信息论 第三章 信源及信源熵
信源熵

I ( y j ) I ( y j | xi ) I ( y j )
19
条件互信息量
条件互信息量: 在给定 zk 的条件下,xi 与 y j 之间的互信
I ( xi ; y j ) 0 后验概率 先验概率,X 与 Y 统计独立
I ( xi ; y j ) 0 后验概率 先验概率:由于信道受到干扰, 信宿收到 y j 后不但未使 xi 的不确定度 减少,反而增大了 xi 的不确定度 两个消息之间的互信息不大于其中任一消息的自信息 I ( xi ; y j ) I ( xi ) I ( x i | y j ) I ( x i )
符号从平均意义上表征信源总体特性的一个量对于特定的信源其熵只有一个1log?niiipxpx????1logniiipxpx????信息熵的物理含义信源输出前表征信源的平均不确定度信源输出后表征信源发出的每个消息所能提供的平均信息量是一个统计量反映了随机变量x的随机性22统计热力学中熵是表示分子混乱程度的一个物理量在孤立系统中进行的自发过程总是沿着熵增加的方向进行它是不可逆的平衡态相应于熵取最大值的状态即熵增加原理香农借用热力学中熵来描述信源的平均不确定度在信息论中有用的信息熵只会减少不会增加所以信息熵也被称为负热熵ijxyxy
2
信源的分类
信源输出以符号形式出现的具体消息,其分类如下: 按发送消息的时间和取值空间的分布 离散信源 单符号离散信源 连续信源 信源发出的 按发出符号之间的关系 消息是离散的、 无记忆信源 有限的或无限可 列的符号,且一 有记忆信源 个符号代表一条 按发送一条消息所需要的符号数 完整的消息 单个符号信源 符号序列信源
三种表达形式等效
log log p( x i y j ) p( x i ) p( y j ) p( y j | x i ) p( y j )
信源熵的名词解释

信源熵的名词解释信源熵(Source Entropy)是信息论中一个重要的概念,用于衡量信息源的不确定性和信息的平均编码长度。
在信息论中,信息可以被看作是从一个信源中获取的,而信源熵用来描述这个信源的不确定性大小。
信源熵的计算方法是根据信源可能产生的符号的概率分布来进行的。
具体来说,如果一个信源有n个可能取值(符号)S1,S2,...,Sn,并且每个符号出现的概率分别为P1,P2,...,Pn,那么信源的熵H(S)可以通过下面的公式计算得出:H(S) = -P1log(P1) - P2log(P2) - ... - Pnlog(Pn)其中,log是以2为底的对数,P1,P2,...,Pn是概率分布。
信源熵的含义是,对于一个不确定性较大的信源,需要更长的编码长度来表示每一个符号,所以熵值越大,说明信息的平均编码长度越长。
相反,当一个信源的不确定性较小,即各个符号出现的概率分布较平均时,信息的平均编码长度较短,熵值较小。
以一个简单的例子来说明信源熵的概念。
假设有一个只有两个符号的信源,分别记为S1和S2,它们出现的概率分别为P1和P2。
如果这两个符号的概率分布相等(即P1 = P2 = 0.5),那么信源的熵就是最大的,因为这两个符号的不确定性相同,需要同样长度的编码来表示它们。
而如果其中一个符号的概率接近于1,另一个符号的概率接近于0,那么信源的熵就是最小的,因为其中一个符号的信息是确定的,只需要很短的编码来表示它。
这个例子可以帮助我们理解信源熵与不确定性之间的关系。
除了信源熵,信息论中还有一个重要的概念是条件熵(Conditional Entropy)。
条件熵是在已知一定的背景条件下,信源的不确定性大小,即在给定前提条件下的平均编码长度。
条件熵可以通过信源和条件之间的联合概率分布来计算,其公式为:H(S|T) = -ΣΣP(s, t)log(P(s|t))其中,P(s, t)表示符号s和条件t联合发生的概率。
信息论与编码第3版第3章习题解答

第3章 无失真离散信源编码习题3.1 设信源1234567()0.20.190.180.170.150.10.01X a a a a a a a P X(1) 求信源熵H (X ); (2) 编二进制香农码;(3) 计算其平均码长及编码效率。
解: (1)()()log ()(.log ..log ..log ..log ..log ..log ..log .).7212222222=-020201901901801801701701501501010010012609 i i i H X p a p a bit symbol(2)a i p (a i ) p a (a i ) k i 码字 a 1 0.2 0 3 000 a 2 0.19 0.2 3 001 a 3 0.18 0.39 3 011 a 4 0.17 0.57 3 100 a 5 0.15 0.74 3 101 a 6 0.1 0.89 4 1110 a 70.010.9971111110(3)()3(0.2+0.19+0.18+0.17+0.15)+40.1+70.01=3.1471i i i K k p a()() 2.609=83.1%3.14H X H X R K3.2 对习题3.1的信源编二进制费诺码,计算其编码效率。
解:a i p (a i ) 编 码 码字 k i a 1 0.2 000 2 a 2 0.19 1 0 010 3 a 3 0.18 1 011 3 a 4 0.17 110 2 a 5 0.15 10 110 3 a 6 0.1 10 1110 4 a 70.011 11114()2(0.2+0.17)+3(0.19+0.18+0.15)+4(0.1+0.01)=2.7471i i i K k p a()() 2.609=95.2%2.74H X H X R K3.3 对习题3.1的信源分别编二进制和三进制赫夫曼码,计算各自的平均码长及编码效率。
信息论与编码2-信源及信源熵

实例3
随机天气状况信源,其中晴天、雨天、雪天出现的概率分别是0.7、0.2、0.1。
实例1
随机二进制信源,其中每个二进制符号(0或1)出现的概率为0.5。
离散无记忆信源的实例
离散有记忆信源
03
离散有记忆信源是输出符号序列中符号与符号之间存在记忆关系的离散随机序列。
应用场景
广泛应用于网络通信、金融交易、军事通信等领域,保障信息安全和隐私。
加密通信
03
应用景
广泛应用于通信系统、数据存储等领域,如CD、DVD、硬盘等存储设备的纠错编码。
01
纠错原理
通过在数据中添加冗余信息,检测和纠正数据传输过程中的错误。
02
常见纠错编码
如奇偶校验码、海明码、循环冗余校验码等,这些编码利用数学原理对数据进行校验,确保数据的正确性。
纠错编码
THANKS
感谢观看
离散有记忆信源的输出符号之间存在统计依赖关系,这种关系会影响信息熵的计算。
定义
性质
离散有记忆信源的定义与性质
计算方法
条件熵
联合熵
离散有记忆信源熵的计算
离散有记忆信源熵是描述信源不确定性的度量,可以通过统计模型来计算。具体计算方法包括条件熵和联合熵等。
条件熵是在给定前一个或多个符号条件下,输出符号的熵。
应用场景
广泛应用于文件存储、网络传输、多媒体处理等领域,如JPEG图片压缩、MP3音频压缩等。
数据压缩原理
通过去除数据中的冗余信息,将数据压缩至更小的存储空间,提高存储和传输效率。
数据压缩
加密原理
通过特定的加密算法将明文转换为密文,确保信息在传输过程中的保密性。
第三章 信息论基础知识(Part2)

信息论基础知识主要内容:信源的数学模型 信源编码定理 信源编码算法 信道容量 通信的容限第 1 页 2011-2-21引言一、信息论的研究范畴 信息论是研究信息的基本性质及度量方法,研究信息的获取、传输、存储和处理的一般规律的科学。
狭义信息论:通信的数学理论,主要研究信息的度量方 法,各种信源、信道的描述和信源、信道的编码定理。
实用信息论:信息传输和处理问题,也就是狭义信息 论方法在调制解调、编码译码以及检测理论等领域的应用。
广义信息论,包括信息论在自然和社会中的新的应用, 如模式识别、机器翻译、自学习自组织系统、心理学、生物 学、经济学、社会学等一切与信息问题有关的领域。
第 2 页 2011-2-21二、信息论回答的问题通信信道中,信息能够可靠传 输的最高速率是多少?噪声信道编码定理 噪声信道编码定理信息进行压缩后,依然可以从已压 缩信息中以无差错或低差错恢复的 最低速率是多少?香农信源编码理论 香农信源编码理论最佳系统的复杂度是多少?第 3 页2011-2-21三、香农的贡献香农(Claude Elwood Shannon,1916~2001年), 美国数学家,信息论的创始人。
创造性的采用概率论的方法来研究通信中的问题,并且对 信息给予了科学的定量描述,第一次提出了信息熵的概念。
1948年,《通信的数学理论》(A mathematical theory of communication ) 以及1949年,《噪声下的通信》标志了信息论的创立。
1949年,《保密通信的信息理论》,用信息论的观点对信息保密问题做了 全面的论述,奠定了密码学的基础。
1959年,《保真度准则下的离散信源编码定理》,它是数据压缩的数学基 础,为信源编码的研究奠定了基础。
1961年发表“双路通信信道”,开拓了多用户信息理论(网络信息论)的研 究;第 4 页 2011-2-21四、信息论发展历史1924年 奈奎斯特(Nyquist,H.)总结了信号带宽和信息速率之 间的关系。
信息论与编码技术第三章课后习题答案

Chap3 思考题与习题 参考答案3.1 设有一个信源,它产生0、1 序列的消息。
它在任意时间而且不论以前发生过什么符号,均按P(0)=0.4,P(1)=0.6 的概率发出符号。
(1) 试问这个信源是否平稳的? (2) 试计算H(X 2),H(X 3/X 1X 2)及H ∞。
(3) 试计算H(X 4),并写出X 4 信源中可能有的所有符号。
解:(1)根据题意,此信源在任何时刻发出的符号概率都是相同的,均按p(0)=0.4,p(1)=0.6,即信源发出符号的概率分布与时间平移无关,而且信源发出的序列之间也是彼此无信赖的。
所以这信源是平稳信源。
(2)23123121()2()2(0.4log 0.40.6log 0.6) 1.942(/)(|)()()log ()(0.4log 0.40.6log 0.6)0.971(/)lim (|)()0.971(/)i i iN N N N H X H X bit symbols H X X X H X p x p x bit symbol H H X X X X H X bit symbol ∞−→∞==−×+===−=−+====∑" (3)4()4()4(0.4log 0.40.6log 0.6) 3.884(/)H X H X bit symbols ==−×+=4X 的所有符号:0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 11113.2 在一个二进制的信道中,信源消息集X={0,1}且p(1)=p(0),信宿的消息集Y={0,1},信道传输概率(10)1/p y x ===4,(01)1/p y x ===8。
求:(1) 在接收端收到y=0后,所提供的关于传输消息x 的平均条件互信息I(X ;y=0); (2) 该情况下所能提供的平均互信息量I(X ;Y)。
信息论第3章信源及信息熵

举例
数学描述
离散信源 (数字信源)
连续信号
文字、数据、 离散化图象
离散随机变量 序列
跳远比赛的结果、语音 连续随机变量
信号抽样以后
序列
波形信源 (模拟信源)
语音、音乐、热噪声、 图形、图象
不常见
随机过程
表3.1 信源的分类
3.1 信源的分类及其数学模型
我们还可以根据各维随机变量的概率分布是否随时间的推移 而变化将信源分为平稳信源和非平稳信源,根据随机变量间 是否统计独立将信源分为有记忆信源和无记忆信源。
定义3.2 随机变量序列中,对前N个随机变量的联合熵求平
均:
HN
(X)
1 N
H ( X1X 2
XN)
称为平均符号熵。如果当N
时上式极限存在,则
lim
N
H
N
(X)
称为熵率,或称为极限熵,记为
def
H
lim
N
H
N
(
X
)
3.3.1 离散平稳无记忆信源
离散平稳无记忆信源输出的符号序列是平稳随机序列,并且
H(X ) H(X1X2 XN ) H ( X1) H ( X2 | X1) H ( X3 | X1X 2 ) H ( X N | X1X 2 X N1)
定理3.1 对于离散平稳信源,有以下几个结论:
(1)条件熵 H (X N | X1X 2 X N1) 随N的增加是递减的;
(2)N给定时平均符号熵大于等于条件熵,即
s1
si p(s j
| si )
s q
m
状态空间由所有状态及状态间的状态转移概率组成。通过引
入状态转移概率,可以将对马尔可夫信源的研究转化为对马 尔可夫链的研究。
信源熵公式

信源熵公式
信源熵是信息论中的一个重要概念,它是用来度量消息的丰富性和
复杂性的一种度量方法。
它的概念源于 Shannon 在 1948 年出版的文章Information Theory。
一、信源熵是什么
信源熵(即 Shannon 熵)是指数据量的复杂性程度的度量,即信息量
在消息中不确定性的度量。
它可以帮助我们测量消息中内容丰富程度,以及消息是否具有冗余性。
通俗来说,信源熵是一种度量消息中有多
少信息和无规律性的度量方法。
二、信源熵的计算公式
信源熵的计算公式是: H(p) = -∑p(i)logp(i) 。
其中,H(p)是具有信息量
p的信息源的熵,p(i)是每一种信息量的概率。
它很好地反映了消息的复杂性,但它不能用来衡量消息的可靠性,因
此不能按照 Shannon 熵来评估消息的独特性。
三、信源熵的应用
信源熵有很多应用,最重要的是在信号处理、声音分析、密码学、数
据库设计和模式分析等领域有广泛的应用。
例如在压缩文件时,可以
使用信源熵来确定哪些数据需要进行压缩处理,从而减小数据的量。
另外,信源熵也可以用来度量信号的复杂性,比如机器学习算法中的模型复杂度因子,可以使用信源熵来衡量模型的复杂度。
四、总结
信源熵是由 Shannon 在 1948 年提出的一种度量方法,它可以度量消息的复杂性和冗余性,可以帮助我们评估消息的信息量。
它被广泛应用于信号处理、声音分析、密码学、数据库设计和模式分析等领域,可以用来度量信号的复杂性,以及机器学习算法中的模型复杂度因子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• (1)求信源熵 • (2)求由m个“0”和(100-m)个“1”构成
的某一特定序列自信息量的表达式
• (3)计算由100个符号构成的符号序列的熵
• 3.3.2离散平稳有记忆信源 • 熵函数的链规则:
X x1,x2,,xN ,其中每个随机变量之间存在统计依赖关系。 H ( X ) H ( X1X 2 X N ) H ( X1) H ( X 2 X1) H ( X 3 X1X 2 ) H (X N X1X 2 X N1)
i
j
则称其具有遍历性,w
为平稳分布
j
• 遍历的马尔可夫信源熵率: • (1)齐次的马尔可夫信源:视作平稳的信源来处理 • 遍历的马尔可夫信源都是齐次的 • 遍历的马尔可夫信源:视作平稳的信源来处理 • (2) m阶马尔可夫信源: 只与最近的m个符号有关.
H
=
lim
N
H
(
X
N
X1X 2 X N 1)
件不断增加,平均符号熵
及HN (条X) 件熵
• H ( X N X1X 2 X3 X N1) 均随之减少。
• 当 N 时 HN (X)=H ( X N X1X 2 X N1)
• 即为熵率,它表示信源输出的符合序列中,平均 每个符号所携带的信息熵。
• 求熵率的两种途径:
• 1.极限平均符号熵 • 2.极限条件熵
4
)
0
0.5
0
0 0.5 0
0.5 0 0.2
0.5 0
=(w 1
0.8
w2
w3
w4 )
0.2w1 0.5w 2
+0.5w3 =w2 +0.2w4 =w3
lim lim 现在令N ,则有H (X )
H ( X N X1X 2 X N 1)
H N (X)
N
N
lim 即H (X )
H ( X N X1X 2 X N 1) H ( X )
N
lim 因此有H (X )
H ( X N X1X 2 X N 1)
N
• 由于信源输出序列前后符号之间的统计依赖关系, 随着序列长度N的增加,也就是随着统计约束条
lim
N
H
(
X
N
X N M X N M 1 X N 1)(马尔可夫性)
=H ( X m+1 X1X 2 X m )(平稳性)
=H ( X m+1)
m阶马尔可夫信源的极限熵H
等于条件熵H
,
m+1
表示已知前面m个符号的条件下,输出下一个符号的平均不确定性。
Hm+1 =H ( X m+1 X1X 2 X m )
• 如何计算熵率??? • 复杂
• 马尔可夫性:某时刻发出的符号仅与在此之前的有限 个符号有关,而与更早些时候发出的符号无关。
• 马尔可夫信源是一类相对简单的有记忆信源,信源在 某一时刻发出某一符号的概率除与该符号有关外,只 与此前发出的有限个符号有关。
• M阶马尔可夫信源只与前面发出的m个符号有关
• 3.3.3马尔可夫信源 • M阶 • 信源有q个可能的输出符号。 • 信源发出一个符号,状态发生改变。 • 信源输出符号不确定性问题变成信源状态转换的
问题。
p(sj / si ) Pr(SL1 sj / SL si )
举例
3.4设一个二元一阶马尔可夫信源,信源符号集为 X {0,1}, 信源输出符号的条件概率为 p(0|0)=0.25,p(0|1)=0.5,p(1|0)=0.75,p(1|1)=0.5 求状态转移概率
• (2)N给定时平均符号熵大于等于条件熵
HN ( X ) H ( X N / X1X 2 X N1)
证明: NHN ( X ) H ( X1X 2 X N ) H ( X1) H ( X 2 X1) H ( X3 X1X 2 ) H ( X N X1X 2 X N1) H ( X N ) H ( X N X N1) H ( X N X1X 2 X N1) NH ( X N X1X 2 X N1)(条件熵小于等于无条件熵)
可得到(N+M )HN+M (X) (N-1)HN-1(X)+(M+1)H( X N X1X 2 X 3 X N 1 )
或H
N+M
(X)
(N-1)H N+M
N-1
(X)+
(M+1) N+M
H(
X
N
X1X 2 X 3 X N 1 )
固定N,并令M ,则得H ( X ) H ( X N X1X 2 X N 1) H N (X)
i
ij
举例3.6
已知此信源是遍历的,设状态的平稳分布为 W=(w1 w2 w3 w4 ), 其中w1=p(s1) w2 =p(s2) w3 =p(s3) w4 =p(s4) 根据马尔可夫遍历性的充要条件:
0.8 0.2 0 0
0.8w1+0.5w3 =w1
WPW=W=1,得(w 1
w2
w3
w
举例
• 3.2 • 设有一离散无记忆信源X,其概率空间为
X P(X)
=
x1 1 2
x2 1 4
x3
1
4
• 求该信源的熵率及其二次扩展信源(信源每次 输出两个符号)的熵
举例3.2
• 有一无记忆信源的符号集为{0,1},已知信源 的概率空间为
X P(X)
=
0 1 4
0 3 4
• 离散平稳信源:对于离散随机变量序列, X1,X2,. . .在任意两个不同时刻i和j,信 源发出的消息序列的概率分布完全相同。
即对于任意时刻的
N
0,1,2,,X i X i1
X iN 和X
jX
j1
X
具有相同的概率分布,也就是
jN
P(Xi )=P(X j)
P(XiXi+1)=P(X jX j+1)
H=Nlim
1 N
H (X1X2
XN
)= lim N
H(XN
X1X 2 X N 1)
• 3.1证明
lim 1
n 2 H ( X n X n1 / X1 X n2 ) H
• 马尔可夫性:
• 平稳信源输出的符号序列中,符号之间的 相关性可以追溯到最初的一个符号
• 举例
• 一篇文章的最后一句话可以一直追溯到开 篇第一句话。
X P( X
)
x1 1 4
x2 4 9
x3
11
36
输出符号序列中,只有前后两个符号有记忆,条件概率给出,
求熵率,并比较
H
(
X
2
/
X1
),
1 2
H
(
X1
X
2
),
H
(
X
)的大小
1 H(X2 / X1) 2 H(X1X2) H(X )
• 3.5二次扩展信源的熵为 H ( X 2 ) ,而一阶马尔科夫 信源的熵为 H (X2/X1) ,试比较两者的大小,并说明 原因。
• 1阶马尔可夫信源只与前面一个符号有关
• m阶马尔可夫信源,熵率:
H
=
lim
N
H
(
X
N
X1X 2 X N 1)
lim
N
H
(
X
N
X N m X N m1 X N 1)
H ( X m1 X1X 2 X m )
H ( X m1 X1X 2 X m ) 通常记作Hm1
举例
• 3.3信源X的信源模型为
=H[ p(xi m+1 | x xi1 i2 xim )]
H[ p(xi m+1 | si )]
qm q
p(si )p(xi m+1 | si ) log p(xi m+1 | si )
i1 im+1
p(si )H (X | si )
p(si )p(s j | si ) log p(s j | si )
P(XiXi+1 Xi+N )=P(X jX j+1 X j+N )
各维联合概率分布均与时间起点无关的信源称为离散平稳信源。 特点:统计特性不随时间推移而变化
• 条件概率
P(Xi+1|Xi )=P(X j+1|X j)
P(Xi+N|XiXi+1 Xi+N-1)=P(X j+N|X jX j+1 X j+N-1)
根据熵的非负性及H1( X ),可推出
0 H N ( X ) H N1( X ) H1( X )
说明此数列单调有界,极限
lim
N
H
(
X
)必存在,且为0和H1
(
X
)之间的某一有限值。
H
(
X
)
lim
N
H
(
X
N
X1X 2 X N 1)
我们取
(N+M )HN+M (X)=H ( X1X 2 X N 1)+H ( X N X1X 2 X N 1) + H ( X N M X1X 2 X N 1X N X ) N M 1 反复利用H ( X N 1 X1X 2 X N ) H ( X N X1X 2 X 3 X N 1) 条件越多熵值越小
• 无记忆信源:随机变量统计独立
3.2离散单符号信源
• 特点:消息两两不相容,信源每次输 出其中的一个消息。
• 离散单符号信源的平均不确定性: • 用熵来描述
• 例3.1
举例