位错的基本类型.
晶体缺陷-位错的基本类型与特征

混合位错
总结词
混合位错是一种同时具有刃型和螺旋型 特征的晶体缺陷,其特征是晶体中某处 的原子既发生了平移又发生了螺旋式的 位移。
VS
详细描述
混合位错是刃型位错和螺旋位错的组合体 ,其原子位移同时包含了平移和螺旋式的 位移。混合位错通常出现在晶体的复杂区 域,如晶界、相界等。由于混合位错同时 具有刃型和螺旋型位错的特征,其对晶体 的性能影响也较为复杂,需要进行深入研 究。
滑移与攀移
在切应力作用下,位错能够沿滑移面整列移动,称为滑移; 而垂直于滑移面方向的移动称为攀移。这两种运动方式是 位错在塑性变形中的重要表现。
应变梯度与几何必须位错
当材料的局部区域发生不均匀变形时,会产生应变梯度, 进而促使位错的形成和运动,以协调这种不均匀变形。
位错与材料疲劳断裂
01
疲劳裂纹的萌生与扩展
强化机制
加工硬化
在塑性变形过程中,位错的运动和交 互作用导致材料逐渐变硬,即加工硬 化。这是金属材料常用的强化手段。
通过引入位错,可以增加材料的内应 力,从而提高其屈服强度。这种强化 机制称为位错强化。
位错与材料塑性变形
塑性变形机制
位错在受力时能够运动,从而改变材料的形状。这种运动 机制是金属等材料发生塑性变形的内在原因。
在循环载荷作用下,位错容易在材料的应力集中区域(如晶界、相界或
表面)聚集,形成位错塞积群,进而导致疲劳裂纹的萌生。裂纹的扩展
通常沿特定晶体学平面进行。
02
影响疲劳性能的因素
位错的运动和交互作用对疲劳裂纹的萌生和扩展具有重要影响,进而影
响材料的疲劳性能。例如,材料的抗疲劳性能可以通过引入阻碍位错运
动的合金元素来改善。
晶体缺陷的分类
位错的运动

3.5 柏氏矢量(Burgers Vector)
1939年柏格斯(J.M.Burgers)提出了螺型 1939年柏格斯(J.M.Burgers)提出了螺型 位错的概念和柏氏矢量,使位错的概念普遍化, 并发展了位错应力场的一般理论。柏氏矢量可以 并发展了位错应力场的一般理论。 通过柏氏回路来确定, 图(a)、(b)分别为含有一 个刃型位错的实际晶体和用作参考的不含位错的 完整晶体。
a正刃型位错的滑移
b负刃型位错的滑移
当一个刃型位错沿滑移面滑过整个晶体,就会在晶体 表面产生宽度为一个柏氏矢量b的台阶,即造成了晶体的 塑性变形。若有n个b相同的位错扫过滑移面,则晶体将产 生nb的宏观滑移量,表面上产生nb高的台阶,成为电子 显微镜下看到的滑移线。下图a为原始状态的晶体以及所 加切应力的方向;b、c则为正刃型位错滑移的中间阶段, 可以看见位错线AB沿滑移面逐渐向后移动;应当注意, 在滑移时,刃型位错的移动方向一定是与位错线相垂直, 即与其柏氏矢量相一致。因此,刃型位错的滑移面应是由 位错线与其柏氏矢量所构成的平面。
2.位错的基本类型(Basic 2.位错的基本类型(Basic Types 位错的基本类型 of Dislocation)
位错是晶体中原子排列的一种特殊组 态。已滑移区(Slip Zone)与未滑移区在 滑移面(Slip Plane)上的交界线,称为位 错线,一般简称为位错。 从位错的几何结构来看,可将它们 分为:刃型位错和螺型位错。
3.2.1 刃型位错的滑移
图(a)表示含有一个正刃型位错的晶体点阵。图中实线 表示位错(半原子面PQ)原来的位置,虚线表示位错移 动一个原子间距(如P′Q′)后的位置。可见,位错虽然移 动了一原子间距,但位错附近的原子只有很小的移动。故 这样的位错运动只需加一个很小的切应力就可以实现。图 (b)表明,对于晶体中的负刃型位错,在同样的切应力 作用下,尽管其移动方向与正刃型位错相反(在图中为向 右移动)。
位错的基本结构

混合位错的分解
二、柏氏矢量
1939年,柏格斯(J.M.Burgers)提出。 柏氏矢量:用来揭示位错本质,描述位错行为的矢量。 1、柏氏矢量的确定 用柏氏回路确定。 1)人为规定位错线 的正方向。 2)在实际晶体中, 作柏氏回路,回路中的每 一步都连接相邻的原子。 3)在完整晶体中, 按同样的方向和步数作一 个对比回路。从终点Q 到 始点M连接起来的矢量 b , 即为柏氏矢量。
关系,确定位错的类型。 (1)
b ⊥位错线,刃型位错。将 b
顺时针旋转90°,若 b
的方
向与位错线正向一致,正刃位错;反错线,螺型位错。 b 的方向与位错线正方向一致, 右螺型位错;b 的方向与位错线负方向一致,左螺型位错. (3) b 和位错线成任意角度0<φ<90°,混合位错。
混合位错可分解为刃型分量和螺型分量。 be b sin , bs b cos
左、右螺型位错
右螺旋位错:符合右手法则的螺型位错。 左螺旋位错:符合左手法则的螺型位错。 拇指:前进方向;其余四指:旋转方向。
左、右螺型位错有着本质区别,无论将晶体如 何放置,也不可能改变其原本的左、右性质。
3、混合型位错
混合位错:位错线与滑移方向成任意角度的位错。 混合位错线是一条曲线,在A处是螺位错,在C处是刃型 位错,在A与C之间的每一小段位错线都可以分解为刃型和螺 型两个分量。
2、螺型位错
位错模型:
产生:晶体局部滑移产生。 ABCD:滑移面; bb’:螺型位错线,也是已滑移区(AB bb’)与未滑移区 (bb’ CD)在滑移面上的边界线,但平行于滑移方向。
螺型位错线周围的原子
在位错线附近有一个约几个原子间距宽的, 上、下层原子不吻合的过渡区(bb’和aa’之间) 。 位错线附近的原子:按螺旋形排列。
位错理论(3)

5.位错密度
位错密度是指单位体积内位错线的总长度。 其表达式为 LV L / V
式中:LV是体位错密度; L是位错线的总长度; V是晶体的体积。
经常用穿过单位面积的位错数目来表示位错密度。
A n / A
式中:是穿过截面的位错数;是截面面积。 位错密度的单位是cm-2。
5.3.2 位错的运动
位错线
正刃型位错
负刃型位错
透射电镜下观察到的位错线
2. 螺型位错 设想在简单立方晶体右端施加一切应力,使右端 ABCD滑移面上下两部分晶体发生一个原子间距的相对切 变,在已滑移区与未滑移区的交界处,AB线两侧的上下 两层原子发生了错排和不对齐现象,它们围绕着AB线连 成了一个螺旋线,而被AB线所贯穿的一组原来是平行的 晶面则变成了一个以AB线为轴的螺旋面。 此种晶格缺陷被称为螺型位错。螺旋位错分为左旋 和右旋。 以大拇指代表螺旋面前进方向,其他四指代表螺旋 面的旋转方向,符合右手法则的称右旋螺旋位错,符合 左手法则的称左旋螺旋位错。
刃型位错和螺型位错的特征。
柏氏矢量的确定。 理解滑移的过程及刃型位错和螺型位错滑移的 特点。 单位长度位错的应变能表示 U=αGb2。
(1)螺型位错的应力场
采用圆柱坐标系。在离开中心r处的切应变为 b Z Z 2r 其相应切应力
Z Z G Z
Gb 2r
式中,G为切变模量。由于圆柱只在Z方向有位移,X,Y方 向无位移,所以其余应力分量为零。 螺型位错应力场是径向对称的,即同一半径上的切 应力相等。且不存在正应力分量。
Gb 2 R WS ln 4 r0
对于刃型位错,单位长度的弹性应变能为
Gb 2 R WE ln 4 (1 ) r0
位错的基本类型

5)位错线的移动方向与晶块滑移方向、应力矢量互相垂直
2014年3月10日11时1分
刘志勇 14949732@
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
2.2.3 混合位错
位错线与滑移矢量两者方向夹角呈任意角度 位错线上任一点的滑移矢量相同
晶体右上角在外力F作用下发生切变 滑移面ABC范围内原子发生了位移,其滑移矢量用 b表示 弧线AC即是位错线,为已滑移区和未滑移区的边 界,与滑移矢量成任意角度 是晶体中较常见的一种位错 混合位错的形成
2014年3月10日11时1分 刘志勇 14949732@
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
螺型位错分类
按照螺旋面前进的方向与螺旋面旋转方向的关系分
• 左螺型位错 • 右螺型位错
• 符合右手定则(右手拇指代表螺旋面前进方向,其它四指代表螺旋面旋 转方向)的称为右螺型位错,符合左手定则的称为左螺型位错
正刃型位错:晶面上部原子拥挤,受压应力,晶面下部原子受拉应力 • 点阵畸变是对称的,位错中心受到畸变度最大,离开位错中心畸变 程度减小 • 一般把点阵畸变程度大于正常原子间距1/4的区域宽度定义为位错宽 度,约为2~5个原子间距
2014年3月10日11时1分
刘志勇 14949732@
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
2014年3月10日11时1分
刘志勇 14949732@
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
螺型位错(Screw dislocation)
位错规律总结

位错规律总结
位错是晶体中原子位置的偏移或错位,是晶体中的结构缺陷之一。
位错可以分为边界位错和螺旋位错两种类型。
位错是晶体材料中塑性变形的主要机制之一,并且具有重要的影响。
针对位错的规律总结如下:
1. 弗兰克-瓦尔斯位错规律:当晶体中存在一组边界位错时,
位错的总长度必须守恒。
具体来说,当两个滑移面之间发生位错滑移时,位错长度之和保持不变。
2. 彼勒斯位错规律:在材料的塑性变形过程中,位错沿着最密堆积晶面方向滑动,位错的伸长方向与滑动面垂直。
3. 剪切位错规律:在晶体中,剪切位错能够沿着特定的面和方向滑动,从而引起晶体的塑性变形。
剪切位错滑移的方向与剪切应力的方向相同。
4. 螺旋位错规律:螺旋位错是一种沿晶体的螺旋线形成的位错,它具有一个以单位长度平行于位错线方向的错向矢量。
螺旋位错滑移的过程中,晶体发生类似螺旋的变形。
5. 位错相互作用规律:位错之间的相互作用和排斥是晶体塑性变形的重要因素。
当两个位错靠近时,它们可能相互吸引或排斥,从而影响晶体的位错滑移和塑性形变。
总之,位错的规律总结了位错在晶体中的行为和相互作用,对于理解晶体的塑性变形和材料性能的研究具有重要意义。
2.位错类型及柏氏矢量
柏振海 baizhai@
中南大学材料科学与工程学院
材料科学与工程基础
位错类型,柏氏矢量
螺型位错分类
按照螺旋面前进的方向与螺旋面旋转方向的关系分
• 左螺型位错 • 右螺型位错
• 符合右手定则(右手拇指代表螺旋面前进方向,其它四指代表螺旋面旋 转方向)的称为右螺型位错,符合左手定则的称为左螺型位错
中南大学材料科学与工程学院
材料科学与工程基础
位错类型,柏氏矢量
位错的基本类型及特征
工程材料理论切变强度与实际强度相差100~1000倍
晶体中位错的基本类型 1.刃型位错 2.螺型位错 3.混合位错
柏振海 baizhai@
中南大学材料科学与工程学院
材料科学与工程基础
位错类型,柏氏矢量
含有刃型位错的晶体结构示意图
柏振海 baizhai@
中南大学材料科学与工程学院
材料科学与工程基础
位错类型,柏氏矢量
刃型位错线周围的弹性畸变
• 位错线长度有数百个到数万个原子间距,与位错长度相比, 位错宽度非常小,所以把位错看作是线缺陷 刃位错周围原子不同程度地偏离平衡位臵,使周围点阵发生 弹性畸变
中南大学材料科学与工程学院
材料科学与工程基础
位错类型,柏氏矢量
3.柏氏矢量特征
1)柏氏矢量与回路起点选择无关,也与柏氏回路的具体路径, 大小无关
一条位错线只有一个柏氏矢量 2)几根位错相遇于一点,其方 向朝着节点的各位错线的柏氏 矢量 b之和等于离开节点之和 如有几根位错线的方向均指 向或离开节点,这些位错 线的柏氏矢量之和值为零
中南大学材料科学与工程学院
材料科学与工程基础
位错类型,柏氏矢量
刃型位错特征
材料科学基础位错理论
材料科学基础位错理论位错理论是材料科学领域中的重要概念之一、它是位错理论与晶体缺陷之间相互关联的核心。
本文将从位错的定义、分类和特征出发,进一步介绍位错理论的基本原理和应用。
首先,位错是固体晶体结构中的一种缺陷。
当晶体晶格中发生断裂、错位或移动时,就会形成位错。
位错可以被看作是晶体中原子排列的异常,它具有一定的形态、构型和特征。
根据位错发生的方向和类型,位错可分为直线位错、面位错和体位错。
直线位错是沿晶体其中一方向上的错排,常用符号表示为b。
直线位错一般由滑移面和滑移方向两个参数来表征。
滑移面是指位错的平移面,滑移方向是位错在晶体中的移动方向。
直线位错可以进一步分为边位错和螺位错。
边位错的滑移面为滑移方向的垂直面,螺位错则是在滑移面上存在沿位错线方向扭曲的位错。
面位错是晶体晶格上的一次干涉现象,即滑移面上的两部分之间发生错排。
面位错通常由面位错面和偏移量来描述。
面位错可以是平面GLIDE面位错、垂直GLIDE面位错或螺脚面位错。
体位错是沿体方向上的排列不规则导致的位错。
体位错通常是由滑移面间的晶体滑移产生的。
位错理论的基本原理是通过研究位错在晶体中的移动机制和相互作用,来理解材料的塑性变形和力学行为。
位错理论最早由奥斯勒(Oliver)于1905年提出,他认为材料的塑性变形是由于位错在晶体中游走和相互作用所引起的。
这一理论为后来的位错理论奠定了基础。
位错理论的应用非常广泛。
在材料加工和设计中,位错理论被广泛用于控制材料的力学性能和微观结构。
通过控制位错的生成、运动和相互作用,可以获得理想的材料性能。
同时,位错理论也被用于研究材料的磁性、电子输运和热传导性能等方面。
此外,位错理论也在材料的缺陷工程和腐蚀研究中发挥着重要作用。
通过控制位错的形态和分布,在材料中引入有利于抵抗腐蚀的位错类型,可以提高材料的抗腐蚀性能。
位错理论也可以用于解释材料的断裂行为和疲劳寿命等方面。
总结起来,位错理论是材料科学基础中的重要内容。
2.位错类型及柏氏矢量
位τ
τ
受切应力作用原子面移动
7
中南大学材料科学与工程学院 材料科学与工程基础
位错类型,柏氏矢量
晶体局部滑移形成刃型位错
τ
τ
受切应力作用原子面移动
8
中南大学材料科学与工程学院 材料科学与工程基础
位错类型,柏氏矢量
晶体局部滑移形成刃型位错
τ
τ
出现多余半原子面,表面形成台阶
17
中南大学材料科学与工程学院 材料科学与工程基础
位错类型,柏氏矢量
Screw dislocation
18
中南大学材料科学与工程学院 材料科学与工程基础
螺型位错分类
位错类型,柏氏矢量
按照螺旋面前进的方向与螺旋面旋转方向的关系分
• 左螺型位错
• 右螺型位错
• 符合右手定则(右手拇指代表螺旋面前进方向,其它四指代表螺旋面旋 转方向)的称为右螺型位错,符合左手定则的称为左螺型位错
13
中南大学材料科学与工程学院 材料科学与工程基础
位错类型,柏氏矢量
螺型位错(Screw dislocation)
• 右侧晶体上下两部分发生晶格扭动 • 从俯视角度看,在滑移区上下两层原子发生了错动,晶体点阵畸变最严
重的区域内的两层原子平面变成螺旋面 • 畸变区的尺寸与长度相比小得多,在畸变区范围内称为螺型位错 • 已滑移区和未滑移区的交线BC则称之为螺型位错线
螺位错可以有无穷个滑移面 实际上滑移通常是在原子密排面上进行,故滑移面有限
4)螺位错周围的点阵也发生弹性畸变,但只有平行于位错 线的切应变,无正应变(在垂直于位错线的平面投影上, 看不出缺陷)
5)位错线的移动方向与晶块滑移方向、应力矢量互相垂直
20
材料科学基础I 7-2 线缺陷——位错的基本概念
即,晶体滑移方向与位错运动方向一致。
2、刃型位错的结构
如左图所示,晶体中多余的 半原子面好象一片刀刃切入晶 体中,沿着半原子面的“刃 边”,形成一条间隙较大的 “管道”,该“管道”周围附 近的原子偏离平衡位置,造成 晶格畸变。刃型位错包括“管 道”及其周围晶格发生畸变的 范围,通常只有3到5个原子间 距宽,而位错的长度却有几百 至几万个原子间距。刃位错用 符号“⊥”表示。
3、柏氏矢量b的守恒性
如果若干条位错线交于一点,此交汇点称为节点,那么“流 入”节点的位错线的柏氏矢量之和等于“流出”节点的位错线 的矢量之和。
biin
bout j
推论:一条位错线只能有一个柏氏矢量。
四、混合型位错
混合型位错是由刃型位错和 螺型位错混合而成的。混合型 位错用m表示。
由于混合型位错是由刃型位 错和螺型位错合成的,所以它 的柏氏矢量也是由这二个柏氏 矢量合成的。或者说,混合型 位错的柏氏矢量可以分解成二 个矢量:一个和位错线垂直, 是刃型位错的柏氏矢量;一个 和位错线平行,是螺型位错的 柏氏矢量。
§7-2 线缺陷——位错的基本概念
线缺陷(linear defects)又称为位错(dislocation)。也就是说, 位错是一种线型的晶体缺陷,位错线周围附近的原子偏离自己 的平衡位置,造成晶格畸变。
位错有两种基本类型: 刃型位错 (edge dislocation) 螺型位错 (screw dislocation) 混合位错 (mixed dislocations),实际晶体中的位错往往既不 是单纯的螺位错,也不是单纯的刃位错,而是它们的混合形式, 故称之为混合位错。
3、左、右旋螺型位错的规定
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
晶体局部滑移形成刃型位错
τ
τ
出现多余半原子面,表面形成台阶
2014年3月10日11时1分
刘志勇 14949732@
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
晶体中的纯刃型位错环
从滑移这个角度来看,可以把位错定义为晶体中已滑移区域 和未滑移区域的边界
晶体中的位错作为滑移区的边界,就不可能中断于晶体内部, 它们或者中止于表面,或者中止于晶界和相界,或者与其它 位错线相交,或者自行在晶体内形成一个封闭环
刃型位错不一定是直线,可以是折线或 曲线
EFGH是位错环,是由于晶体中多了一片 EFGH的原子层所造成的
刃型位错特征
(1)是由一个多余半原子平面所形成的线缺陷,位错宽度2~5个原子 间距,位错是一管道 (2)位错滑移矢量b垂直于位错线,位错线和滑移矢量构成滑移的唯一平 面即滑移面 (3)位错线不一定是直线,形状可以是直线,折线和曲线,位错环
(4)晶体中产生刃型位错时,其周围点阵产生弹性畸变,既有正应变,又有切 应变,使晶体处于受力状态,就正刃型位错而言,滑移面上方原子受到压应力, 下方原子受到拉应力。负刃型位错则刚好相反
τ
2014年3月10日11时1分
刘志勇 14949732@
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
晶体局部滑移形成刃型位错
τ
τ
原子完整排列
2014年3月10日11时1分
刘志勇 14949732@
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
2014年3月10日11时1分
刘志勇 14949732@
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
2.2.2
螺型位错
假定在一块简单立方晶体中
• 沿某一晶面切一刀缝,贯穿于晶 体右侧至BC处 • 在晶体的右侧上部施加一切应力τ, 使右端上下两部分晶体相对滑移 一个原子间距 • BC线左边晶体未发生滑移,出现 已滑移区与未滑移区的边界BC
刃型位错
• 可以想像为晶体内有一原子平面中断于晶体内部,这个原子平面中断 处的边沿及其周围区域是一个刃型位错 • 中断处的边沿犹如在晶体中插入一把刀刃,故称之为“刃型位错”, 在刃口处的原子列定义为“刃型位错线” 正刃型:位错半原子面位于某晶面的上半部位臵的称为,记号“⊥”表 示 负刃型:位错半原子面位于某晶面下半部的称为,以“T”表示
2014年3月10日11时1分 刘志勇 14949732@
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
螺型位错分类
按照螺旋面前进的方向与螺旋面旋转方向的关系分
这种位错环多由于空位集团崩塌而形成
2014年3月10日11时1分
刘志勇 14949732@
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
几种不规则的刃型位错
2014年3月10日11时1分
刘志勇 14949732@
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
2014年3月10日11时1分
刘志勇 14949732@
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
螺型位错(Screw dislocation)
• 右侧晶体上下两部分发生晶格扭动 • 从俯视角度看,在滑移区上下两层原子发生了错动,晶体点阵畸变最严 重的区域内的两层原子平面变成螺旋面 • 畸变区的尺寸与长度相比小得多,在畸变区范围内称为螺型位错 • 已滑移区和未滑移区的交线BC则称之为螺型位错线
晶体局部滑移形成刃型位错
τ
τ
受切应力作用原子面移动
2014年3月10日11时1分
刘志勇 14949732@
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
晶体局ห้องสมุดไป่ตู้滑移形成刃型位错
τ
τ
受切应力作用原子面移动
2014年3月10日11时1分
刘志勇 14949732@
含有刃型位错的晶体结构示意图
2014年3月10日11时1分 刘志勇 14949732@
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
刃型位错线周围的弹性畸变
• 位错线长度有数百个到数万个原子间距,与位错长度相比, 位错宽度非常小,所以把位错看作是线缺陷 刃位错周围原子不同程度地偏离平衡位臵,使周围点阵发生 弹性畸变
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
位错的基本类型及特征
工程材料理论切变强度与实际强度相差100~1000倍
晶体中位错的基本类型 1.刃型位错 2.螺型位错 3.混合位错
2014年3月10日11时1分
刘志勇 14949732@
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
正刃型位错:晶面上部原子拥挤,受压应力,晶面下部原子受拉应力 • 点阵畸变是对称的,位错中心受到畸变度最大,离开位错中心畸变 程度减小 • 一般把点阵畸变程度大于正常原子间距1/4的区域宽度定义为位错宽 度,约为2~5个原子间距
2014年3月10日11时1分
刘志勇 14949732@
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
位错形成
• 可能是在晶体形成过程(凝固或冷却)中产生的
• 晶体在塑性变形时也会产生大量的刃型位错
2014年3月10日11时1分
刘志勇 14949732@
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
晶体局部滑移形成刃型位错
力作用在晶体右上角,使右上角的上半部晶体沿滑 移面向左作局部移动,使原子列移动了一个原子间 距,从而形成一个刃型位错