(完整版)基于热敏电阻的数字温度计
数字温度计原理

数字温度计原理数字温度计是一种利用数字信号来表示温度值的温度测量仪器,它是现代工业和生活中常用的一种温度测量设备。
数字温度计的原理是基于热敏元件的电阻值随温度变化而变化的特性,通过测量电阻值的变化来确定温度值。
下面我们将详细介绍数字温度计的工作原理。
数字温度计的核心部件是热敏元件,常用的热敏元件有热敏电阻、热电偶和半导体温度传感器等。
其中,热敏电阻是一种电阻值随温度变化而变化的元件,它的电阻值随温度的升高而减小。
数字温度计利用热敏电阻的这一特性来实现温度测量。
当热敏电阻与电路连接后,其电阻值会随温度的变化而发生变化,通过测量电阻值的变化,就可以确定所测温度的数值。
数字温度计通常还包括一个模拟-数字转换器(ADC)和微处理器。
热敏电阻的电阻值的变化会转化为模拟信号,ADC负责将这个模拟信号转换为数字信号,然后微处理器对这个数字信号进行处理,最终将其显示为温度数值。
通过这样的一系列过程,数字温度计实现了对温度的精确测量和显示。
除了热敏电阻,数字温度计还可能采用其他类型的热敏元件,比如热电偶和半导体温度传感器。
热电偶是利用两种不同金属导体在不同温度下产生的热电势来测量温度的元件,而半导体温度传感器是利用半导体材料的电阻随温度变化而变化的特性来测量温度的元件。
不同类型的热敏元件在数字温度计中的应用原理略有不同,但基本的测温原理是相似的,都是利用热敏元件的特性来实现温度测量。
总的来说,数字温度计的原理是利用热敏元件的电阻值随温度变化而变化的特性,通过测量电阻值的变化来确定温度值,然后将其转化为数字信号进行显示。
不同类型的热敏元件在数字温度计中的应用原理略有不同,但基本的测温原理是相似的。
数字温度计在工业生产、医疗卫生、环境监测等领域有着广泛的应用,其原理的了解对于正确选择和使用数字温度计具有重要意义。
热敏电阻数字温度计的设计实验报告

热敏电阻数字温度计的设计实验报告
本次实验旨在设计一种基于热敏电阻的数字温度计,通过实验验证其可行性和精确性。
实验过程中,我们首先购买了一些热敏电阻和其他所需的元器件,包括电容、电阻、运放等。
然后按照电路图设计,进行了实际的电路连接和调试。
在调试过程中,我们需要注意电路的稳定性和输入电压的范围,以免影响实验结果。
在完成电路搭建和调试后,我们通过连接计算机和显示器,测试了温度计的输出精确度和稳定性。
实验结果表明,该数字温度计具有较高的精确度和稳定性,可满足实际应用的需求。
综上所述,基于热敏电阻的数字温度计设计实验成功完成,并且具有较高的精确度和稳定性,为实际应用提供了可靠的参考数据。
- 1 -。
基于热敏电阻的数字温度计设计

目录1 课程设计的目的 (1)2 课程设计的任务和要求 (1)3 设计方案与论证 (1)4 电路设计 (2)4.1 温度测量电路 (3)4.2 单片机最小系统 (6)4.3 LED数码显示电路 (8)5 系统软件设计 (9)6 系统调试 (9)7 总结 (11)参考文献 (13)附录1:总体电路原理图 (14)附录2:元器件清单 (15)附录3:实物图 (16)附录4:源程序 (17)1 课程设计的目的(1)掌握单片机原理及应用课程所学的理论知识;(2)了解使用单片机设计的基本思想和方法,学会科学分析和解决问题;(3)学习单片机仿真、调试、测试、故障查找和排除的方法、技巧;(4)培养认真严谨的工作作风和实事求是的工作态度;(5)锻炼自己的动手动脑能力,以提高理论联系实际的能力。
2 课程设计的任务和要求(1)采用LED数码管显示温度;(2)测量温度范围为-10℃~110℃;(3)测量精度误差小于0.5℃。
3 设计方案与论证方案一:本方案主要是在温度检测部分利用了一款新型的温度检测芯片DS18B20,这个芯片大大简化了温度检测模块的设计,它无需A/D 转换,可直接将测得的温度值以二进制形式输出。
该方案的原理框图如图3-1所示。
DS18B20是美国达拉斯半导体公司生产的新型温度检测器件,它是单片结构,无需外加A/D即可输出数字量,通讯采用单线制,同时该通讯线还可兼作电源线,即具有寄生电源模式。
它具有体积小、精度易保证、无需标定等特点,特别适合与单片机合用构成智能温度检测及控图3-1方案一系统框图方案二:温度检测部分采用传统的热敏电阻,热敏电阻的阻值随环境温度变化而变化,将热敏电阻与固定电阻串联后分压,经A/D转换器将其转换为单片机可识别得二进制数字量,然后根据程序查表得到温度值,单片机主要控制LED显示器显示正确的温度值,并根据设置的上下限控制继电器动作,从而控制外部负载。
该方案的原理框图如图3-2所示。
基于热敏电阻的数字体温计

了一种高 精度低 功耗便携 式数字体 温计 。 详细介绍 了该系 统原理框架 ,N T C热敏 电阻特性 ,A D 温 度采样 原理,l 6位 ∑一△ 模 数转换器和软件的实现 。 在 实际应 用中 以高精度 、 低功耗 、 测量时间短、 方便携带等优点替代传统的水银体温计 。
关键 词 : 高精度 ; 低功耗 ; 便携式 ; 热敏 电阻 ; 数字体温计 中图分类号 :T H 8 1 1 . 1 文献标识码 :B
p o r t a bl e d i g i t al t h e r m o m e t e r . F r a me w o r k a r e i n t r o d u c e d i n d e t a i 1 t h e s y s t e m p r i n c i p l e , t h e N T C t h e r mi s t o r s
p r a c t i c a l a p p l i c a t i o n w i t h h i g h p r e c i s i o n , l o w p o w e r c o n s u m p t i o n , s h o r t m e a s u r e m e n t t i m e , t h e a d v a n t a g e s o f
0 引言
目前 , 测体温 广泛采用 的是水银 体温计 。 水银体温 计具有测 量精度高 , 测量温度保持 的优点。 然而 , 水银体温计有携 带不方便 、 容易损坏 、 水银漏 出处理不当造成环境污染 , 在使用时需要预设温 度、 测量时间长 、 冬天使用冰冷 、 读数 困难等缺点 。 为 了克服水银体 温计 的缺 点, 本文介绍 了一种基 于 N T C热敏 电阻的数字体温计 。 该 数字 体温计充分利用 了 N T C热敏 电阻的高温度 系数和 M S P 4 3 0系 列单 片机 片上资源丰富及低功耗 的特 点, 使得数字体温计具有和 水银 体温计 同样 的测量精度 、 温度保持 的优 点, 同时测量时 间短 、 成本低 、 使用和携带方便并且具有测环境温度 的特点。
用NTC热敏电阻设计制作体温计

用NTC热敏电阻设计制作体温计设计制作体温计需要以下步骤:1.了解NTC热敏电阻的原理和特性:NTC热敏电阻是一种随温度变化而变化阻值的电阻器件。
随着温度升高,NTC热敏电阻的阻值会逐渐减小。
这种特性可以用来测量温度。
2.确定设计参数:首先,确定设计的温度范围。
然后,选择合适的NTC热敏电阻,其阻值应在所选温度范围内变化适当。
一般来说,常见的NTC热敏电阻有10K欧姆和100K欧姆等。
3.进行电路设计:根据所选的NTC热敏电阻和测量范围,设计一个合适的电路。
一种简单的电路方案是将NTC热敏电阻与一个固定的电阻器组成一个电压分压电路,并将其输出连接到一个模拟电压输入引脚。
好的设计应该考虑到温度的准确性、响应速度和电路可靠性等方面。
4.制作电路原型:根据设计的电路图,制作一个原型电路板。
可以使用普通的白板、面包板或PCB进行制作。
在制作过程中,要确保电路连接正确且紧凑。
5.进行实验验证:将体温计放入不同温度下进行测试,并记录每个温度下的电压输出。
校准温度和电压之间的关系。
为了提高准确性,可以使用一个标准温度测量设备进行参考。
6.编写程序:根据电路输出的电压值和预先校准的数据,编写一个程序来计算和显示温度值。
可以使用微控制器或单片机等进行编程。
7.制作外壳和显示:将电路和显示装置封装在一个合适的外壳中,使其便于使用。
可以选择液晶显示器、数码管或LED等显示温度值。
总结:设计制作体温计需要了解NTC热敏电阻的原理和特性,确定设计参数,进行电路设计,制作电路原型,实验验证,编写程序以及制作外壳和显示。
通过这个过程,就可以设计制作出一个简单但准确的体温计。
热敏电阻数字温度计及设计与制作

热敏电阻数字温度计及设计与制作一、热敏电阻介绍热敏电阻(Thermistor)是一种特殊类型的电阻元件,也被称为温度传感器或温度电阻。
它由原材料包括硅、聚苯乙烯等制成,一般构成为由特殊陶瓷物质制成的金属杆支撑的微型电阻片,它的电阻值会随温度的变化而发生量级的变化,应用范围广泛,同时也具有非线性特性。
二、原理介绍热敏电阻可以因温度的变化而改变其电阻值,电路中施加的电压,将发生变化的电阻作用的电流,其特性一般是冷端温度为25°C时,电阻值最小,随着温度的增加,电阻值也增加。
热敏电阻具有很强的非线性特性,温度噪声小,因而对温度测量后级电路要求较低,这种特性使热敏电阻更加容易把输入的温度信号转变为数字信号。
三、数字温度计的介绍数字温度计(Digital Thermometer)是一种使用热敏电阻来测量温度的设备,可以检测温度并以数字方式显示温度变化,常用于家用、工业和其它科学测量等领域。
数字温度计利用热敏电阻这种特性,可以把温度信号变换为数字信号,然后再在显示分辨率与可调量程内显示出来。
要设计并制作一台数字温度计,需要用到热敏电阻、运算放大器、A/D转换器、晶体管、多路复用器和显示器等元件。
(1)热敏电阻。
用来检测温度变化,通过将温度变化映射成电阻变化。
(2)运算放大器。
它将检测到的电阻变化信号发送至A/D转换器,用以进一步进行信号转换处理,从而获取准确的温度数值。
(5)多路复用器。
它用来将晶体管处理出的信号发送至显示器,并选择正确的显示模式,以便正确显示温度数值。
五、结论热敏电阻及其特性使其能够非常精确地测量、检测温度变化。
数字温度计设计与制作主要使用热敏电阻以及相关电路元件,它可以把温度信号变换为数字信号,从而在对精度进行严格控制的情况下,准确地显示出温度信息。
利用型热敏电阻设计温度计

3
三、实验原理
热敏电阻的阻值具有随温度变化而变化的性质
我们可以将热敏电阻作为一个感温原件以阻值的变化来体现环境温度的变化。但是阻值的 变化量以直接测量的方式获得可能存在较大的误差,因此要将其转化为一个对外部条件变 化更加敏感的物理量;本实验中选择的是电流,通过电桥可以将电阻阻值的变化转化为电 流(电压)的变化
为了减小温度测量误差,需要对NTC热敏电阻进行温度补偿。一种常见的温度补偿方法是使用一个电阻网 络和一个稳定的电源电压,通过改变电阻网络中的电阻值来补偿NTC热敏电阻的电阻-温度特性
具体原理为:在NTC热敏电阻电路中,将NTC热敏电阻与一个固定的电阻串联,并以稳定的电源电压为电 路供电。当电路中有电流通过时,根据欧姆定律,电阻越大,电流越小。通过改变串联电阻的取值,可 以调整整个电路的总电阻值,从而得到所需要的电流值
PART 4
四、实验步骤
4
四、实验步骤
测出所选择的热敏电阻Rt-t曲线(或由实验室给出) 将NTC热敏电阻和一个固定电阻串联进电路中,在基准温度下, 使用DHT-2型热学实验仪测量NTC热敏电阻的电阻值,并记录下 来 在其他温度下,同样使用DHT-2型热学实验仪测量NTC热敏电阻 的电阻值,然后使用串联电阻网络调整整个电路的总电阻值 使电流值保持在基准温度时的电流值,这样就实现了温度补偿, 使得NTC热敏电阻在不同温度下表现出稳定的电阻值 总之,NTC热敏电阻温度补偿原理是通过改变串联电阻的取值, 调整整个电路的总电阻值,使得NT样可以减小温度测量误差,提高测量精度
2.了解电阻的温度特性和伏安 特性
4.提高设计、创新能力
PART 2
二、实验仪器
2
二、实验仪器
实验所需仪器
DHT-2型热学实验仪、NTC热敏电阻、直流稳压电源(电压调节范围0-30V两路输出) 、电阻箱(阻值调节范围0-99999.9Ω、额定功率0.25W)、微安表、万用表、导线
基于热敏电阻的数字温度计课程设计.doc

基于热敏电阻的数字温度计课程设计. .目录1 绪论12 系统硬件电路设计32.1 测温电桥电路32.2 信号放大电路................................................................................62.3 AD转换电路...................................................................................72.4 控制电路........................................................................................92.5 声光报警电路 (102).6 显示电路..........................................................................................112.7 电源电路..........................................................................................123 系统软件设计154 总结与展望 (1)6参考文献……………………………………………………………..……………………………..171概述随着以知识经济为特征的信息化时代的到来人们对仪器仪表的认识更加深入,温度作为一个重要的物理量,是工业生产过程中最普遍,最重要的工艺参数之一。
随着工业的不断发展,对温度的测量的要求也越来越高,而且测量的范围也越来越广,对温度的检测技术的要求也越来越高,因此,温度测量及其测量技术的研究也是一个很重要的课题。
目前温度计按测使用的温度计种类繁多,应用范围也比较广泛,大致可以包括以下几种方法:1,利用物体热胀冷缩原理制成的温度计2,利用热电效应技术制成的温度检测元件3,利用热阻效应技术制成的温度计4,利用热辐射原理制成的高温计5,利用声学原理进行温度测量本系统的温度测量采用的就是热阻效应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于热敏电阻的数字温度计专业班级:机械1108组内成员:罗良李登宇李海先指导老师:**日期: 2014年6月12日1概述随着以知识经济为特征的信息化时代的到来人们对仪器仪表的认识更加深入,温度作为一个重要的物理量,是工业生产过程中最普遍,最重要的工艺参数之一。
随着工业的不断发展,对温度的测量的要求也越来越高,而且测量的范围也越来越广,对温度的检测技术的要求也越来越高,因此,温度测量及其测量技术的研究也是一个很重要的课题。
目前温度计种类繁多,应用范围也比较广泛,大致可以包括以下几种方法:1)利用物体热胀冷缩原理制成的温度计2)利用热电效应技术制成的温度检测元件3)利用热阻效应技术制成的温度计4)利用热辐射原理制成的高温计5)利用声学原理进行温度测量本系统的温度测量采用的就是热阻效应。
温度测量模块主要为温度测量电桥,当温度发生变化时,电桥失去平衡,从而在电桥输出端有电压输出,但该电压很小。
将输出的微弱电压信号放大,将放大后的信号输入AD转换芯片,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来。
2设计方案2.1设计目的利用51单片机及热敏电阻设计一个温度采集系统,通过学过的单片机和数字电路及面向对象编程等课程的知识设计。
要求的功能是能通过串口将采集的数据在显示窗口显示,采集的温度达一定的精度2.2设计要求使用热敏电阻类的温度传感器件利用其温感效应,将随被测温度变化的电压或电流用单片机采集下来,将被测温度在显示器上显示出来。
3系统的设计及实现3.1系统模块3.1.1 AT89C51AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。
该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
管脚说明:VCC:供电电压。
GND:接地。
P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。
当P1口的管脚第一次写1时,被定义为高阻输入。
P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。
在FIASH编程时,P0 口作为原码输入口,当FIASH 进行校验时,P0输出原码,此时P0外部必须被拉高。
P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。
P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。
在FLASH编程和校验时,P1口作为第八位地址接收。
P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。
并因此作为输入时,P2口的管脚被外部拉低,将输出电流。
这是由于内部上拉的缘故。
P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。
在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。
P2口在FLASH编程和校验时接收高八位地址信号和控制信号。
P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。
当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。
作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。
P3口也可作为AT89C51的一些特殊功能口,如下表所示:口管脚备选功能P3.0 RXD(串行输入口)P3.1 TXD(串行输出口)P3.2 /INT0(外部中断0)P3.3 /INT1(外部中断1)P3.4 T0(记时器0外部输入)P3.5 T1(记时器1外部输入)P3.6 /WR(外部数据存储器写选通)P3.7 /RD(外部数据存储器读选通)P3口同时为闪烁编程和编程校验接收一些控制信号。
RST:复位输入。
当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。
ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。
在FLASH编程期间,此引脚用于输入编程脉冲。
在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。
因此它可用作对外部输出的脉冲或用于定时目的。
然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE 脉冲。
如想禁止ALE的输出可在SFR8EH地址上置0。
此时, ALE只有在执行MOVX,MOVC指令是ALE才起作用。
另外,该引脚被略微拉高。
如果微处理器在外部执行状态ALE禁止,置位无效。
/PSEN:外部程序存储器的选通信号。
在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。
但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。
/EA/VPP:当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。
注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。
在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。
XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。
XTAL2:来自反向振荡器的输出。
3.振荡器特性:XTAL1和XTAL2分别为反向放大器的输入和输出。
该反向放大器可以配置为片内振荡器。
石晶振荡和陶瓷振荡均可采用。
如采用外部时钟源驱动器件,XTAL2应不接。
有余输入至内部时钟信号要通过一个二分频触发器,因此对外部时钟信号的脉宽无任何要求,但必须保证脉冲的高低电平要求的宽度。
4.芯片擦除:整个PEROM阵列和三个锁定位的电擦除可通过正确的控制信号组合,并保持ALE 管脚处于低电平10ms 来完成。
在芯片擦操作中,代码阵列全被写“1”且在任何非空存储字节被重复编程以前,该操作必须被执行。
此外,AT89C51设有稳态逻辑,可以在低到零频率的条件下静态逻辑,支持两种软件可选的掉电模式。
在闲置模式下,CPU停止工作。
但RAM,定时器,计数器,串口和中断系统仍在工作。
在掉电模式下,保存RAM的内容并且冻结振荡器,禁止所用其他芯片功能,直到下一个硬件复位为止。
3.1.2 ADC0804ADC0804是用CMOS集成工艺制成的逐次比较型模数转换芯片。
分辨率8位,转换时间100μs,输入电压范围为0~5V,增加某些外部电路后,输入模拟电压可为 5V。
该芯片内有输出数据锁存器,当与计算机连接时,转换电路的输出可以直接连接在CPU数据总线上,无需附加逻辑接口电路。
ADC0804芯片管脚如图11.13.1所示引脚名称及意义如下:ADC0804芯片管脚VIN+、VIN-:ADC0804的两模拟信号输出端,用以接收单极性、双极性和差模输入信号。
DB7~DB0:A/D转换器数据输出端,该输出端具有三态特性,能与微机总线相接。
AGND:模拟信号地。
DGND:数字信号地。
CLKIN:外电路提供时钟脉冲输入端。
CLKR:内部时钟发生器外接电阻端,与CLKIN端配合可由芯片自身产生时钟脉冲,其频率为1.1/RC。
CS:片选信号输入端,低电平有效,一旦CS有效,表明A/D转换器被选中,可启动工作。
WR:写信号输入,接收微机系统或其它数字系统控制芯片的启动输入端,低电平有效,当CS、WR同时为低电平时,启动转换。
RD:读信号输入,低电平有效,当CS、RD同时为低电平时,可读取转换输出数据。
INTR:转换结束输出信号,低电平有效。
输出低电平表示本次转换已完成。
该信号常作为向微机系统发出的中断请求信号。
在使用时应注意以下几点:1.转换时序ADC0804控制信号的时序图如图所示,由图可见,各控制信号时序关系为:当CS与WR 同为低电平时,A/D转换被启动而在WR上升沿后100μs模数完成转换,转换结果存入数据锁存器,同时INTR自动变为低电平,表示本次转换已结束。
如CS、RD同时来低电平,则数据锁存器三态门打开,数字信号送出,而在RD高电平到来后三态门处于高阻状态。
2.零点和满刻度调节ADC0804的零点无需调整。
其中Vmax是输入电压的最大值,Vmin是输入电压的最小值。
当输入电压与VIN+值相当时,调整VREF/2端电压值是输出码为FEH或FFH。
3.参考电压的调节在使用A/D转换器时,为保证其转换精度,要求输入电压满量程使用,如输入电压动态范围较小,则可调节参考电压VREF,以保证小信号输入时ADC0804芯片8位的转换精度。
4.接地模数、数模转换电路中要特别注意到地线的正确连接,否则干扰很严重,以致影响转换结果的正确性。
A/D、D/A及取样-保持芯片上都提供了独立的模拟地(AGND)和数字地(DGND)的引脚。
在线路设计中,必须将所有的器件的模拟地和数字地分别相连,然后将模拟地与数字地仅在一点上相连接。
地线的正确连接方法。
3.1.3 PT100热敏电阻本题目使用铂热电阻PT100,其阻值会随着温度的变化而改变。
PT后的100即表示它在0℃时阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。
厂家提供有PT100在各温度下电阻值值的分度表,在此可以近似取电阻变化率为 0.385Ω/℃。
向PT100输入稳恒电流,再通过A/D转换后测PT100两端电压,即得到PT100的电阻值,进而算出当前的温度值。
采用2.55mA的电流源对PT100进行供电,然后用运算放大器LM324搭建的同相放大电路将其电压信号放大10倍后输入到AD0804中。
利用电阻变化率0.385Ω/℃的特性,计算出当前温度值。
3.2系统框图和流程图3.2.1系统框图3.2.2流程图3.2.3系统仿真测试4实验程序5总结数字温度计是为了测温而设计开发的。
在单片机技术与热敏电阻的巧妙结合下,可以有效测出温度,并实时数字显示,当温度超过限定值时会及时发出报警,提高了操作的安全性,同时为测量人员提供了方便。
本文设计应用中,主要进行了以下几方面的工作:(1)本文在前半部分详细叙述了利用热敏电阻,组成测温电桥的测温的原理及为何选用PT100,使我更加了解本设计的设计目的及要求。
(2)在了解热阻效应和PT100的工作原理的基础上研究和分析了系统设计方案,并对系统中遇到的不同的场景进行了分析;(3)完成了数字温度计系统的硬件选型和电路设计;(4)完成了系统的软件流程图设计;本文通过对数字温度计系统的设计过程及计算得出如下结论:本系统对有限温度范围内的温度测量具有较高的精度,实现了测量温度显示和超出限定温度报警功能,其主要技术指标达到了系统设计要求;本文关于数字温度计的设计,虽然可以满足广大普通客户的需求,也做了一些尝试性的探索工作,但是还存在很多不完善的地方,仍有许多方面有待进一步深入研究:(1)需要对热敏电阻的线性度和系统电路设计的可靠性进行进一步的研究;(2)本文在系统的精度方面研究非常局限,并没有做到非常精确,这就要求以后在这方面还有更近一步研究。