18.第22章-氢原子及原子结构

第18章原子结构知识点总结

第18章原子结构知识点总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

选修3-5知识点 第十八章原子结构 电子的发现 一、阴极射线 1876 年,德国物理学家戈德斯坦认为管壁上的荧光是由于玻璃受到的阴极发出的某种射线的撞击而引起的,并把这种未知射线称之为阴极射线。 二、电子的发现 1、汤姆逊发现电子,认为阴极射线的粒子是 电子且带负电,电子是原子的做成部分,是比原子更基本的物质单元。 2、密立根“油滴实验”测出电子电荷量: 3、密立根“油滴实验”发现是电荷是量子化的,即任何带电体倍。 4、电子的质量为: 5、质子质量与电子质量的比值为: 原子的核式结构模型 1、汤姆孙的西瓜模型:原子是一个球体,正电荷均匀分布在整个球体内,电子镶嵌其中。 一、卢瑟福的α粒子散射实验——利用碰撞中动量守恒原理

1、α粒子是从放射性物质(如铀和镭)中发射出来的快速运动的粒子,带有两个单位的正电荷,质量为氢原子质 量的4倍.电子质量的7300倍。 2、核式结构模型 ①在原子的中心有一个很小的核,叫做原子核。 ②原子的全部正电荷和几乎全部质量都集中在原子核里。 ③带负电的电子在核外空间绕着核旋转。 二、原子核的电荷与尺度 1、原子核的电荷等于核外电子数 2、原子核的半径10-15m,原子的半径10-10m,原子内十分空旷。 氢原子光谱 一、光谱 1、光谱是用光栅或棱镜可以把各种颜色的光按波长展开,获得波长(频率)和强度分布的记录。有时只是波长成分的记录。 2、有些光谱是一条条的亮线,我们把它们叫做谱线。 3、光谱可分为两类:线状谱和连续谱。 ①线状谱:由一条条分立的谱线(亮线)组成。 ②连续谱:由谱线(亮线)粘在一起的光带。

物理选修3---5第十八章:原子结构知识点汇总

物理选修3---5第十八章:原子结构知识点汇总 (训练版) 知识点一、电子的发现和汤姆生的原子模型: 1、电子的发现: 1897年英国物理学家汤姆生,对阴极射线进行了一系列的研究,从而 发现了电子。电子的发现表明:原子存在精细结构,从而打破了原子不可再分的观念。 2、汤姆生的原子模型: 1903年汤姆生设想原子是一个带电小球,它的正电荷均匀分布在整个球体内,而带负电的电子镶嵌在正电荷中。这就是汤姆生的枣糕式原子模型。 知识点二、α粒子散射实验和原子核结构模型 1、α粒子散射实验:1909年,卢瑟福及助手盖革手吗斯顿完成 ①实验装置的组成:放射源、金箔、荧光屏 1

②实验现象: a. 绝大多数α粒子穿过金箔后,仍沿原来方向运动, 不发生偏转。 b. 有少数α粒子发生较大角度的偏转 c. 有极少数α粒子的偏转角超过了90度,有的几乎达到180度,即被反向弹回。 2、原子的核式结构模型: 由于α粒子的质量是电子质量的七千多倍,所以电子不会使α粒子运动方向发生明显的改变,只有原子中的正电荷才有可能对α粒子的运动产生明显的影响。如果正电荷在原子中的分布,像汤姆生模型那模均匀分布,穿过金箔的α粒了所受正电荷的作用力在各方向平衡,α粒了运动将不发生明显改变。散射实验现象证明,原子中正电荷不是均匀分布在原子中的。 1911年,卢瑟福通过对α粒子散射实验的分析计算提出原子核式结构模型:在原子中心存在一个很小的核,称为原子核,原子核集中了原子所有正电荷和几乎全部的质 量,带负电荷的电子在核外空间绕核旋转。原子核半径小于1014-m,原子轨道半径约1010-m。 3、卢瑟福对实验结果的解释 电子对α粒子的作用忽略不计。 因为原子核很小,大部分α粒子穿过原子时离原子核很远,受到较小的库仑斥力,运动几乎不改变方向。 极少数α粒子穿过原子时离原子核很近,因此受到很强的库仑斥力,发生大角度散射。

大学无机化学第五章试题及答案

第五章 原子结构和元素周期表 本章总目标: 1:了解核外电子运动的特殊性,会看波函数和电子云的图形 2:能够运用轨道填充顺序图,按照核外电子排布原理,写出若干元素的电子构型。 3:掌握各类元素电子构型的特征 4:了解电离势,电负性等概念的意义和它们与原子结构的关系。 各小节目标: 第一节:近代原子结构理论的确立 学会讨论氢原子的玻尔行星模型213.6E eV n = 。 第二节:微观粒子运动的特殊性 1:掌握微观粒子具有波粒二象性(h h P mv λ= =)。 2:学习运用不确定原理(2h x P m π???≥ )。 第三节:核外电子运动状态的描述 1:初步理解量子力学对核外电子运动状态的描述方法——处于定态的核外电子在核外空间的概率密度分布(即电子云)。 2:掌握描述核外电子的运动状态——能层、能级、轨道和自旋以及4个量子数。 3:掌握核外电子可能状态数的推算。 第四节:核外电子的排布 1:了解影响轨道能量的因素及多电子原子的能级图。 2;掌握核外电子排布的三个原则: ○ 1能量最低原则——多电子原子在基态时,核外电子尽可能分布到能量最低的院子轨道。 ○ 2Pauli 原则——在同一原子中没有四个量子数完全相同的电子,或者说是在同一个原子中没有运动状态完全相同的电子。 ○3Hund 原则——电子分布到能量简并的原子轨道时,优先以自旋相同的方式

分别占据不同的轨道。 3:学会利用电子排布的三原则进行 第五节:元素周期表 认识元素的周期、元素的族和元素的分区,会看元素周期表。 第六节:元素基本性质的周期性 掌握元素基本性质的四个概念及周期性变化 1:原子半径——○1从左向右,随着核电荷的增加,原子核对外层电子的吸引力也增加,使原子半径逐渐减小;○2随着核外电子数的增加,电子间的相互斥力也增强,使得原子半径增加。但是,由于增加的电子不足以完全屏蔽增加的核电荷,因此从左向右有效核电荷逐渐增加,原子半径逐渐减小。 2:电离能——从左向右随着核电荷数的增多和原子半径的减小,原子核对外层电子的引力增大,电离能呈递增趋势。 3:电子亲和能——在同一周期中,从左至右电子亲和能基本呈增加趋势,同主族,从上到下电子亲和能呈减小的趋势。 4:电负性——在同一周期中,从左至右随着元素的非金属性逐渐增强而电负性增强,在同一主族中从上至下随着元素的金属性依次增强而电负性递减。 习题 一选择题 1.3d电子的径向函数分布图有()(《无机化学例题与习题》吉大版) A.1个峰 B.2个峰 C. 3个峰 D. 4个峰 2.波函数一定,则原子核外电子在空间的运动状态就确定,但仍不能确定的是() A.电子的能量 B.电子在空间各处出现的几率密度 C.电子距原子核的平均距离 D.电子的运动轨迹 3.在下列轨道上的电子,在xy平面上的电子云密度为零的是()(《无机化学例题与习题》吉大版) A .3s B .3p x C . 3p z D .3d z2 4.下列各组量子数中,合理的一组是() A .n=3,l=1,m l=+1,m s= +1/2 B .n=4,l=5,m l= -1,m s= +1/2 C .n=3,l=3,m l=+1,m s= -1/2

高中物理第十八章原子结构18

——教学资料参考参考范本——高中物理第十八章原子结构18 ______年______月______日 ____________________部门

新提升·课时作业 基础达标 1.(多选)下列对玻尔理论的评价不正确的是( ) A.玻尔原子理论解释了氢原子光谱规律,为量子力学的建立奠定了基础 B.玻尔原子理论的成功之处是引入量子概念 C.玻尔原子理论的成功之处是它保留了经典理论中的一些观点 D.玻尔原子理论与原子的核式结构是完全对立的 【解析】玻尔理论成功解释氢原子光谱,但对复杂的原子光谱不能解释,选项C、D错误. 【答案】CD 2.(多选)光子的发射和吸收过程是( ) A.原子从基态跃迁到激发态要放出光子,放出光子的能量等于原子在始、末两个能级的能量差 B.原子不能从低能级向高能级跃迁 C.原子吸收光子后从低能级跃迁到高能级,放出光子后从较高能级跃迁到较低能级 D.原子无论是吸收光子还是放出光子,吸收的光子或放出的光子的能量恒等于始、末两个能级的能量差值 【解析】原子从基态跃迁到高能级激发态要吸收能量,从高能级激发态跃迁到低能级激发态要放出能量,故选C、D 【答案】CD 3.氢原子的基态能量为E1,如图所示,四个能级图能正确代表氢原子能级的是( )

【解析】根据氢原子能级图特点:上密下疏,根据题意联系各激发态与基态能量关系En=E1,故C正确. 【答案】C 4.根据玻尔的原子结构模型,原子中电子绕核运转的轨道半径( ) A.可以取任意值 B.可以在某一范围内取任意值 C.可以取不连续的任意值 D.是一些不连续的特定值 【解析】按玻尔的原子理论:原子的能量状态对应着电子不同的运动轨道,由于原子的能量状态是不连续的,则其核外电子的可能轨道是分立的,且是特定的,故上述选项只有D正确. 【答案】D 5.根据玻尔的氢原子理论,电子在各条可能轨道上运动的能量是指( ) A.电子的动能 B.电子的电势能 C.电子的电势能与动能之和

第5章 原子结构和元素周期系 习题及参考答案Yao

第五章 原子结构和元素周期系 1) 氢原子的可见光谱中有一条谱线,是电子从n =4跳回n =2的轨道时放出的辐射能所产生的,试计算该谱线的波长。 解: 18422.1810=J 4E -?—,18 22 2.1810=J 2E -?— 1818181922222.1810 2.181011=()()=2.1810 4.08710J 4224E ----?????---?-=? ??? ∵=E h ν? ∴ 191914134 4.08710 4.08710J ==6.16910s 6.62610J s h ν----??=?? 817141 310m s ==4.86310m=486.3nm 6.16910s c λν----?=?? 2) 下列的电子运动状态是否存在?为什么? ① n =2,l =2, m =0, m s =+2 1; ② n =3, l =2, m =2, m s =+ 2 1; ③ n =4,l =1, m =-3, m s =+2 1; ④ n =3,l =2, m =0, m s =+ 2 1。 解:① 不存在,因为 l = n 。 ②、④ 存在。 ③ 不存在。因为m > l 3) 对下列各组轨道,填充合适的量子数: ① n =?,l =2, m =0, m s =+2 1; ② n =2,l =?, m =-1, m s =-2 1; ③ n =4,l =2, m =0,m s =?; ④ n =2,l =0, m =?, m s =+ 2 1。 解:① n ≥3;② l = 1; ③m s = +1 2 或 -1 2; ④ m = 0。 4) 试用s, p, d, f 符号表示下列各元素原子的电子分布式,并分别指出它们各属于第几周期、 第几族?① 18Ar ; ② 26Fe ; ③ 29Cu ; ④ 35Br 。 解: ① 18Ar 1s 22s 22p 63s 23p 6 第三周期 ⅧA 族 ② 26Fe 1s 2 2s 22p 63s 23p 63d 64s 2 第四周期 ⅧB 族 ③ 29Cu 1s 22s 22p 63s 23p 63d 104s 1 第四周期 ⅠB 族

物理选修第十八章原子结构知识点汇总

1 物理选修3---5第十八章:原子结构知识点汇总 (训练版) 知识点一、电子的发现和汤姆生的原子模型: 1、电子的发现: 1897年英国物理学家汤姆生,对阴极射线进行了一系列的研究,从而发现了电子。电子的发现表明:原子存在精细结构,从而打破了原子不可再分的观念。 2、汤姆生的原子模型: 1903年汤姆生设想原子是一个带电小球,它的正电荷均匀分布在整个球体内,而带负电的电子镶嵌在正电荷中。这就是汤姆生的枣糕式原子模型。 知识点二、α粒子散射实验和原子核结构模型 1、α粒子散射实验:1909年,卢瑟福及助手盖革手吗斯顿完成 ①实验装置的组成:放射源、金箔、荧光屏 ②实验现象: a. 绝 大多数α 粒子穿过 金箔后,仍沿原来方向运动,不发生偏转。

b. 有少数α粒子发生较大角度的偏转 c. 有极少数α粒子的偏转角超过了90度,有的几乎达到180度,即被反向弹回。 2、原子的核式结构模型: 由于α粒子的质量是电子质量的七千多倍,所以电子不会使α粒子运动方向发生明显 的改变,只有原子中的正电荷才有可能对α粒子的运动产生明显的影响。如果正电荷在原子中的分布,像汤姆生模型那模均匀分布,穿过金箔的α粒了所受正电荷的作用力在各方向平衡,α粒了运动将不发生明显改变。散射实验现象证明,原子中正电荷不是均匀分布在原子中的。 1911年,卢瑟福通过对α粒子散射实验的分析计算提出原子核式结构模型:在原子中心存在一个很小的核,称为原子核,原子核集中了原子所有正电荷和几乎全部的质 量,带负电荷的电子在核外空间绕核旋转。原子核半径小于1014-m,原子轨道半径约1010-m。 3、卢瑟福对实验结果的解释 电子对α粒子的作用忽略不计。 因为原子核很小,大部分α粒子穿过原子时离原子核很远,受到较小的库仑斥力,运动几乎不改变方向。 极少数α粒子穿过原子时离原子核很近,因此受到很强的库仑斥力,发生大角度散射。 4、核式结构的不足 认为原子寿命的极短;认为原子发射的光谱应该是连续的。 知识点三、氢原子光谱

高中物理 第18章 原子结构章末分层突破 新人教选修3-5

第18章原子结构 (时间:60分钟满分:100分) 一、选择题(本题包括8小题,每小题6分,共48分,在每小题给出的5个选项中有3项是符合题目要求的,选对一个得2分,选对2个得4分,选对3个得6分,每选错1个扣3分,最低得分为0分.) 1.在α粒子散射实验中,少数α粒子发生了大角度偏转,这些α粒子( ) A.一直受到重金属原子核的斥力作用 B.动能不断减小 C.电势能先增大后减小 D.出现大角度偏转是与电子碰撞的结果 E.出现大角度偏转的原因是占原子质量绝大部分的带正电的那部分物质集中在很小的空间范围 【解析】α粒子一直受到斥力的作用,斥力先做负功后做正功,α粒子的动能先减小后增大,势能先增大后减小.α粒子的质量远大于电子的质量,与电子碰撞后其运动状态基本不变,A、C、E项正确. 【答案】ACE 2.下列叙述中符合物理学史的有( ) A.汤姆孙通过研究阴极射线实验,发现了电子 B.卢瑟福通过对α粒子散射实验现象的分析,证实了原子是可以再分的 C.卢瑟福通过对α粒子散射实验现象的分析,提出了原子的核式结构模型 D.巴耳末根据氢原子光谱分析,总结出了氢原子光谱可见光区波长公式 E.玻尔提出的原子模型,彻底否定了卢瑟福的原子核式结构学说 【解析】汤姆孙通过研究阴极射线发现了电子,A对;卢瑟福通过对α粒子散射实验现象的分析,得出了原子的核式结构模型,B错,C对;巴耳末根据氢原子光谱在可见光区的四条谱线得出巴耳末公式,D正确;玻尔的原子模型是在核式结构模型的基础上提出的几条假设,并没有否定核式结构学说,E错误. 【答案】ACD 3.关于阴极射线的性质,下列说法正确的是( ) A.阴极射线是电子打在玻璃管壁上产生的 B.阴极射线本质是电子 C.阴极射线在电磁场中的偏转表明阴极射线带正电 D.阴极射线的比荷比氢原子核大 E.根据阴极射线在电场和磁场中的偏转情况可以判断阴极射线的带电性质 【解析】阴极射线是原子受激发射出的电子流,故A、C错,B、E对;电子带电量与

第5章 原子结构自测题

第5章原子结构自测题 一、单选题 1.下列说法中符合泡里原理的是() (A)在同一原子中,不可能有四个量子数完全相同的电子 (B)在原子中,具有一组相同量子数的电子不能多于两子 (C)原子处于稳定的基态时,其电子尽先占据最低的能级 (D)在同一电子亚层上各个轨道上的电子分布应尽先占据不同的轨道,且自旋平行。 2.下列哪一原子的原子轨道能量与角量子数无关? (A)Na(B)Ne (C)F ( D) H 3.某基态原子的第六电子层只有2个电子时,则第五电子层上电子数目为() (A)8 (B)18 (C)8-18 (D)8-32 4.下列各组量子数,不正确的是() (A)n=2,l=1,m=0,ms=-1/2 (B)n=3,l=0,m=1,ms=1/2 (C)n=2,l=1,m=-1,ms=1/2 (D)n=3,l=2,m=-2,ms=-1/2 5.下列基态离子中,具有3d7电子构型的是() (A)Mn2+(B)Fe2+(C)Co2+(D)Ni2+ 6.和Ar具有相同电子构型的原子或离子是() (A)Ne (B)Na+(C)F-(D)S2- 7.基态时,4d和5s均为半充满的原子是() (A)Cr (B)Mn (C)Mo (D)Tc 8.在下列离子的基态电子构型中,未成对电子数为5的离子是() (A)Cr3+(B)Fe3+(C)Ni2+(D)Mn3+ 9.某元素的原子在基态时有6个电子处于n=3,l=2的能级上,其未成对的电子数为 () (A)4 (B)5 (C)3 (D)2 10.下列原子的价电子构型中,第一电离能最大的原子的电子构型是() (A)3s23p1 (B)3s23p2(C)3s23p3(D)3s23p4 11.角量子数l=2的某一电子,其磁量子数m ( ) (A)只有一个数值(B)可以是三个数值中的任一个 (C)可以是五个数值中的任一个(D)可以有无限多少数值 二、填空题 1.位于第四周期的A、B、C、D四种元素,其价电子数依次为1,2,2,7,其原子序数按A、B、C、D的顺序增大。已知A和B的次外层电子数为8,C和D的次外层电子数为18,由此可以推断四种元素的符号是。其中C和D所形成的化合物的化学式应为。 2.已知某元素的四个价电子的四个量子数分别为(4,0,0,+1/2),(4,0,0,-1/2),(3,2,0, +1/2),(3,2,1,+1/2),则该元素原子的价电子排布为, 此元素是。

第18章原子结构导学案

学习目标: (1)了解阴极射线及电子发现的过程;初步了解原子不是最小不可分割的粒子。 (2)知道汤姆孙研究阴极射线发现电子的实验及理论推导。培养学生对问题的分析和解决能力. 课前预习案: 一、阴极射线 1.演示实验:如图所示,真空玻璃管中,K 是金属板制成的______,接在感应线圈的______上,金属环制成的______A ,接感应线圈的______,接通电源后,观察管端玻璃壁上亮度的变化. 2.实验现象:德国物理学家普吕克尔在类似的实验中看到了玻璃壁上淡淡的______及管中物体在玻璃壁上的______. 3.实验分析:荧光的实质是由于玻璃受到______发出的某种射线的撞击而引起的,这种射线被命名为__________. 二、电子的发现 1.汤姆孙对阴极射线的探究 (1)让阴极射线分别通过电场或磁场,根据______现象,证明它是________的粒子流并求出了其比荷. (2)换用不同材料的阴极做实验,所得粒子的__________相同,是氢离子比荷的近两千倍. (3)结论:粒子带______,其电荷量的大小与________大致相同,而质量________氢离子的质量,后来组成阴极射线的粒子被称为______. 课堂探究案: 一、第47页中的研究阴极射线的实验, 分组讨论如何判断射线的电性? 二、电子的发现 物理学家汤姆孙在研究阴极射线时发现了电子。实验装置如图(课本图18.1-2所示),从高压电场的阴极发出的阴极射线,穿过C 1C 2后沿直线打在荧光屏A '上。 (1)当在平行极板上加一如图所示的电场,发现阴极射线打在荧光屏上的位置向下偏,则 ' +

选修3-5 教案 第十八章 原子结构

人教版高三年级选修3-5第十八章第一节 §18.1 电子的发现课堂导学案 【学习目标】 (一)知识与技能 1.了解阴极射线及电子发现的过程 2.知道汤姆孙研究阴极射线发现电子的实验及理论推导 (二)过程与方法 培养学生对问题的分析和解决能力,初步了解原子不是最小不可分割的粒子。 (三)情感、态度与价值观 理解人类对原子的认识和研究经历了一个十分漫长的过程,这一过程也是辩证发展的过程.根据事实建立学说,发展学说,或是决定学说的取舍,发现新的事实,再建立新的学说.人类就是这样通过辩证发展的行为,经过分析和研究,逐渐认识原子的。 【教学重点】阴极射线的研究 【教学难点】汤姆孙发现电子的理论推导 【课时安排】1 课时 【导学过程】 一、阴极射线 用3分钟的时间阅读课本P47“阴极射线”部分,回答下列问题: (1)德国物理学家戈德斯坦认为管壁上的荧光是从阴极发出的某种射线引起的,并把这种射线命名为。 (2)对于阴极射线的本质,有大量的科学家作出大量的科学研究,主要形成了两种观点:①电磁波说:认为这种射线的本质是。 ②粒子说:认为这种射线的本质是。 二、电子的发现 思考一:你能否设计一个实验来进行阴极射线的研究,能通过实验现象来说明这种射线是一种电磁波还是一种高速粒子流? 思考二:你能否设计一个实验来判断运动的带电粒子所带电荷的正负? (提示:根据带电粒子在电、磁场中的运动规律) 用5分钟的时间阅读课本P47“电子的发现”部分和P48“思考与讨论”部分,讨论交流以下问题:(实验装置如课本图18.1-2所示) 从高压电场的阴极发出的阴极射线,穿过D1D2后沿直线打在荧光屏P1上。

2021学年高中物理第18章原子结构4玻尔的原子模型教案人教版选修3_5.doc

4 玻尔的原子模型 [学习目标] 1.知道玻尔原子理论基本假设的主要内容.(重点)2.了解能级、能级跃迁、能量量子化以及基态、激发态等概念.(重点)3.掌握用玻尔原子理论简单解释氢原子模型.(重点、难点)4.了解玻尔模型的不足之处及其原因. 一、玻尔原子理论的基本假设 1.玻尔原子模型 (1)原子中的电子在库仑力的作用下,绕原子核做圆周运动. (2)电子绕核运动的轨道是量子化的. (3)电子在这些轨道上绕核的转动是稳定的,且不产生电磁辐射. 2.定态 当电子在不同轨道上运动时,原子处于不同的状态,原子在不同的状态中具有不同的能量,即原子的能量是量子化的,这些量子化的能量值叫做能级,原子具有确定能量的稳定状态,称为定态.能量最低的状态叫做基态,其他的能量状态叫做激发态. 3.跃迁 当电子从能量较高的定态轨道(其能量记为E m)跃迁到能量较低的定态轨道(其能量记为E n,m>n)时,会放出能量为hν的光子,该光子的能量hν=E m-E n,这个式子被称为频率条件,又称辐射条件. 二、玻尔理论对氢原子光谱的解释 1.玻尔理论对氢光谱的解释 (1)解释巴耳末公式 ①按照玻尔理论,从高能级跃迁到低能级时辐射的光子的能量为hν=E m-E n. ②巴耳末公式中的正整数n和2正好代表能级跃迁之前和之后所处的定态轨道的量子数n和2.并且理论上的计算和实验测量的里德伯常量符合得很好. (2)解释氢原子光谱的不连续性 原子从较高能级向低能级跃迁时放出光子的能量等于前后两个能级差,由于原子的能级是分立的,所以放出的光子的能量也是分立的,因此原子的发射光谱只有一些分立的亮线.2.玻尔理论的局限性 (1)成功之处 玻尔理论第一次将量子观念引入原子领域,提出了定态和跃迁的概念,成功解释了氢原子光谱的实验规律. (2)局限性

高中物理第十八章原子结构第1节电子的发现学案解析版新人教版选修3_5

第1节电子的发现 1.英国物理学家汤姆孙发现了电子。 2.组成阴极射线的粒子——电子。 3.密立根通过“油滴实验”精确测定了电子电荷量。 4.密立根实验发现:电荷是量子化的,即任何带电体的电荷只能 是e的整数倍。 一、阴极射线 1.实验装置:如图所示真空玻璃管中K是金属板制成的阴极,A是金属环制成的阳极;把它们分别连在感应圈的负极和正极上。 2.实验现象:玻璃壁上出现淡淡的荧光及管中物体在玻璃壁上的影。 3.阴极射线:荧光是由于玻璃受到阴极发出的某种射线的撞击而引起的,这种射线被命名为阴极射线。 二、电子的发现 1.汤姆孙的探究 (1)让阴极射线分别通过电场和磁场,根据偏转情况,证明它是B(A.带正电B.带负电)的粒子流并求出了它的比荷。 (2)换用不同材料的阴极做实验,所得比荷的数值都相同。证明这种粒子是构成各种物质的共有成分。 (3)进一步研究新现象,不论是由于正离子的轰击,紫外光的照射,金属受热还是放射性物质的自发辐射,都能发射同样的带电粒子——电子。由此可见,电子是原子的组成部分,是比原子更基本的物质单元。 2.密立根“油滴实验” (1)精确测定电子电荷。 (2)电荷是量子化的。 3.电子的有关常量 1.自主思考——判一判 (1)玻璃壁上出现的淡淡荧光就是阴极射线。(×) (2)玻璃壁上出现的影是玻璃受到阴极射线的撞击而产生的。(×) (3)阴极射线在真空中沿直线传播。(√) (4)英国物理学家汤姆孙认为阴极射线是一种电磁辐射。(×) (5)组成阴极射线的粒子是电子。(√) (6)电子是原子的组成部分,电子电荷量可以取任意数值。(×) 2.合作探究——议一议

高中物理选修3-5氢原子的能级结构

高考能及跃迁试题5点破解 氢原子的跃迁是“氢原子的能级结构”一节的重点内容、同学们学习应注意以下五个不同。 一. 应注意一群原子和一个原子跃迁的不同 一群氢原子就是处在n 轨道上有若干个氢原子,某个氢原子向低能级跃迁时,可能从n 能级直接跃迁到基态,产生一条谱线;另一个氢原子可能从n 能级跃迁到某一激发态,产生另一条谱线,该氢原子再从这一激发态跃迁到基态,再产生一条谱……由数学知识得到一群 氢原子处于n 能级时可能辐射的谱线条数为C n n n 2 12 = -() 。对于只有一个氢原子的,该氢原子可从n 能级直接跃迁到基态,故最少可产生一条谱线,不难推出当氢原子从n 能级逐级往下跃迁时,最多可产生n -1条谱线。 例1. 有一个处于量子数n =4的激发态的氢原子,它向低能级跃迁时,最多可能发出几种频率的光子? 解析:对于一个氢原子,它只能是多种可能的跃迁过程的一种,如图1所示,由能级跃迁规律可知:处于量子数n =4的氢原子跃迁到n =3,n =2,n =1较低能级,所以最多的谱线只有3条。 图1 例2. 现有1200个氢原子被激发到量子数为4的能级上,若这些受激氢原子最后都回到基态,则在此过程中发出的光子总数是多少?假定处在量子数为n 的激发态的氢原子跃迁到 各较低能级的原子数都是处在该激发态能级上的原子总数的1 1 n -( ) A. 2200 B. 2000 C. 1200 D. 2400 解析:这是全国理综考题,由题中所给信息,处于量子数n =4的氢原子跃迁到n =3,n =2,n =1较低能级的原子数分别为12001 41 400? -=个,则辐射光子数为40031200?=

物理_选修3-5_教师用书_补充习题_第十八章_原子结构

补充习题_第十八章_原子结构 A组 l.下列实验现象中,支持阴极射线是带电微粒观点的是( ) A.阴极射线可以透过薄铝片 B.阴极射线通过电场或磁场时,要产生相应偏转 C.阴极射线透过镍单晶时,产生衍射现象 D’阴极射线轰击荧光物质,发出荧光 2.若在如图18-14所示的阴极射线管中部加竖直向上的电场, 则应加什么方向的大小合适的磁场才能让阴极射线不偏转( ) A.竖直向上B.竖直向下C.垂直纸面向里D.垂直纸面向外 3.否定汤姆孙原子模型的实验及其现象是( ) A.在a粒子散射实验中,绝大多数a粒子穿过金箔后,基本上仍沿原来的方向前进 B.在a粒子散射实验中,有少数a粒子发生了大角度偏转,有的偏转角度甚至大于90。 c.阴极射线可在磁场或电场中偏转 D.荧光物质在阴极射线或某些电磁波的照射下可以发出可见光 4.图18 15所示为卢瑟福a粒子散射实验的原子核和两个a粒子的径迹,其中可能正确的是() 5.在a粒子散射实验中,没有考虑a粒子跟电子碰撞所产生的效果,这是由于( ) A.电子体积实在太小,a粒子完全碰不到它 B.a粒子跟电子相碰时,损失的动量很小,可忽略 C.a粒子跟各电子碰撞的效果互相抵消 D.由于电子是均匀分布的,a粒子受电子作用力的合力为O 6.下列说法中正确的是( ) A.阴极射线的实质是电子流 B.粒子散射实验揭示了原子不是组成物质的最小微粒 c.玻尔的原子结构理论成功地解释了氢原子的分立光谱,因此玻尔的原子结构理论已完全揭示了微观粒子运动的规律 D.玻尔原子结构理论中的轨道量子化和能量量子化的假说,启发了普朗克将量子化的概念用于黑体辐射的研究 7.关于原子的特征谱线,下列说法中正确的是( ) A.不同原子的发光频率是不一样的,每种原子都有自己的特征谱线 B.原子的特征谱线可能是由于原子从高能态向低能态跃迁时放出光子而形成的 C.可以用特征谱线进行光谱分析来鉴别物质和确定物质的组成成分 D.原子的特征谱线是原子具有核式结构的有力证据 8.下列有关氢原子光谱的说法中,正确的是( ) A.氢原子的发射光谱是连续谱

(完整版)高中物理第18章《原子结构》测试题

高中精品试题 《原子结构》测试题 本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100,考试时间60分钟。 第Ⅰ卷(选择题共40分) 一、选择题(本题共10小题,每小题4分,共40分。在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错或不选的得0分。) 1.关于α粒子散射实验的下列说法中正确的是() A.在实验中观察到的现象是绝大多数α粒子穿过金箔后,仍沿原来方向前进,少数发生了较大偏转,极少数偏转超过90°,有的甚至被弹回接近180° B.使α粒子发生明显偏转的力是来自带负电的核外电子,当α粒子接近电子时,是电子的吸引力使之发生明显偏转 C.实验表明原子中心有一个极小的核,它占有原子体积的极小部分 D.实验表明原子中心的核带有原子的全部正电荷及全部质量 解析:A项是对该实验现象的正确描述,正确;B项,使α粒子偏转的力是原子核对它的静电排斥力,而不是电子对它的吸引力,故B错;C项是对实验结论之一的正确分析;原子核集中了全部正电荷和几乎全部质量,因核外还有电子,故D错。 答案:A、C 2.关于太阳光谱,下列说法正确的是() A.太阳光谱是吸收光谱 B.太阳光谱中的暗线,是太阳光经过太阳大气层时某些特定频率的光被吸收后而产生的 C.根据太阳光谱中的暗线,可以分析太阳的物质组成 D.根据太阳光谱中的暗线,可以分析地球大气层中含有哪些元素 解析:太阳光谱是吸收光谱。因为太阳是一个高温物体,它发出的白光通过温度较低的太阳大气层时,会被太阳大气层中某些元素的原子吸收,因此我们观察到的太阳光谱是吸收光谱,所以分析太阳的吸收光谱,可知太阳大气层的物质组成,而某种物质要观察到它的吸收光谱,要求它的温度不能太低,但也不能太高,否则会直接发光,由于地球大气层的温度很低,所以太阳光通过地球大气层时不会被地球大气层中的物质原子吸收。故选A、B。

第18章原子结构知识点总结

选修3-5知识点 第十八章原子结构 18.1电子的发现 一、阴极射线 1876 年,德国物理学家戈德斯坦认为管壁上的荧光是由于玻璃受到的阴极发出的某种射线的撞击而引起的,并把这种未知射线称之为阴极射线。 二、电子的发现 1、汤姆逊发现电子,认为阴极射线的粒子是 电子且带负电,电子是原子的做成部分,是比原子更基本的物质单元。 2、密立根“油滴实验”测出电子电荷量: 3、密立根“油滴实验”发现是电荷是量子化的,即任何带电体倍。 4、电子的质量为: 5、质子质量与电子质量的比值为: 18.2原子的核式结构模型 1、汤姆孙的西瓜模型:原子是一个球体,正电荷均匀分布在整个球体内,电子镶嵌其中。 一、卢瑟福的α粒子散射实验——利用碰撞中动量守恒原理

1、α粒子是从放射性物质(如铀和镭)中发射出来的快速运动的粒子,带有两个单位的正电荷,质量为氢原子质 量的4倍.电子质量的7300倍。 2、核式结构模型 ①在原子的中心有一个很小的核,叫做原子核。 ②原子的全部正电荷和几乎全部质量都集中在原子核里。 ③带负电的电子在核外空间绕着核旋转。 二、原子核的电荷与尺度 1、原子核的电荷等于核外电子数 2、原子核的半径10-15m,原子的半径10-10m,原子内十分空旷。 18.3氢原子光谱 一、光谱 1、光谱是用光栅或棱镜可以把各种颜色的光按波长展开,获得波长(频率)和强度分布的记录。有时只是波长成分的记录。 2、有些光谱是一条条的亮线,我们把它们叫做谱线。 3、光谱可分为两类:线状谱和连续谱。 ①线状谱:由一条条分立的谱线(亮线)组成。 ②连续谱:由谱线(亮线)粘在一起的光带。

第二节氢原子的波函数

第二节氢原子的波函数 函数 氢原子是所有原子中最简单的原子,它核外仅有一个电子,电子在核外运动时的势能,只决定于核对它的吸引,它的Schr?dinger方程可以精确求解。能够精确求解的还有类氢离子,如He+、Li2+离子等。 为了求解方便,要把直角坐标表示的ψ(x,y,z) 改换成球极坐标表示的ψ(r,θ,φ),二者的关系如图8-3所示: r表示P点与原点的距离,θ、φ称为方位角。x = r sinθcosφy = r sinθsinφz = r cosθ 解出的氢原子的波函数ψn,l,m(r,θ,φ)及其相应能量列于表8-1中。 图8-3 直角坐标转换成球极坐标 表8-1氢原子的一些波函数及其能量 轨道ψn,l,m(r,θ, φ)R n,l (r)Y l,m (θ, φ)能量/J 1s A1e-B r A1e-B r×10-18 2s A2re-B r/2 A2re-B r/2×10-18/22 2p z A3re-B r/2cosθA3re-B r/2 cosθ ×10-18/22 2p x A3re-B r/2sinθcosφA3re-B r/2 sinθcosφ ×10-18/22 2p y A3re-B r/2sinθsinφA3re-B r/2 sinθsinφ ×10-18/22 * A1、A2、A3、B均为常数 为了方便起见,量子力学借用Bohr N H D理论中“原子轨道”(atomic orbit)的概念,将波函数

仍称为原子轨道(atomic orbital),但二者的涵义截然不同。例如:Bohr N H D认为基态氢原子的原子轨道是半径等于pm的球形轨道。而量子力学中,基态氢原子的原子轨道是波函数ψ1S(r,θ,φ)=A1e-Br ,其中A1和B均为常数,它说明ψ1S在任意方位角随离核距离r改变而变化的情况,它代表氢原子核外1s电子的运动状态,但并不表示1s电子有确定的运动轨道。1s电子具有的能量是×10-18J。氢原子核外电子的运动状态还有许多激发态,如ψ2s(r,θ,φ)、(r,θ,φ)等,相应的能量是×10-19J。 量子数 要解出薛定谔方程的ψ和E,必须要满足一定的条件,才能使解是合理的,因此,在求解过程中必需引进n , l , m三个量子数。这三个参数的取值和组合一定时,就确定了一个波函数。三个量子数的取值限制和它们的物理意义如下: 主量子数(principal quantum number) 常用符号n表示。它可以取非零的任意正整数,即1,2,3 …n 。它决定电子在核外空间出现概率最大的区域离核的远近,并且是决定电子能量高低的主要因素。n = 1时,电子离核的平均距离最近,能量最低。n愈大,电子离核的平均距离愈远,能量愈高。所以n也称为电子层数(electron shell number)。对氢原子来说电子的能量完全由主量子数决定,即由式 决定。从这个式子可以看出,n愈大,E就愈大(负值的绝对值愈小)。 轨道角动量量子数(orbital angular momentum quantum number) 常用符号l表示。它的取值受主量子数的限制,它只能取小于n的正整数并包括零,即l可以等于0、1、2、3 …(n– 1),共可取n个数值。按光谱学的习惯,l = 0时,用符号s表示,l = 1时,用符号p表示,l = 2时,用符号d表示,l = 3时用符号f表示等等。轨道角动量量子数决定原子轨道的形状。如l = 0时,原子轨道呈球形分布;l = 1时,原子轨道呈双球形分布等。在多电子原子中,轨道角动量量子数也是决定电子能量高低的因素。所以,在多电子原子中,主量子数相同、轨道角动量量子数不同的电子,其能量是不相等的,即在同一电子层中的电子还可分为若干不同的能级(energy level)或称为亚层(subshell),当主量子n相同时,轨道角动量量子数l愈大,能量愈高。于是有 E n s<E n p<E n d<E n f。对氢原子来说,E n s = E n p = E n d = E n f。 磁量子数(magnetic quantum number) 常用m 表示。它的取值受轨道角动量量子数的限制。即m 可以等于0、±1、±2,…±l等整数。所以,磁量子数共有(2l+1)个数值。磁量子数决定原子轨道在空间的伸展方向,但它与电子的能量无关。例如l =1时,磁量子数可以有三个取值,即m = 0、±1,说明p轨道在空间有三种不同的伸展方向,即共有3个p轨道。但这3个p轨道的能量相同,即能级相同,称为简并或等价轨道。 综上所述,可以看到n、l、m这三个量子数的组合有一定的规律。例如,n = 1时,l只能等于0,m也只能等于0,三个量子数的组合只有一种,即1、0、0,说明第一电子层只有一个能级,也只有一个轨道,相应的波函数写成ψ1,0,0或写成ψ1s 。n = 2时,l可以等于0和1,所以第二电子层共

(浙江专版)2018年高中物理第十八章原子结构章末小结学案新人教版选修3_5

第十八章原子结构 错误! 1.α粒子散射实验结果及由此建立的学说 (1)实验结果:α粒子穿过金箔后,绝大多数α粒子仍沿原来的方向前进;少数α粒子有较大的偏转;极少数α粒子的偏角超过90°,有的甚至达到180°。 (2)核式结构学说:在原子的中心有一个很小的原子核,原子的全部正电荷和几乎全部质量都集中在原子核内,电子绕核运转。 2.该部分主要考查对α粒子散射实验的理解与记忆及对实验结果的分析。 [典例1] (多选)关于α粒子散射实验现象的分析,下列说法正确的是( ) A.绝大多数α粒子沿原方向运动,说明正电荷在原子内均匀分布,是α粒子受力平衡的结果 B.绝大多数α粒子沿原方向运动,说明这些α粒子未受到明显的力的作用,说明原子内部是“空旷”的 C.极少数α粒子发生大角度偏转,说明原子内的粒子质量和电荷量比α粒子大得多但在原子内分布空间很小 D.极少数α粒子发生大角度偏转,说明原子内的电子对α粒子的吸引力很大 [解析]选BC 在α粒子散射实验中,绝大多数α粒子沿原方向运动,说明大多数α粒子未受到原子核明显的力的作用,也说明原子核相对原子来讲很小,原子内大部分空间是空的,故A错,B对;极少数α粒子发生大角度偏转,说明受到金原子核明显力作用的空间在原子内很小,α粒子偏转,而金原子核未动,说明金原子核的质量和电荷量远大于α粒子的质量和电荷量,电子的质量远小于α粒子,α粒子打在电子上,α粒子不会有明显偏转,故C对,D错。 1.玻尔原子模型 (1)量子化观点:电子的不同轨道半径、原子的能量、原子跃迁辐射或吸收光子的频率都只能是分立的、不连续的值。 (2)对应关系:电子处于某一可能轨道对应原子的一种能量状态。 (3)定态观点:电子在某一可能轨道上运动时,原子是不向外辐射电磁波的,轨道与能

第18章原子结构导学案

K A 1 B 2 Y A ' S 磁场 x 萤幕 D S S O 电场 A y + - e m y 1 y 2 + v 0 v 第18章 第1节电子的发现 课前预习案: 一、阴极射线 1.演示实验:如图所示,真空玻璃管中,K 是金属板制成的______, 接在感应线圈的______上,金属环制成的______A ,接感应线圈的 ______,接通电源后,观察管端玻璃壁上亮度的变化. 2.实验现象:德国物理学家普吕克尔在类似的实验中看到了玻璃壁 上淡淡的______及管中物体在玻璃壁上的______. 3.实验分析:荧光的实质是由于玻璃受到______发出的某种射线的撞击而引起的,这种射线被命名为__________. 二、电子的发现 1.汤姆孙对阴极射线的探究 (1)让阴极射线分别通过电场或磁场,根据______现象,证明它是________的粒子流并求出了其比荷. (2)换用不同材料的阴极做实验,所得粒子的__________相同,是氢离子比荷的近两千倍. (3)结论:粒子带______,其电荷量的大小与________大致相同,而质量________氢离子的质量,后来组成阴极射线的粒子被称为______. 课堂探究案: 一、第47页中的研究阴极射线的实验,分组讨论如何判断射线的电性? 二、电子的发现 物理学家汤姆孙在研究阴极射线时发现了电子。实验装置如图(课本图18.1-2所示),从高压电场的阴极发出的阴极射线,穿过C 1C 2后沿直线打在荧光屏A '上。 (1)当在平行极板上加一如图所示的电场,发现阴极射线打在荧光屏上的位置向下偏,则 可判定,阴极射线带有_____电荷。 (2)为使阴极射线不发生偏转, 则请思考可在平行极板区域 采取什么措施。 并求出 =0v ? (3)根据带电的阴极射线在电场中的运动情况,利用已有的知 识自行推导出电子比荷的表达式。其速度偏转角为: 则:L B L D Ey m q 2)2(+= 思考:利用磁场使带电的阴极射线发生偏转,能 否根据磁场的特点和带电粒子在磁场中的运动规律来 计算阴极射线的比荷? 当堂检测案 1.阴极射线管的阴极发出的高速运动的粒子流,这些微观粒子 是 。若在如图18-1-3所示的阴极射线管中都加上垂 直于纸面向里的磁场,阴极射线将 (填“向下” “向上”“向外”)偏转。 2.如图18-1-5所示,有一电子(电荷量为e )经电压为U 0的电 场加速后,进入两块间距为d ,电压为U 的平行金属板间,若电子从两 板正中间垂直电场方向射入,且正好能穿过电场,求:金属板AB 的长 度。 图18-1-3 A B U 0 v 0 + + + + - - - - 图18-1-5

第十八章 原子结构 测试题

第十八章原子结构测试题 一、选择题 1.卢瑟福提出原子核式结构学说的根据是在用α粒子轰击金箔的实验中,发现粒子( )。 (A)全部穿过或发生很小的偏转 (B)全部发生很大的偏转 (C)绝大多数穿过,只有少数发生很大偏转,甚至极少数被弹回 (D)绝大多数发生偏转,甚至被掸回 2.氢原子的核外电子,在由离核较远的可能轨道跃迁到离核较近的可能轨道的过程中( )。 (A)辐射光子,获得能量(B)吸收光子,获得能量 (C)吸收光了,放出能量(D)辐射光子,放出能量 3.在玻尔的原子模型中,比较氢原子所处的量子数n=1及n=2的两个状态,若用E 表示氢原子的能量,r表示氢原子核外电子的轨道半径,则( )。 (A)E2>E1,r2>r1 (B)E2>E1,r2r1 (D)E2

相关文档
最新文档