智能交通灯控制系统 英文翻译

合集下载

交通灯外文翻译(5篇范文)

交通灯外文翻译(5篇范文)

交通灯外文翻译(5篇范文)第一篇:交通灯外文翻译Traffic lights and PLCWith economic development, increased the number of vehicles, road congestion is becoming increasingly serious, intelligent traffic lights on the emerged.At present, the world's Intelligent Transportation System will be: a huge structure, management difficulties, such as the maintenance of large inputs.In order to improve the existing traffic conditions, and to overcome the existing shortcomings of intelligent transportation system I designed analog control traffic lights in urban and rural areas of small-scale smart traffic lights.It has small size, intelligence, maintenance into small, easy to install and so on.And other intelligent transportation system compared to the system to adapt to economic and social development, in line with the current status of scientific and technological development.Intelligent traffic lights are a comprehensive use of computer network communication technology, sensor technology to manage the automatic control system of traffic lights.Urban traffic control system is used for urban traffic data monitoring, traffic signal control and traffic management computer system;it is the modern urban traffic control system command and the most important component.In short, how to use the appropriate control method to maximize the use of costly cities to build high-speed roads, trunk road and the ramp to alleviate urban areas with the neighboring state of traffic congestion has become more and more traffic management and urban planning departments need to address the the main problem.Nowadays, traffic lights installed in each crossing, hasbecome the most common and dredge the traffic, the most effective means.The development of the society, people's consumption level unceasing enhancement, private vehicles unceasing increase.And more cars roads are narrow road traffic is clear.So adopting effective method to control the traffic light is imperative.PLC intelligent control principle is the core of the control system, PLC put the things direction or north-south direction according to quantity of vehicles, the corresponding scale what divides class given the green light direction between north and south direction according to certain rules too long.It can realize divides class according to a given the green cars duration scale of maximum car release, reduce crossroads vehicles, ease traffic congestion stagnation, realize the optimal control, so as to improve the efficiency of the traffic control system.The application of PLC is continuously, and drive to the deepening traditional control test new month benefit updates.It is simple in structure, programming and high reliability etc, convenient already widely used in industrial processes and position in the automatic control.Due to use of PLC has the characteristics of environmental adaptable, and its internal timer is very rich in resources, but the current widely used “progressive” lights, especially for precise control more than thecrossway control can be easily realized.So now increasingly applying PLC traffic light system.Meanwhile, PLC itself also has communication networking function, will the same path as part of a LAN signal unified dispatching management, can shorten the traffic wait times, realize scientific management.In real-time detection and automatic control of PLC application system, PLC is often used as a core components.In the 21st century, PLC willhave greater development.Technically, the computer technology can morely new achievements used in programmable controller design and manufacturing, there will be faster, storage and larger capacity, intelligent stronger varieties appear;Look from product size, can further to mini and super-large direction;Look from product compatibility, the variety of our products will be more rich, specification more complete, perfect man-machine interface and complete communication equipment can better adapt to all kinds of industrial control occasion demands;Look from the market, all countries to their production of multiple products with international competition intensifies and break, can appear a few brand monopoly international market situation, can appear international general programming languages;Judging from the development of the network, programmable controller and other industrial control computer networking constitute a large control system is programmable controller technology development direction.The current computer distributed control system DCS has already a lot of programmable controller applications.Along with the development of computer network, the programmable controller as automation control network and international general network will be an important part of the industry and industry, the numerous fields outside play an increasing role.In China the increasing amount of motor vehicles, many big cities like Beijing, Shanghai, nanjing and other ground appeared traffic overload running condition, traffic accidents problem also more and more serious.And because the various special vehicles(such as an ambulance, 119 120 car, police and various special vehicle 110 in emergency situations, by red under limited to traffic bring a lot of inconvenience, even cause traffic accident.And now, most traffic lights at the same moment willappear two or more than two direction at the same time for the green situation, and increase the incidence of the traffic accident.Therefore, design a kind of designed for special vehicles through and not cause any traffic accident, normal traffic control any time only one direction of modern intelligent traffic light green traffic control system is urgently needed.交通灯与PLC 随着经济的发展,车辆的数目不断增加,道路堵车现象日益严重,智能交通灯就应运而生了。

智能交通信号控制

智能交通信号控制

智能交通信号控制智能交通信号控制(Intelligent Traffic Signal Control,ITSC)是一种基于先进技术的交通管理系统,旨在提高路口交通流量的效率和安全性。

它利用人工智能、物联网和数据分析等技术手段,实现智能化的交通信号控制,以便根据实时交通情况和需求进行信号调度和优化。

一、智能交通信号控制的背景及意义现代城市交通面临着日益严峻的挑战,交通拥堵、事故频发和交通效率低下已成为城市发展的瓶颈。

传统的时间固定和感应器控制方式已经无法适应复杂的交通环境和大量车辆流动的需求。

因此,引入智能交通信号控制系统成为改善交通状况的重要手段。

智能交通信号控制的意义在于:1. 提高交通效率:智能交通信号控制能够通过实时调度信号灯,减少车辆的等待时间和死循环,提高交通效率,缩短路线的通行时间。

2. 减少拥堵和排队长度:通过实时监测交通流量和疏导交通,智能交通信号控制可以减少拥堵和排队长度,提高道路通行能力。

3. 提升交通安全:智能交通信号控制可以根据实时交通情况自动调整信号灯时间和配时策略,减少交叉路口的事故发生概率,提升交通安全。

二、智能交通信号控制的工作原理智能交通信号控制的工作原理是一个复杂的系统工程,主要包括以下几个方面:1. 数据采集和处理:通过安装交通监测设备(如摄像头、传感器等),实时采集交通流量、速度和车辆类型等数据,并进行处理和分析。

2. 交通状态感知和识别:利用计算机视觉和图像处理技术,对交通场景进行感知和识别,包括车辆检测、跟踪和识别、行人检测等。

3. 交通流量预测:通过数据分析和建模,对交通流量进行预测,以便为信号控制提供参考。

4. 信号灯控制策略制定:根据实时交通情况和预测结果,制定最优的信号灯控制策略,包括信号灯绿灯时间、配时调整等。

5. 信号灯控制实施:将制定的信号灯控制策略实施到交通信号设备中,通过控制器控制交通灯的状态和时长。

6. 实时优化和调整:根据实时交通情况和反馈信息,不断优化信号控制策略,以最大程度地提高交通效率和安全性。

智能交通灯控制系统

智能交通灯控制系统

通过计算机、传感器和通信技术实现
可以根据实时交通情况进行调整和优化交通信号灯的控制
通信模块:实现与上位机或交通管理部门的数据传输与控制指令下达
传感器:检测交通流量、车辆位置等信息
控制器:根据传感器采集的数据,控制交通灯的灯光时序和配时方案
电源管理单元:为系统提供稳定可靠的电源供应,确保系统的稳定运行
提升安全性:通过实时监测和调整交通信号灯时间,提高交通安全性和减少事故发生。
智能交通灯控制系统的挑战与解决方案
传感器故障导致信号灯失灵
缺乏实时交通流数据,无法优化信号灯配时
无法准确判断交通拥堵级别,影响信号灯配时策略
缺乏智能化管理平台,无法实现统一管理和调度
研发成本高
设备采购和维护费用大
人员培训和管理费用高
解决方案:政府和企业合作,共同承担资金投入,降低成本压力
交通法规对智能交通灯控制系统的要求和规范
智能交通灯控制系统在政策法规方面的未来发展趋势
交通法规的更新对智能交通灯控制系统的挑战和机遇
相关法规对智能交通灯控制系统的影响和指导
缺乏公众对智能交通灯控制系统的统的认知度低
a click to unlimited possibilities
CONTENTS
智能交通灯控制系统的概述
智能交通灯控制系统的技术实现
智能交通灯控制系统的优势
智能交通灯控制系统的挑战与解决方案
智能交通灯控制系统的未来发展趋势
智能交通灯控制系统的概述
智能交通灯控制系统是一种先进的交通管理系统
旨在提高交通效率,减少交通拥堵和事故
添加标题
添加标题
城市交通管理需要智能化,智能交通灯控制系统能够提高交通管理效率。
交通拥堵问题日益严重,需要智能交通灯控制系统提供解决方案。

单片机智能路灯中英文对照外文翻译文献

单片机智能路灯中英文对照外文翻译文献

单片机智能路灯中英文对照外文翻译文献单片机智能路灯中英文对照外文翻译文献(文档含英文原文和中文翻译)Based on single chip microcomputer intelligent street lightcontrol system【abstract 】 A street light automatic control system design, combined with the control, electric lamp switch control function; And street lamp fault detection and fault street lamp according to the function of the number. Use on STC 89C51 as the core Control unit; Using DS1302 clock chip to control the point open to turn off the lights when street lamps; By a photosensor complete collection of ambient light and street light fault detection, so as to realize the number of optically controlled open to turn off the lights and fault street lamp display. This system Can through the RS - 232 communication port with the street light control room of the upper machine communication.【key words】STC 89C51; Clock chip DS1302; photosensorIntroductionFor the most part at present domestic cities and regions of the street lamp Lighting adopts electric control, time control and single point of electrons Control, maintenance management and manual inspections and the masses The traditional way, because of the lack of scientific and effective monitoring Means, large area lighting during the day, night not large area Light phenomenon occurs frequently, often can't find and in a timely manner Processing, not only caused power resources, human resources Cost, improve the operating costs of the system and to citizens Life bring inconvenience.Intelligent road lighting system can according to different area Domain of different functional requirements, at different times and different every day Natural light or under different traffic flow conditions, the press According to a specific setting, realize dynamic wisdom of road lighting Can management, namely the TPO management (TIME/PLACE, TIME Location/OCCASION occasions). Intelligent road lighting Control system, through the comprehensive consideration and analysis and road Ming is closely related to the intensity of illumination time, road, environment and hand it in Scene control methods of factors such as flow rate, in themicrocomputer According to the preset control strategy, the road lighting into action Street lamp intelligent management and control in different conditions normally In different states implement diversified road lighting scene, To improve the quality of lighting at the same time get the best section Can effect.1. The system hardware designControl circuit mainly to light, temperature signal acquisition, data computing and analysis, and control of street lamp driver circuit according to the results of the operation. Circuit must have MD conversion function, adopt STCl2C5608AD single chip microcomputer as control unit, the single-chip computer as a single clock cycle enhanced 8051 kernel microcontroller, it contains 8 KB FLASH program memory, eight road lO MD conversion interface, can meet the need of data acquisition. Light intensity, temperature sensor using photosensitive resistance and thermal resistance,respectively.Figure 1Figure 2Photosensitive resistor Rx and resistance R2 bleeder circuit, light intensity changes, microcontroller P1.7 pin input voltage changes, and P1.7 pin can be set up for MD conversion interface, set a threshold voltage for light intensity can distinguish between day and night. Thermal resistor Rx and R3 bleeder circuit, the temperature changes, P1.5 pin voltage change, the figure 1 watch NA L/D conversion control circuit green quality can calculate the actual environment temperature and time control to modify parameters. S1 for four dial the code switch, can be used to think.1.1 hardware designSystem hardware modules include: control module, mining Use 89 c51 to realize on STC; Sensor module, Using photosensitive resistance on the surrounding environment light Sample, using photosensitive diode on-off to street lamp equipment Obstacle detection; The clock module, using DS1302 clock chip Slice; Display module, which is made up of four LED digital tube, use To display the fault street lamp number; Sound and light alarm module, Implementation of malfunctioning of the street lamp light hint; Communication moduleBlocks, used to transmit commands from PC.1.2 module functionOn STC 89 c51 based on DS1302 clock chip Provide the clock signal, according to the following time implementation control Turn off the lights.(1) : winter time 18:00 lights at night, The next morning at 7:30 to turn off the lights.(2) age season time: the evening number is turn on the light, The next morning at 6:30 to turn off the lights.(3) in the summer time: 20:00 lights at night, The next morning at 5:30 to turn off the lights.Dynamically changes of this period of time, changes in the operation A machine to complete, through the communication module will hold instructions written to STC 89 c51 chip, then changed the point open to turn off the lights During work time.Photosensitive resistance, by appropriate wavelength of light , the current will along with the increase of light intensity, thus Realize the photoelectric conversion. To die by ADC0832 device Hold number converted to provide single-chip, STC 89c51 according to The default program realize the electric lamp switch function.(1) automatic metering, during the day (or light) When lights go out, night (dark or light) street lights automatically Light up.(2) the sensitivity is adjustable, can adjust according to need Any work under the light.(3) to prevent the instant bright light interference, the AD hoc Delay off function (to strong light, the light switch When 30 seconds to shut down automatically).Photosensitive diode is to use silicon PN knot when the light is produced A photoelectric device, light current work in reverse bias Because of the pressure. During the day light or lamp light photosensitive 2 directly Diode reverse resistance decreases, and diode conduction; Light is very Hours photosensitive diode reverse resistance increases, the diode The check. Using photosensitive diode, detection of street lamp is night Normal work. When the photosensitive diode as shows that street lamp Equipment failure or theft, acousto-optic quote on STC 89 c51 started Alarm device, at the same time in four LED digital tube display the corresponding The street number.2.The system software designThe software design of this system is divided into seven parts, mainly Including the LED digital tube display program design; Light to check the Test program design; Equipment fault detection program design; when Clock driver chip design; Open to turn off the lights program design; Communication program design; Audible and visual alarm program design, etc.Software includes: main program, system initialization, anti-fuzzy functions,A/D conversion subroutine, communication processing subroutine, keyboard processing subroutine, warp/weft clock computing functions, dial the code switch handle child, switch input processing function, the switch quantity output treatment function, display function. MCU software programming to CodeVisionAVR C compiler as a development platform, USES C written in a high-level language.3.TAGUSES the wireless transceiver module and single-chip integration design, can reduce the hardware cost of the system, convenient installation, easy maintenance. Adopt type a 15 STR micropower wireless digital module, high efficiency forward error correction channel coding technology, improves the data the abrupt interference and random interference resistance ability. Using high-speed microcontroller W7E58, improve the measurement precision of the liquid level, simplified the hardware structure of the system. The system not only for level measurement is a kind of safe and effective solutions, can be applied to other material level measurement under the bad environment.Street lamp lighting system is indispensable to the road traffic Facilities, design a kind of intelligent street light control system, right Increase induced by road, improve the driving safety at night And comfort, effectively prevent criminal activity, beautify the environment, Save power resources, has a certain practical significance and can be Development value.References[1], truth, science and technology. 8051 series single chip microcomputer C program design manual [M]. Completely People post and telecommunications press, 2006.[2] realistic technology. Microcontroller peripheral devices and applications [M]. Typical people Posts and telecommunications press, 2006, 2.[3] BianChunYuan, wang zhiqiang. MCS - 51 single chip microcomputer application development practical subroutine [M]. People's posts and telecommunications press, 2005, 9.[4] Shen Gongwei. Based on single chip microcomputer intelligent syste design and implementation [M]. Electronic Industrial press, 2005. m[5] Wan Guangyi, nine sun Ann, Cai Jianping. SOC SCM experiment, practice and should be With design - based on C8051F series [M]. Beijing university ofaeronautics and astronautics Publisher, 2006.[6] Xu Aijun Peng Xiuhua. Keil Cx51 V7.0 microcontroller programming in a high-level language and Mu Vision2 application practice [M]. Beijing: electronic industry press, 2004.[7] blockbuster, special expensive, were yu. Intelligent street light control system design and application research. The modern electronic technology, 2010. (1) : 207-207.[8] kang hua guang, Chen Taiqin. Analog part electronic technology foundation [M]. Beijing: higher education press, 2001.基于单片机的智能路灯控制系统【摘要】设计了一个路灯自动控制系统,具有时控、光控相结合的路灯开关控制功能;以及路灯故障检测并显示故障路灯编号的功能。

智能交通信号控制中英文对照外文翻译文献

智能交通信号控制中英文对照外文翻译文献

智能交通信号控制中英文对照外文翻译文献(文档含英文原文和中文翻译)原文:Intelligent Traffic Signal Control Using Wireless SensorNetworksVignesh.Viswanathan and Vigneshwar. SanthanamAbstract:The growing vehicle population in all developing and developed countries calls for a major change in the existing traffic signaling systems. The most widely used automated system uses simple timer based operation which is inefficient for non-uniform traffic. Advanced automated systems in testing use image processingtechniques or advanced communication systems in vehicles to communicate with signals and ask for routing. This might not be implementable in developing countries as they prove to be complex and expensive. The concept proposed in this paper involves use of wireless sensor networks to sense presence of traffic near junctions and hence route the traffic based on traffic density in the desired direction. This system does not require any system in vehicles so can be implemented in any traffic system easily. This system uses wireless sensor networks technology to sense vehicles and a microcontroller based routing algorithm for traffic management.Keywords:Intelligent traffic signals, intelligent routing, smart signals, wireless sensor networks.I. INTRODUCTIONThe traffic density is escalating at an alarming rate in developing countries which calls for the need of intelligent traffic signals to replace the conventional manual and timer based systems. Experimental systems in existence involve image processing based density identification for routing of traffic which might be inefficient in situations like fog, rain or dust. The other conceptual system which is based on interaction of vehicles with traffic signals and each other require hardware modification on each vehicle and cannot be practically implemented in countrieslike India which have almost 100 million vehicles on road [1]. The system proposed here involves localized traffic routing for each intersection based on wireless sensor networks. The proposed system has a central controller at every junction which receives data from tiny wireless sensor nodes placed on the road. The sensor nodes have sensors that can detect the presence of vehicle and the transmitter wirelessly transmits the traffic density to the central controller. The controller makes use of the proposed algorithm to find ways to regulate traffic efficiently.II. THE NEED FOR AN ALTERNATE SYSTEMT he most prevalent traffic signaling system in developing countries is the timer based system. This system involves a predefined time setting for each road at anintersection. While this might prove effective for light traffic, heavy traffic requires an adaptive system that will work based on the density of traffic on each road. The first system proposed for adaptive signaling was based on digital image processing techniques. This system works based on the captured visual input from the roads and processing them to find which road has dense traffic. This system fails during environmental interaction like rain or fog. Also this system in testing does not prove efficient. The advanced system in testing at Pittsburgh [2] involves signals communicating with each other and also with the vehicles. The proposed system does not require a network between signals and vehicles and is a standalone system at each intersection.III. THE PROPOSED SYSTEMThis paper presents the concept of intelligent traffic routing using wireless sensor networks. The primary elements of this system are the sensor nodes or motes consisting of sensors and a transmitter. The sensors interact with the physical environment while the transmitter pages the sensor’s data to the central controller. This system involves the 4 x 2 array of sensor nodes in each road. This signifies 4 levels of traffic and 2 lanes in each road. The sensors are ultrasonic or IR based optical sensors which transmits status based on presence of vehicle near it. The sensor nodes transmit at specified time intervals via ZigBee protocol to the central controller placed at every intersection. The controller receives the signal and computes which road and which lane has to be given green signal based on the density of traffic. The controller makes use of the discussed algorithm to perform the intelligent traffic routing.IV. COMPONENTS INVOLVED IN THE SYSTEMThe proposed system involves wireless sensor networks which are comprised of three basic components: the sensor nodes or motes, power source and a central controller. The motes in turn are comprised of Sensors and transceiver module. The sensors sense the vehicles at intersections and transceiver transmit the sensor’s data tothe central controller through a wireless medium. The Power source provides the power needed for the sensor nodes and is mostly regenerative. The central controller performs all the computations for the sensor networks. The controller receives the input from all sensors and processes simultaneously to make the required decisions.A.SensorsSensors are hardware devices that produce a measurable response to a change in a physical condition like temperature or pressure. Sensors measure physical data of the parameter to be monitored. The continual analog signal produced by the sensors is digitized by an analog-to-digital converter and sent to controllers for further processing. A sensor node should be small in size, consume extremely low energy, operate in high volumetric densities, be autonomous and operate unattended, and be adaptive to the environment. As wireless sensor nodes are typically very small electronic devices, they can only be equipped with a limited power source of less than 0.5-2 ampere-hour and 1.2-3.7 volts. Sensors are classified into three categories: passive Omni-directional sensors; passive narrow-beam sensors; and active sensors [3].The sensors are implemented in this system placed beneath the roads in an intersection or on the lane dividers on each road. The sensors are active obstacle detectors that detect the presence of vehicles in their vicinity. The sensors are set in four levels on each road signifying four levels of traffic from starting from the STOP line. The fourth level indicates high density traffic and signifies higher priority for the road to the controller. The sensors required for obstacle detection can be either ultrasonic or Infrared LASER based sensors for better higher efficiency.B. MotesA mote, also known as a sensor node is a node in a wireless sensor network that is capable of performing some processing, gathering sensory information and communicating with other connected nodes in the network. The main components of a sensor node are a microcontroller, transceiver, external memory, power source andone or more sensors [3].Fig. 1 Block Diagram of a MoteC. Need for MotesThe primary responsibility of a Mote is to collect information from the various distributed sensors in any area and to transmit the collected information to the central controller for processing. Any type of sensors can be incorporated with these Motes based on the requirements. It is a completely new paradigm for distributed sensing and it opens up a fascinating new way to look at sensor networks.D. Advantages of Motes●The core of a mote is a small, low-cost, low-power controller.●The controller monitors one or more sensors. It is easy to interface all sorts ofsensors, including sensors for temperature, light, sound, position, acceleration, vibration, stress, weight, pressure, humidity, etc. with the mote.●The controller connects to the central controller with a radio link. The mostcommon radio links allow a mote to transmit at a distance of about 3 to 61 meters.Power consumption, size and cost are the barriers to longer distances. Since a fundamental concept with motes is tiny size and associated tiny cost, small and low-power radios are normal.●As motes shrink in size and power consumption, it is possible to imagine solarpower or even something exotic like vibration power to keep them running. It ishard to imagine something as small and innocuous as a mote sparking a revolution, but that's exactly what they have done.Motes are also easy to program, either by using serial or Ethernet cable to connect to the programming board or by using Over the Air Programming (OTAP).Fig. 2 Block Diagram of the Proposed SystemE. TransceiversSensor nodes often make use of ISM band, which gives free radio, spectrum allocation and global availability. The possible choices of wireless transmission media are radio frequency (RF), optical communication and infrared. Lasers require less energy, but need line-of-sight for communication and are sensitive to atmospheric conditions. Infrared, like lasers, needs no antenna but it is limited in its broadcasting capacity. Radio frequency-based communication is the most relevant that fits most of the WSN applications. WSNs tend to use license-free communication frequencies: 173, 433, 868, and 915 MHz; and 2.4 GHz. The functionality of bothtransmitter and receiver are combined into a single deviceknown as a transceiver [3].To bring about uniqueness in transmitting and receiving toany particular device various protocols/algorithms are devised. The Motes are often are often provided with powerful transmitters and receivers collectively known as transceivers for better longrange operation and also toachieve better quality of transmission/reception in any environmental conditions.F. Power SourceT he sensor node consumes power for sensing, communicating and data processing. More energy is required for data communication than any other process. Power is stored either in batteries or capacitors. Batteries, both rechargeable and non-rechargeable, are the main source of power supply for sensor nodes. Current sensors are able to renew their energy from solar sources, temperature differences, or vibration. Two power saving policies used are Dynamic Power Management (DPM) and Dynamic V oltage Scaling (DVS). DPM conserves power by shutting down parts of the sensor node which are not currently used or active. A DVS scheme varies the power levels within the sensor node depending on the non-deterministic workload. By varying the voltage along with the frequency, it is possible to obtain quadratic reduction in power consumption.G. Tmote SkyTmote Sky is an ultra low power wireless module for use in sensor networks, monitoring applications, and rapid application prototyping. Tmote Sky leverages industry standards like USB and IEEE802.15.4 to interoperate seamlessly with other devices. By using industry standards, integrating humidity, temperature, and light sensors, and providing flexible interconnection with peripherals, Tmote Sky enables a wide range of mesh network applications [4]. The TMote is one of the most commonly used motes in wireless sensor technology. Any type of sensor can be used in combination with this type of mote.Tmote Sky features the Chipcon CC2420 radio for wireless communications. The CC2420 is an IEEE 802.15.4 compliant radio providing the PHY and some MAC functions [5]. With sensitivity exceeding the IEEE 802.15.4 specification and low power operation, the CC2420 provides reliable wireless communication. The CC2420 is highly configurable for many applications with the default radio settings providing IEEE 802.15.4 compliance. ZigBee specifications can be implemented using the built-in wireless transmitter in the Tmote Sky.Fig. 3 Tmote SkyH. Tmote Key Features•250kbps 2.4GHz IEEE 802.15.4 Chipcon Wireless Transceiver• Interoperability with other IEEE 802.15.4 devices.•8MHz Texas Instruments MSP430 microcontroller (10k RAM, 48k Flash Memory)• Integrated ADC, DAC, Supply V oltage Supervisor, and DMA Controller• Integrated onboard antenna with 50m range indoors / 125m range outdoors• Integrated Humidity, Temperat ure, and Light sensors• Ultra low current consumption• Fast wakeup from sleep (<6μs)• Hardware link-layer encryption and authentication• Programming and data collection via USB• 16-pin expansion support and optional SMA antenna connector• TinyOS support : mesh networking and communication implementation• Complies with FCC Part 15 and Industry Canada regulations• Environmentally friendly – complies with RoHS regulations [4].I. ZigBee Wireless TechnologyZigBee is a specification for a suite of high level communication protocols using small, low-power digital radios based on an IEEE 802.15.4 standard for personal area networks [6] [7]. ZigBee devices are often used in mesh network form to transmit data over longer distances, passing data through intermediate devices to reach more distant ones.This allows ZigBee networks to be formed ad-hoc, with nocentralized control or high-power transmitter/receiver able to reach all of the devices. Any ZigBee device can be tasked with running the network. ZigBee is targeted at applications that require a low data rate, long battery life, and secure networking. ZigBee has a defined rate of 250kbps, best suited for periodic or intermittent data or a single signal transmissionfrom a sensor or input device. Applications include wireless light switches, electrical meters with in-home-displays, traffic management systems, and other consumer and industrial equipment that requires short-range wireless transfer of data at relatively low rates. The technology defined by the ZigBee specification is intended to be simpler and less expensive than other WPANs, such as Bluetooth.J. Types of ZigBee DevicesZigBee devices are of three types:●ZigBee Coordinator (ZC): The most capable device, the Coordinator forms theroot of the network tree and might bridge to other networks. There is exactly one ZigBee Coordinator in each network since it is the device that started the network originally. It stores information about the network, including acting as the Trust Center & repository for security keys. The ZigBee Coordinator the central controller is in this system.●ZigBee Router (ZR): In addition to running an application function, a devicecan act as an intermediate router, passing on data from other devices.●ZigBee End Device (ZED): It contains just enough functionality to talk to theparent node. It cannot relay data from other devices. This relationship allows the node to be asleep a significant amount of the time thereby giving long battery life. A ZED requires the least amount of memory, and therefore can be less expensive to manufacture than a ZR or ZC.K. ZigBee ProtocolsThe protocols build on recent algorithmic research to automatically construct a low-speed ad-hoc network of nodes. In most large network instances, the network will be a cluster of clusters. It can also form a mesh or a single cluster. The current ZigBeeprotocols support beacon and non-beacon enabled networks. In non-beacon-enabled networks, an un-slotted CSMA/CA channel access mechanism is used. In this type of network, ZigBee Routers typically have their receivers continuously active, requiring a more robust power supply. However, this allows for heterogeneous networks in which some devices receive continuously, while others only transmit when an external stimulus is detected. In beacon-enabled networks, the special network nodes called ZigBee Routers transmit periodic beacons to confirm their presence to other network nodes. Nodes may sleep between beacons, thus lowering their duty cycle and extending their battery life. Beacon intervals depend on data rate; they may range from 15.36ms to 251.65824s at 250 kbps. In general, the ZigBee protocols minimize the time the radio is on, so as to reduce power use. In beaconing networks, nodes only need to be active while a beacon is being transmitted. In non-beacon-enabled networks, power consumption is decidedly asymmetrical: some devices are always active, while others spend most of their time sleeping.V. PROPOSED ALGORITHMA. Basic AlgorithmConsider a left side driving system (followed in UK, Australia, India, Malaysia and 72 other countries). This system can be modified for right side driving system (USA, Canada, UAE, Russia etc.) quite easily. Also consider a junction of four roads numbered as node 1, 2, 3 and 4 respectively. Traffic flows from each node to three other nodes with varied densities. Consider road 1 now given green signal in all directions.Fig. 4 Intersection Under Consideration1) Free left turn for all roads (free right for right side driving system).2) Check densities at all other nodes and retrieve data from strip sensors.3) Compare the data and compute the highest density.4) Allow the node with highest density for 60sec.5) Allowed node waits for 1 time slot for its turn again and the process is repeated from step 3.B. Advanced AlgorithmAssume road three is currently given green to all directions. All left turns are always free. No signals/sensors for left lane. Each road is given a time slot of maximum 60 seconds at a time. This time can be varied depending on the situation of implementation. Consider 4 levels of sensors Ax, Bx, Cx, Dx with A having highest priority and x representing roads 1 to 4. Also consider 3 lanes of traffic: Left (L), Middle (M) and Right(R) corresponding to the direction of traffic. Since leftturn is free, Left lanes do not require sensors. So sensors form 4x2 arrays with 4 levels of traffic and 2 lanes and are named MAx, RAx, MBx, RBx and so on and totally 32 sensors are employed.The following flow represents the sequence of operation done by the signal.1) Each sensor transmits the status periodically to the controller.2) Controller receives the signals and computes the following3) The sensors Ax from each road having highest priority are compared.4) If a single road has traffic till Ax, it is given green signal in the next time slot.5) If multiple roads have traffic till Ax, the road waiting for the longest duration is given the green.6) Once a road is given green, its waiting time is reset and its sensor status is neglected for that time slot7) If traffic in middle lane, green is given for straight direction, based on traffic, either right side neighbor is given green for right direction, of opposite road is give green for straight direction.8) If traffic in right lane, green is given for right, and based on traffic, left side neighbor is given green for straight or opposite is given green for right.9) Similar smart decisions are incorporated in the signal based on traffic density and directional traffic can be controlled.C. Implementation and RestrictionsThis system can be implemented by just placing the sensor nodes beneath the road or on lane divider and interfacing the central controller to the existing signal lights and connecting the sensor nodes to the controller via the proposed wireless protocol. The only restriction for implementing the system is taking the pedestrians into consideration. This has to be visualized for junctions with heavy traffic such as highway intersections and amount of pedestrians is very less. Also major intersections have underground or overhead footpaths to avoid interaction of pedestrians with heavy traffic.VI. CONCLUSIONThe above proposed system for automated traffic signal routing using Wireless Sensor Networks is advantageous to many existing systems. The wireless sensors nodes create a standalone system at each intersection making it easy to implement in the intersections having heavy density of vehicles. It is also cost inexpensive and does not require any system in the vehicles making it more practical than existing systems. The use of various systems of sensor nodes can be altered based on the requirement and any type of sensor can be used based on the feasibility of the location.ACKNOWLEDGMENTThe Authors would like to take this opportunity to thank Ms. P. Sasikala, Assistant Professor, ECE department, Sri Venkateswara College of Engineering, Sriperumbudur, who gave the basic insight into the field of Wireless Sensor Networks. We also thank Mrs. G. Padmavathi, Associate Professor, ECE department, Sri Venkateswara College of Engineering, Sriperumbudur, who with her expertise in the field of networks advised and guided on practicality of the concept and provided helpful ideas for future modifications. We also express our gratitude to Dr. S. Ganesh Vaidyanathan, Head of the department of ECE, Sri Venkateswara College of Engineering, Sriperumbudur, who supports us for every innovative project and encourages us “think beyond”for better use of technology. And finally we express our heart filled gratitude to Sri Venkateswara College of Engineering, which has been the knowledge house for our education and introduced us to the field of Engineering and supports us for working on various academic projects.基于无线传感器网络的智能交通信号控制摘要:在所有发展中国家和发达国家,不断增长的汽车数量将促使现有的交通信号系统发生重大变革。

城市智能交通灯系统_毕业设计论文

城市智能交通灯系统_毕业设计论文

毕业论文(设计)题目:智能交通灯控制系统(Title):Intelligent traffic light control system智能交通灯控制系统摘要本设计就是以单片机为架构的智能交通灯系统。

本系统由单片机系统、LED 显示、交通灯演示系统组成。

系统包括直行、左转、右转、以及基本的交通灯的功能。

系统除基本交通灯功能外,还具有倒计时、时间设置、紧急情况处理、分时段调整信号灯的点亮时间以及根据具体情况手动控制等功能。

目前的交通灯闪烁周期固定,导致上下班高峰期主干道路等待时间长。

本设计增加高峰期模式,进入高峰期时间段,通过调节闪烁时间缓解车流量大的道路压力。

同时还增加了交通灯系统的人行道盲人提示功能、急车紧急通过功能,可有效防止上下班时交通堵塞和车辆、人员滞留。

比起普通交通灯控制系统,此系统提高了交通灯控制的效率,保证交通有序进行。

关键词:AT89S52;交通灯;LED显示Intelligen traffic light control systemAbstractThis design is based on SCM for intelligent traffic light system architecture. This system consists of SCM system, LED display, traffic lights demonstration system. The system comprises a straight line, turn left, turn right, and the basic traffic lights function. In addition to the basic traffic lights function, also has the light time countdown, time setting, emergency handling, sub-period adjustment of signal and manual control functions according to the specific circumstances.At present, the traffic lights fixed period, resulting in the rush hour of trunk road to wait for a long time. Increase the peak pattern design, enter the peak period of time, by regulating the flashing time relieve the pressure large flow of car. At the same time also increased the traffic light system sidewalk blind prompt function, acute emergency vehicles through the function, can effectively prevent the commuting traffic and vehicles, staff retention. Compared with ordinary traffic light control system, the system improves the efficiency of traffic light control, ensure the orderly traffic.Key words: AT89S52;TRAFFIC LIGHT;LED DISPLAY目录一绪论 (1)1.1城市交通灯的作用 (1)1.2交通系统发展的现状 (2)1.3交通系统存在的问题 (3)1.4交通系统问题解决的途径 (4)1.5交通系统研究的主要内容 (5)二单片机控制交通系统总体设计 (6)2.1单片机交通控制系统通行方案设计 (6)2.2单片机交通控制系统的功能要求 (7)2.3单片机交通控制系统的显示界面方案 ............ 错误!未定义书签。

智能交通灯控制系统_英文翻译

智能交通灯控制系统_英文翻译

英文Because of the rapid development of our economy resulting in the car number of large and medium-sized cities surged and the urban traffic, is facing serious test, leading to the traffic problem increasingly serious, its basically are behaved as follows: traffic accident frequency, to the human life safety enormous threat, Traffic congestion, resulting in serious travel time increases, energy consumption increase; Air pollution and noise pollution degree of deepening, etc. Daily traffic jams become people commonplace and had to endure. In this context, in combination with the actual situation of urban road traffic, develop truly suitable for our own characteristics of intelligent signal control system has become the main task.PrefaceIn practical application at home and abroad, according to the actual traffic signal control application inspection, planar independent intersection signal control basic using set cycle, much time set cycle, half induction, whole sensor etc in several ways. The former two control mode is completely based on planar intersection always traffic flow data of statistical investigation, due to traffic flow the existence of variable sex and randomicity, the two methods have traffic efficiency is low, the scheme, the defects of aging and half inductive and all the inductive the two methods are in the former two ways based on increased vehicle detector and according to the information provided to adjust cycle is long and green letter of vehicle, it than random arrived adaptability bigger, can make vehicles in the parking cord before as few parking, achieve traffic flowing effectIn modern industrial production,current,voltage,temperature, pressure, and flow rate, velocity, and switch quantity are common mainly controlled parameter. For example: in metallurgical industry, chemical production, power engineering, the papermaking industry, machinery and food processing and so on many domains, people need to transport the orderly control. By single chip microcomputer to control of traffic, not only has the convenient control,configuration simple and flexible wait for an advantage, but also can greatly improve the technical index by control quantity, thus greatly improve product quality and quantity. Therefore, the monolithic integrated circuit to the traffic light control problem is an industrial production we often encounter problems.In the course of industrial production, there are many industries have lots of traffic equipment, in the current system, most of the traffic control signal is accomplished by relays, but relays response time is long, sensitivity low, long-term after use, fault opportunity increases greatly, and adopts single-chip microcomputer control, the accuracy of far greater than relays, short response time, software reliability, not because working time reduced its performance sake, compared with, this solution has the high feasibility.About AT89C51(1)function characteristics description:AT89C51 is a low power consumption, high performance CMOS8 bit micro-controller, has the 8K in system programmable Flash memory. Use high-density Atmel company the beltpassword nonvolatile storage technology and manufacturing, and industrial 80S51 product instructions and pin fully compatible. Chip Flash allow program memory in system programmable, also suitable for conventional programmer. In a single chip, have dexterous 8 bits CPU and in system programmable Flash, make AT89C51 for many embedded control application system provides the high flexible, super efficient solution. AT89C51 has the following standard function: 8k bytes Flash, 256 bytes RAM, 32-bit I/O mouth line, the watchdog timer, two data pointer, three 16 timer/counter, a 6 vector level 2 interrupt structure, full-duplex serial port, piece inside crystals timely clock circuit. In addition, AT89C51 can drop to 0Hz static logic operation, support two software can choose power saving mode. Idle mode, the CPU to stop working, allowing the RAM, timer/counter, serial ports, interruption continue to work. Power lost protection mode, RAM content being saved, has been frozen, microcontroller all work stop, until the next interruption or hardware reset so far. As shown infigure 1 for the AT89C51 pins allotment.Figure 1 the AT89C51 pins allotment(2)interrupt introductionAT89C51 has six interrupt sources: two external interruption, (and), three timer interrupt (timer 0, 1, 2) and a serial interrupts. Each interrupt source can be passed buy bits or remove IE the relevant special register interrupt allow control bit respectively make effective or invalid interrupt source. IE also includes an interrupt allow total control bit EA, it can be a ban all interrupts. IE. Six is not available. For AT89C51, IE. 5 bits are also not be used. User software should not give these bits write 1. They AT89 series for new product reserved. Timer 2 can be TF2 and the T2CON registers EXF2 or logical triggered. Program into an interrupt service, the sign bit can be improved by hardware qing 0. In fact, the interrupt service routine must determine whether TF2 or EXF2 activation disruption, the sign bit must also by software qing 0. Timer 0 and 1 mark a timer TF0 and TF1 has been presented in the cycle count overflow S5P2 074 bits. Their value until the next cycle was circuit capture down. However, the timer 2 marks a TF2 in count overflow of the cycle of S2P2 074 bits, in the same cycle was circuit capture down(3)external clock driving characteristicsAbout 8255 chip1.8255 features:(1)A parallel input/output LSI chips, efficacy of I/O devices, but as CPU bus and peripheral interface.(2)It has 24 programmable Settings of I/O mouth, even three groups of 8 bits I/O mouth to mouth, PB mouth and PA PC mouth. They are divided into two groups 12 I/O mouth, A group including port A and C mouth (high four, PC4 ~ PC7), including group B and C port B mouth (low four, PC0 ~ PC3). A group can be set to give basic I/O mouth, flash control (STROBE) I/O flash controlled, two-way I/O3 modes, Group B can only set to basic I/O or flash controlled the I/O, and these two modes of operation mode entirely by controlling registers control word decision.2. 8255 pins efficacy:(1). RESET: RESET input lines, when the input outside at high levels, all internal registers (including control registers) were removed, all I/O ports are denoting input methods.(2). CS: chip choose a standard lamp line 1, when the input pins for low levels,namely/CS = 0, said chip is selected, allow 8255 and CPU for communications, / CS = 1, 8255 cannot with CPU do data transmission.(3). RD: read a standard lamp line 1, when the input pins for low levels, namely/RD = 0 and/CS = 0, allow 8255 through the data bus to the CPU to send data or state information, namely the CPU 8255 read from the information or data.(4). The WR: write a standard lights, when the input pins for low levels, namely/WR = 0 and/CS = 0, allows the CPU will data or control word write 8255.(5). D7: three states D0 ~ two-way data bus, 8255 and CPU data transmission channel, when the CPU execution input/output instruction, through its realization 8 bits of data read/write operation, control characters and status information transmitted through the data bus.(6). PA0 ~ PA7: port A input and output lines, A 8 bits of data output latches/buffers, an 8 bits of data input latches.(7). PB0 ~ PB7: port B input and output lines, a 8 bits of I/O latches, an 8 bits of input and output buffer.(8). PC0 ~ PC7: port C input and output lines, a 8 bits of data output latches/buffers, an 8 bits of data input buffer. Port C can through the way of working setting into two four ports, every 4 digit port contains A 4 digit latches, respectively with the port A and port B cooperate to use, can be used as control standard lights output or state standard lights input ports.(9). A0, A1: address selection line, used to select the PA 8255 mouth, PB mouth, PC mouth and controlling registers.When A0=0, A1= 0, PA mouth be chosen;When A0=0, A1 = 1, PB mouth be chosen;When A0=0, A1 = 1, PC mouth be chosen;When A0=1, A1= 1, control register is selected.Concerning seven section LED display introductionThrough light emitting diode chip appropriate link (including series and parallel) and appropriate optical structure. May constitute a luminous display light-emitting segments or shine points. By these luminous segments or shine point can be composed digital tube, symbols tube, m word pipe, tube, multilevel matrix display tube etc. Usually the digital tube, symbols tube, m word tube were called stroke display, but the stroke displays and matrix tube collectively referred to as character displays.1. The LED display classification(1) by word high marks: stroke monitors word high least 1mm (monolithic integrated type more digital tube word high in commonly 2 ~ 3mm). Other types of stroke display tiptop 1.27 mm (0.5 inch) even up to hundreds of mm.(2) color-coded score red, orange, yellow, green and several kinds.(3) according to the structure points, reflecting cover type, a single point-elastic and monolithic integrated type.(4) from the luminous section electrode connection mode of points of anode and cathode two kinds.2. LED display parametersDue to the LED display is LED based, so its light, and the electrical characteristics and ultimate meaning of the parameters with most of the same light emitting diode. But because the LED monitor containing multiple light emitting diode, it must has the following specific parameters:(1) the luminous intensity ratioDue to the digital tube paragraphs in the same driving voltage, each are not identical, so positive current each different. The luminous intensity All segments of the luminous intensity values the ratio of the maximum and minimum values for the luminous intensity ratio. The ratio between 2.3 in 1.5 ~, the maximum cannot exceed 2.5.Traffic signal control typeThe purpose of the traffic signal control are three: first,in time and space space intersection traffic in different directions,control traffic operation order; Second, make on planar cross the road network on the people and objects of transport at the highest efficiency, Third, as the road users to provide necessary information, and help them to effectively use the traffic facilities. Road traffic signal control of basic types have many points method.According to the control geometry characteristic is divided into: single intersection control - point control, the traffic trunk lines of coordinated control - wire, traffic network coordination control surface controlling; -- According to the control principle differentiates: timing control, induced control and adaptive control.About watch-dog circuitBy single-chip computers.the micro computer system, because of single chip work often can be affected by external electromagnetic interference, causing program run fly while into dead circulation, the program's normal operation be interrupted by single chip microcomputer control system was unable to work, can cause the whole system of come to a standstill, happen unpredictable consequences, so out of microcontroller running status real-time.according consideration, they generate a specially used for monitoring microcontroller program running state of the chip, commonly known as "watchdog" (watchdog).MAX692 was slightly system monitoring circuit chip, have back-up battery switching, power lost discriminant functions monitoring, the watchdog. The encapsulation and pin instructions as figure2shows.Figure 2 MAX692 encapsulation and pinsWatch-dog circuit application, make SCM can in no condition to achieve continuous work, its working principle is: the watchdog chip and MCU an I/O pins are linked together, the I/O pins through program control it regularly to the watchdog of the pins on into high level (or the low level), this program statement is scattered on SCM other control statements, once among single-chip due to the interference makes application run into a fly after the procedures section into dead circulation state, write the watchdog pins program cannot be executed, this time, the watch-dog circuit will be without microcontroller sent signals, then at it and MCU reset pin connected pin reset signal give out a a, make SCM reposition occurs, namely the program from program memory splittext started, so we realized the MCU automatic reset.Infrared detection circuitThe infrared radiation photon in semiconductor materials stimutes the non-equilibrium carriers (electronic or holes), cause electrical properties change. Because carrier does not escape in vitro, so called within the photoelectric effect. Quantum photoelectric effect high sensitivity, response speed heat detectors much faster, is optional detectors. In order to achieve the best performance, generally need worked in low temperature. Photoelectric detector can be divided into:(1) optical type: also called photoconductive resistance. The incident photon stimulate the valence band uniform semiconductor electronic across forbidden band into the conductionband and left in valence band, cause cavitation increases, for electric conductance eigen light conductivity. From the band gaps of impurity level also can stimulate light into the conduction band or born carriers valence band, and for impurities light conductivity. The cutoff wavelength by impurity ionization energy (ie) decision. Quantum efficiencies below eigen optical and require lower working temperature.(2) photovoltaic type: mainly p - n knot of light born volts effect. Energy more than the width of infrared photonic band gaps in "area and its nearby of electrons cavitation. Existing "electric field make hole into p area, electronic into n area, two parts appear potentials. Deoxidization device have voltage or current signal. Compared with optical detectors, pv detector detect rate more than forty percent of figure limit, Don't require additional bias electric field and load resistance, no power consumption, having a high impedance. These characteristics of preparation and use of the focal plane array bring great benefits.(3) light emitting - Schottky potential barrier detector: metal and semiconductor contact, typically include PtSi/Si structure and form was Schott potential barrier, infrared photon through Si layer for PtSi absorption, electronic Fermi level, obtain energy leap over left cavitation potential barrier into the Si substrate, PtSi layer of electronic was collected, complete infrared detection. Make full use of Si integration technology, facilitate production, with lower cost and good uniformity wait for an advantage, but make it mass (1024 x 1024 even greater) focal plane array to make up for the defect of quantum low efficiency. Have strict low temperature requirements. With this kind of detector, both at home and abroad has already produced as qualitative good thermography. Pt Si/Si structure made of FPA is the earliest IRFPA.Timing counting and traffic calculationUsing MCS - 51 internal timer/counter for timing, cooperate software delay realizes the timer. This method hardware cost saving, cut allows the reader in timer/counter use, disruptions and programming get exercise and improve. Computation formula is as follows:TC = M - CType in, M for counter touch value, the value and the counter working way concerned.For a traffic intersection, it can in the shortest possible time to achieve maximum traffic, even reached the best performance, we call in unit of time to achieve the maximum flow multi-energy for cars.Use the equation: (traffic = traffic/time) to represent.。

智能交通系统英文缩写

智能交通系统英文缩写

第1章智能交通系统发展概述❝IVHS( Intelligent Vehicle-Highway System):智能车路系统❝RTI(Road Transport Informatics):道路交通信息❝ATT(Advanced Transport Telematics):先进的交通远程通讯❝ERGS(Electronic Route Guidance System):电子路线引导系统❝DRGS(Dynamic Route Guidance System):动态路线诱导系统❝CACS(Comprehensive Automobile Control System):汽车综合控制系统❝ALI(Autofahrer Leit Information System):汽车导航信息系统❝DRIVE(Dedicated Road Infrastructure for Vehicle Safety in Europe):欧洲汽车安全专用道路设施❝PROMETHEUS(PROgraMme for a European Traffic with Highest Efficiency and Unprecedented Safety):欧洲高效安全道路交通计划❝ISTEA(Intermodal Surface Transportation Efficiency Act):陆路联合运输效率法❝ERTICO(European Road Transport Telematics Implementation Coordination Organization):欧洲道路交通远程通讯执行协作组织❝VERTIS(Vehicle, Road and Traffic Intelligence Society):汽车道路交通智能化协会❝TEA-21(Transportation Equity Act for the 21st Century):21世纪交通平等法案❝PROMOTE(Programme for Mobility in Transportation in Europe):❝RACS (Road/Automobile Control System):路车间通信系统❝AMTICS (Advanced Mobile Traffic Information &Communication System):先进的汽车交通信息通信系统❝ASV (Advanced Safety Vehicle):先进安全汽车❝SSVS (Super Smart Vehicle System):高智能汽车系统❝VICS (Vehicle Information&Communication System):道路交通信息通信系统❝UTMS (Universal Traffic Management System):通用的交通管理系统❝ARTS(Advanced Road Transportation Systems):先进的道路交通系统第2章交通信息采集技术❝AVL:Automatic Vehicle location,自动车辆定位❝AVI :Automatic Vehicle Identification,自动车辆识别❝GNSS:Global Navigation Satellite System❝GPS:Global Positioning System❝DR:dead-reckoning❝RFID:Radio Frequency Identification❝RTMS:Remote Traffic Microwave Sensor,远程交通微波检测器❝VID:Video Image Detection❝FVD:Float Vehicle Data第3章交通信息传输技术❝ASK:Amplitude Shift Keyin,幅移键控❝FSK:Frequency-shift keying,频移键控❝PSK:Phase-shift keying,相移键控❝PCM:Pulse Code Modulation,脉冲编码调制❝FDM:Frequency-division multiplexing,频分多路复用❝TDM:Time Division Multiplexing,时分多路复用❝STDM:Synchronization Time-Division Multiplexing,同步时分多路复用❝ATDM:Asynchronous time Division Multiplexing,异步时分多路利用❝CDM:Code Division Multiplexing,码分多路复用❝RVC:road vehicle communication,路车通信❝DSRC:dedicated short-range communication, 专用短程通信❝OBU:On-Board Unit,车载单元❝RSU:Road-side Unit,路侧单元❝IVC:inter vehicle communication,车车通信❝RDS-TMC: radio data system-traffic message channel,数据广播系统-交通信息频道第4章交通信息处理技术❝GIS:Geographic Information Systems,地理信息系统❝AID:Automatic Incident Detection,自动事件检测第5章交通信息发布技术❝CRT:Cathode Ray Tube,阴极射线管❝PDP:Plasma Display Panel,等离子显示板❝LCD:Liquid Crystal Display,液晶显示器❝LED:light-emitting diode displays,发光二极管显示❝DMS,dynamic message sign❝VMS,variable message sign第6章交通信息利用技术❝SCATS:Sidney Coordinated Adaptive Traffic System ❝SCOOT:Split-Cycle-Offset Optimization Technique 第7章ITS体系结构❝ATMS (Advanced Traffic Management Systems)❝ATIS (Advanced Traveler Information Systems)❝APTS (Advanced Public Transportation Systems)❝CVO (Commercial Vehicle Operations)❝AVCS (Advanced Vehicle Control Systems)❝EMS (Emergency Management System)❝ETC(Electronic Toll Collection)第8章ITS的用户服务功能❝UTC(urban traffic control)❝HOV(high-occupancy vehicle)❝HOT(High Occupancy Toll)❝EPS(Electronic Payment System)❝EFC(Electronic Fee Collection)❝AFC(Automatic Fare Collection system❝VPS(Virtual positioning system)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

英文Because of the rapid development of our economy resulting in the car number of large and medium-sized cities surged and the urban traffic, is facing serious test, leading to the traffic problem increasingly serious, its basically are behaved as follows: traffic accident frequency, to the human life safety enormous threat, Traffic congestion, resulting in serious travel time increases, energy consumption increase; Air pollution and noise pollution degree of deepening, etc. Daily traffic jams become people commonplace and had to endure. In this context, in combination with the actual situation of urban road traffic, develop truly suitable for our own characteristics of intelligent signal control system has become the main task.PrefaceIn practical application at home and abroad, according to the actual traffic signal control application inspection, planar independent intersection signal control basic using set cycle, much time set cycle, half induction, whole sensor etc in several ways. The former two control mode is completely based on planar intersection always traffic flow data of statistical investigation, due to traffic flow the existence of variable sex and randomicity, the two methods have traffic efficiency is low, the scheme, the defects of aging and half inductive and all the inductive the two methods are in the former two ways based on increased vehicle detector and according to the information provided to adjust cycle is long and green letter of vehicle, it than random arrived adaptability bigger, can make vehicles in the parking cord before as few parking, achieve traffic flowing effectIn modern industrial production,current,voltage,temperature, pressure, and flow rate, velocity, and switch quantity are common mainly controlled parameter. For example: in metallurgical industry, chemical production, power engineering, the papermaking industry, machinery and food processing and so on many domains, people need to transport the orderly control. By single chip microcomputer to control of traffic, not only has the convenient control, configuration simple and flexible wait for an advantage, but also can greatly improve the technical index by control quantity, thus greatly improve product quality and quantity. Therefore, the monolithic integrated circuit to the traffic light control problem is an industrial production we often encounter problems.In the course of industrial production, there are many industries have lots of traffic equipment, in the current system, most of the traffic control signal is accomplished by relays, but relays response time is long, sensitivity low, long-term after use, fault opportunity increases greatly, and adopts single-chip microcomputer control, the accuracy of far greater than relays, short response time, software reliability, not because working time reduced its performance sake, compared with, this solution has the high feasibility.About AT89C51(1)function characteristics description:AT89C51 is a low power consumption, high performance CMOS8 bit micro-controller, has the 8K in system programmable Flash memory. Use high-density Atmel company the beltpassword nonvolatile storage technology and manufacturing, and industrial 80S51 product instructions and pin fully compatible. Chip Flash allow program memory in system programmable, also suitable for conventional programmer. In a single chip, have dexterous 8 bits CPU and in system programmable Flash, make AT89C51 for many embedded control application system provides the high flexible, super efficient solution. AT89C51 has the following standard function: 8k bytes Flash, 256 bytes RAM, 32-bit I/O mouth line, the watchdog timer, two data pointer, three 16 timer/counter, a 6 vector level 2 interrupt structure, full-duplex serial port, piece inside crystals timely clock circuit. In addition, AT89C51 can drop to 0Hz static logic operation, support two software can choose power saving mode. Idle mode, the CPU to stop working, allowing the RAM, timer/counter, serial ports, interruption continue to work. Power lost protection mode, RAM content being saved, has been frozen,microcontroller all work stop, until the next interruption or hardware reset so far. As shown in(2)interrupt introductionAT89C51 has six interrupt sources: two external interruption, (and), three timer interrupt (timer 0, 1, 2) and a serial interrupts. Each interrupt source can be passed buy bits or remove IE the relevant special register interrupt allow control bit respectively make effective or invalid interrupt source. IE also includes an interrupt allow total control bit EA, it can be a ban all interrupts. IE. Six is not available. For AT89C51, IE. 5 bits are also not be used. User software should not give these bits write 1. They AT89 series for new product reserved. Timer 2 can be TF2 and the T2CON registers EXF2 or logical triggered. Program into an interrupt service, the sign bit can be improved by hardware qing 0. In fact, the interrupt service routine must determine whether TF2 or EXF2 activation disruption, the sign bit must also by software qing 0. Timer 0 and 1 mark a timer TF0 and TF1 has been presented in the cycle count overflow S5P2 074 bits. Their value until the next cycle was circuit capture down. However, the timer 2 marks a TF2 in count overflow of the cycle of S2P2 074 bits, in the same cycle was circuit capture downAbout 8255 chip1.8255 features:(1)A parallel input/output LSI chips, efficacy of I/O devices, but as CPU bus and peripheral interface.(2)It has 24 programmable Settings of I/O mouth, even three groups of 8 bits I/O mouth to mouth, PB mouth and PA PC mouth. They are divided into two groups 12 I/O mouth, A group including port A and C mouth (high four, PC4 ~ PC7), including group B and C port B mouth (low four, PC0 ~ PC3). A group can be set to give basic I/O mouth, flash control (STROBE) I/O flash controlled, two-way I/O3 modes, Group B can only set to basic I/O or flash controlled the I/O, and these two modes of operation mode entirely by controlling registers control word decision.2. 8255 pins efficacy:(1). RESET: RESET input lines, when the input outside at high levels, all internal registers (including control registers) were removed, all I/O ports are denoting input methods.(2). CS: chip choose a standard lamp line 1, when the input pins for low levels, namely/CS = 0, said chip is selected, allow 8255 and CPU for communications, / CS = 1, 8255 cannot with CPU do data transmission.(3). RD: read a standard lamp line 1, when the input pins for low levels, namely/RD = 0 and/CS = 0, allow 8255 through the data bus to the CPU to send data or state information, namely the CPU 8255 read from the information or data.(4). The WR: write a standard lights, when the input pins for low levels, namely/WR = 0 and/CS = 0, allows the CPU will data or control word write 8255.(5). D7: three states D0 ~ two-way data bus, 8255 and CPU data transmission channel, when the CPU execution input/output instruction, through its realization 8 bits of data read/write operation, control characters and status information transmitted through the data bus.(6). PA0 ~ PA7: port A input and output lines, A 8 bits of data output latches/buffers, an 8 bits of data input latches.(7). PB0 ~ PB7: port B input and output lines, a 8 bits of I/O latches, an 8 bits of input and output buffer.(8). PC0 ~ PC7: port C input and output lines, a 8 bits of data output latches/buffers, an 8 bits of data input buffer. Port C can through the way of working setting into two four ports, every 4 digit port contains A 4 digit latches, respectively with the port A and port B cooperate to use, can be used as control standard lights output or state standard lights input ports.(9). A0, A1: address selection line, used to select the PA 8255 mouth, PB mouth, PC mouth and controlling registers.When A0=0, A1= 0, PA mouth be chosen;When A0=0, A1 = 1, PB mouth be chosen;When A0=0, A1 = 1, PC mouth be chosen;When A0=1, A1= 1, control register is selected.Concerning seven section LED display introductionThrough light emitting diode chip appropriate link (including series and parallel) and appropriate optical structure. May constitute a luminous display light-emitting segments or shine points. By these luminous segments or shine point can be composed digital tube, symbols tube, m word pipe, tube, multilevel matrix display tube etc. Usually the digital tube, symbols tube, m word tube were called stroke display, but the stroke displays and matrix tubecollectively referred to as character displays.1. The LED display classification(1) by word high marks: stroke monitors word high least 1mm (monolithic integrated type more digital tube word high in commonly 2 ~ 3mm). Other types of stroke display tiptop 1.27 mm (0.5 inch) even up to hundreds of mm.(2) color-coded score red, orange, yellow, green and several kinds.(3) according to the structure points, reflecting cover type, a single point-elastic and monolithic integrated type.(4) from the luminous section electrode connection mode of points of anode and cathode two kinds.2. LED display parametersDue to the LED display is LED based, so its light, and the electrical characteristics and ultimate meaning of the parameters with most of the same light emitting diode. But because the LED monitor containing multiple light emitting diode, it must has the following specific parameters:(1) the luminous intensity ratioDue to the digital tube paragraphs in the same driving voltage, each are not identical, so positive current each different. The luminous intensity All segments of the luminous intensity values the ratio of the maximum and minimum values for the luminous intensity ratio. The ratio between 2.3 in 1.5 ~, the maximum cannot exceed 2.5.(2) pulse positive currentIF each segment of typical strokes displays for positive dc working current IF, then the pulse, positive current can be far outweigh.someotherwordpeopledontthinkoffirst. Pulse 390v smaller, pulse positive current can be bigger.Traffic signal control typeThe purpose of the traffic signal control are three: first,in time and space space intersection traffic in different directions,control traffic operation order; Second, make on planar cross the road network on the people and objects of transport at the highest efficiency, Third, as the road users to provide necessary information, and help them to effectively use the traffic facilities. Road traffic signal control of basic types have many points method.According to the control geometry characteristic is divided into: single intersection control - point control, the traffic trunk lines of coordinated control - wire, traffic network coordination control surface controlling; -- According to the control principle differentiates: timing control, induced control and adaptive control.About watch-dog circuitBy single-chip computers.the micro computer system, because of single chip work often can be affected by external electromagnetic interference, causing program run fly while into dead circulation, the program's normal operation be interrupted by single chip microcomputer control system was unable to work, can cause the whole system of come to a standstill, happen unpredictable consequences, so out of microcontroller running status real-time.according consideration, they generate a specially used for monitoring microcontroller program running state of the chip, commonly known as "watchdog" (watchdog).MAX692 was slightly system monitoring circuit chip, have back-up battery switching, power lost discriminant functions monitoring, the watchdog. The encapsulation and pin instructions as figure2shows.Figure 2 MAX692 encapsulation and pinsWatch-dog circuit application, make SCM can in no condition to achieve continuous work, its working principle is: the watchdog chip and MCU an I/O pins are linked together, the I/O pins through program control it regularly to the watchdog of the pins on into high level (or the low level), this program statement is scattered on SCM other control statements, once among single-chip due to the interference makes application run into a fly after the procedures section into dead circulation state, write the watchdog pins program cannot be executed, this time, the watch-dog circuit will be without microcontroller sent signals, then at it and MCU reset pin connected pin reset signal give out a a, make SCM reposition occurs, namely the program from program memory splittext started, so we realized the MCU automatic reset.Infrared detection circuitThe infrared radiation photon in semiconductor materials stimutes the non-equilibrium carriers (electronic or holes), cause electrical properties change. Because carrier does not escape in vitro, so called within the photoelectric effect. Quantum photoelectric effect high sensitivity, response speed heat detectors much faster, is optional detectors. In order to achieve the best performance, generally need worked in low temperature. Photoelectric detector can be divided into:(1) optical type: also called photoconductive resistance. The incident photon stimulate the valence band uniform semiconductor electronic across forbidden band into the conduction band and left in valence band, cause cavitation increases, for electric conductance eigen light conductivity. From the band gaps of impurity level also can stimulate light into the conduction band or born carriers valence band, and for impurities light conductivity. The cutoff wavelength by impurity ionization energy (ie) decision. Quantum efficiencies below eigen optical and require lower working temperature.(2) photovoltaic type: mainly p - n knot of light born volts effect. Energy more than the width of infrared photonic band gaps in "area and its nearby of electrons cavitation. Existing "electric field make hole into p area, electronic into n area, two parts appear potentials. Deoxidization device have voltage or current signal. Compared with optical detectors, pv detector detect rate more than forty percent of figure limit, Don't require additional bias electric field and load resistance, no power consumption, having a high impedance. These characteristics of preparation and use of the focal plane array bring great benefits.(3) light emitting - Schottky potential barrier detector: metal and semiconductor contact, typically include PtSi/Si structure and form was Schott potential barrier, infrared photon through Si layer for PtSi absorption, electronic Fermi level, obtain energy leap over left cavitation potential barrier into the Si substrate, PtSi layer of electronic was collected, complete infrared detection. Make full use of Si integration technology, facilitate production, with lower cost and good uniformity wait for an advantage, but make it mass (1024 x 1024 even greater) focal plane array to make up for the defect of quantum low efficiency. Have strictlow temperature requirements. With this kind of detector, both at home and abroad has already produced as qualitative good thermography. Pt Si/Si structure made of FPA is the earliest IRFPA.Timing counting and traffic calculationUsing MCS - 51 internal timer/counter for timing, cooperate software delay realizes the timer. This method hardware cost saving, cut allows the reader in timer/counter use, disruptions and programming get exercise and improve. Computation formula is as follows: TC = M - CType in, M for counter touch value, the value and the counter working way concerned.For a traffic intersection, it can in the shortest possible time to achieve maximum traffic, even reached the best performance, we call in unit of time to achieve the maximum flow multi-energy for cars.Use the equation: (traffic = traffic/time) to represent.中文由于我国经济的快速发展从而导致了汽车数量的猛增,大中型城市的城市交通,正面临着严峻的考验,从而导致交通问题日益严重,其主要表现如下:交通事故频发,对人类生命安全造成极大威胁;交通拥堵严重,导致出行时间增加,能源消耗加大;空气污染和噪声污染程度日益加深等。

相关文档
最新文档