移矢量垂直于滑移面,所以其位错线与柏氏矢量也是垂直的。

而在螺型位错中,位错线与柏氏矢量是平行的。

此外,还有一种混合位错,其柏氏矢量与位错线的角度是任意的,既不平行也不垂直。

以上内容仅供参考,建议查阅关于位错的书籍或者咨询材料研究专家以获取更准确的信息。

1-位错的定义及柏氏矢量

1-位错的定义及柏氏矢量

两岸的相对位移D 一般能分解为一个平移分量b 两岸的相对位移D(r)一般能分解为一个平移分量b和一个转动 分量ω=w×r,r是原点在割面上的矢径。如果D(r)只有平移分量, 是原点在割面上的矢径。如果D 则形成的位错称平移位错(Dislocation);如果D 则形成的位错称平移位错(Dislocation);如果D(r)只有旋转分量, 则形成的位错称旋转位错,简称为向错(Dislination)。 则形成的位错称旋转位错,简称为向错(Dislination)。 实在晶体并不是真正的连续介质,它存在各向异性及结构的 不连续,所以在Volterra过程中的D 不连续,所以在Volterra过程中的D(r)不是任意的,只能根据晶体 的特点取有限的值。不论平移分量或旋转分量都必须符合晶体点 阵的对称性质。例如平移只能是晶体的点阵平移矢量,旋转角必 须是晶体的基转角。在以后我们会知道,由于能量的原因,真正 位错线的平移矢量也不可能是任意的点阵平移矢量,而是其中较 短的几个矢量。 对于向错,晶体的旋转对称性最多为六次对称,也就是说, 对于向错,晶体的旋转对称性最多为六次对称,也就是说, 在晶体中产生向错最小的旋转角也要60°,它会引起很大的畸变, 60° 随着离开中心的距离加大畸变加大,所以旋错的能量很高,所以 随着离开中心的距离加大畸变加大,所以旋错的能量很高,所以 在晶体中除了个别特殊情况,一般是不会出现向错。而在液晶中 向错却是常见的线缺陷。
这个线缺陷的弹性性质显然取决于位错环C的位置以及产生位错 时割面两侧的相对位移D(r)。但是,无论割面两侧位移多大,周界 的应力是无限大的。为了避免周界这样的应力发散,一般沿周界 挖一个空心管道,这个非常小的空心管道区域就是介质中的线缺 陷。 线缺陷是晶体(有序介质)中原子(或分子)出现的严重错排 仅集中在线附近的小区域内,远离这条线只有弹性畸变,并且这 些畸变随着离开这条线的距离而急剧减小。可以把严重错排区域 用类似一个“管道”来描述,这个管道的直径通常仅有几个原子 间距,并贯穿于有序介质之中。在管道内,原子间的坐标与在完 整有序介质中很不同,而在管道之外的原子的坐标接近于完整有 序介质。这里的所谓管道“内部”和管道“外部”之间并无明确 界线,它们之间是逐渐过渡的,并且管道的截面也不一定是圆形。 管道“内部”这个定义不很精确的区域是线缺陷的核心 还要注意的是,“产生”线缺陷的沃特拉过程只是用以描述线 缺陷的奇异性本质,以及描述线缺陷的结构,而实际的线缺陷并 不是用沃特拉过程的方式产生的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料科学基础
第3 章
有缘学习更多驾卫星ygd3076或关注桃报:奉献教育(店铺)
3.4.2位错的伯氏矢量
伯氏矢量与位错密度
位错线确定前提下,位错定量描述的基本参数
反映单根 位错特征的 伯氏矢量
反映位错 整体数量的 位错密度
伯氏矢量
规定 位错线的
方向
首尾相连
右手 定则作 伯氏回路
首尾不连
理想 晶体中同 样方向演 示回路
立方晶系 一般表达式
位错密度 ρ
指单位体积晶体内位错线的总长度,m/m3 。
穿越单位截面积的位错线的数目,1/ m2。(露头数目)
位错线总长度
位错线的数目
晶体体积
截面面积
终点到起点的矢量,即为伯氏矢量
刃位错的伯氏矢量
右5
Q→M 伯氏矢量
上3
下3
左4
M→N→O→P→Q 首尾相连
螺位错的伯氏矢量
右3 后1 右2
上4 下4
左5
Q→M 伯氏矢量
伯氏矢量
柏氏矢量能同时反映对理想晶体偏离的大小与方向
刃位错螺位错Fra bibliotek伯氏矢量的表示方法
在晶向指数的基础上,把矢量的模表示出来,同时标出 矢量在各个轴上的分量。
相关文档
最新文档