实变函数第一章答案

合集下载

实变函数第一章答案

实变函数第一章答案

第一章:集合与实数集(8)设是上的实函数,假若存在M>0,使得对于任何有限个两两不等的实数x1,...,x n,⃒⃒⃒n∑︁k=1f(x k)⃒⃒⃒≤M.证明:{x:f(x)=0}是至多可数集。

证明:令A+={x:f(x)>0},A−={x:f(x)<0}.则{x:f(x)=0}=A+∪A−.所以,只要证明A+,A−都是至多可数集。

我们仅考虑A+.注意到A+=∪∞n=1A n,+,其中A n,+={x:|f(x)|>1/n}.这样问题就归结为证明对于任意的n,A n是至多可数集.由假设条件知道:A n是一个有限集合,其中的点的个数不超过[nM]+1个.(9)证明:R上单调函数的间断点是至多可数的.证明:设f是R上的单增函数,我们首先证明:对于任意的x0∈R,lim x→x0−0f(x),limx→x0+0f(x)都是存在有限的.为简单起见,我们仅考虑左极限的存在性.我们只要证明:(a)对于任意的{x n},x n→x0,x n<x0,lim n→∞x n都存在有限(b)对于任意的{x n},x n→x0,x n<x0,{y n},y n→x0,y n<x0,lim n→∞x n=lim n→∞y n.结论(a)是明显的,至于结论(b),我们只要注意到对于任意的n,一定存在N>n使得当m>N时y m>x n,从而f(x m)>f(x n),这依次隐含着lim n→∞f(x n)≤limm→∞f(y m).2同理可证lim n→∞f(x n)≥limm→∞f(y m).现在回到要证明的结论.假如f在x0不连续,则f(x0−0)<f(x0+0),这样我们就得到一个区间(f(x0−),f(x0+)).对于f的任意两个不连续点x1,x2,区间(f(x1−0),f(x1+0))和(f(x2−0),f(x2+0))相互不交(事实上,我们假设x1<x2.注意到f(x1−0)≤f(x1+0)≤f(x2−0)≤f(x2+0),则(f(x1−0),f(x1+0))和(f(x2−0),f(x2+0))相交当然是不可能的),这样我们就知道:从集合{x0:f在x0不连续}到集合{所有开区间但这些开区间两两相互不交}之间存在一一映射.而后者是一个至多可数集,这就证明了我们的结论.(10)设f是[a,b]上的单调增加的函数,并且f([a,b])在[f(a),f(b)]中稠密。

实变函数第一章习题解答(罗绍辉)

实变函数第一章习题解答(罗绍辉)
n ∀n ∈ N ,令 An = {a | a ⊂ {r1 , r2 , r3 , L , rn }} 则 Α n 为有限集( Α n = 2 ) , 则
A = U Α n 为正交可数集,即 Α n ≤ C 0 n∈N
{ 又因为 Q ~ { x} | x ∈ Q
n =1

n n
n
1 ⇒ x ∈ U E{x | f ( x ) ≥ a + } ⇒ E{x | f ( x ) > a} ⊂ n =1 n ∞ 1 U E{x | f ( x ) ≥ a + } n =1 n ∞ 1 反过来, ∀x ∈ nU1 E{x{x | f ( x) ≥ a + n }, ∃n ∈ N ,使 = 1 x ∈ E{x | f ( x ) ≥ a + } n 1 即 f ( x ) ≥ a + n > a且x ∈ E 故 x ∈ E{x | f ( x) > a} ∞ 1 ∪ E{x | f ( x ) ≥ a + } ⊂ E{x | f ( x ) > a} . 故 所以 n =1 n ∞ 1 E{x | f ( x) > a} U E{x | f ( x) ≥ a + } n =1 n
所以中直线上每个闭集必是可数个开集的交每个开集必是可数个闭集的并
第一章习题参考解答
3.等式 ( A − B) ∪ C = A − ( B − C ) 成立的的充要条件是什么? 解:若 ( A − B) ∪ C = A − ( B − C ) 则
C ⊂ ( A − B) ∪ C = A − ( B − C ) ⊂ A .即, C ⊂ A .
Bn = An − U Ai ⊂ An − Am ,又因为 Bm ⊂ Am ,所以 i =1

实变函数(程其襄版)第一至四章课后习题答案

实变函数(程其襄版)第一至四章课后习题答案
2.集合的包含关系
若集合A和B满足关系:对任意 ∈A,可以得到x∈B,则成A是B的子集,记为A B或B A,若A B但A并不与B相同,则称A是B的真子集.
例7. 若 在R上定义,且在[a,b]上有上界M,即任意对
∈[a,b]有 M.用集合语言表示为:[a,b] { : M}.
用集合语言描述函数性质,是实变函数中的常用方法,请在看下例.
定理1
(交换律)
证明我们只证明
先设 则有 且有 于是这证来自了在证反过来的包含关系,设 ,则有 ,此即 ,因此 于是 。
综合起来,便是等式成立。
这表面,集合运算的分配律,在无限并的情况下依然成立
3、集合的差集和余集
若A和B是集合,称 为A和B是差集,A\B也可以记为A-B,如图1.3是A-B的示意图:
请读者注意:我们怎样把描述函数列性质的 语言,转换为集合语言。
例12 设 是定义在E上的函数列,若x是使 收敛与0的点,则对任意的 ,存在 ,使得对任意 即
顺便说明一下,一个集合的各个元素必须是彼此互异的,哪些事物是给定集合的元素必须是明确的,下面举出几个集合的例子。
例14,7 ,8,3四个自然数构成的集合。
例2全体自然数
例30和1之间的实数全体
例4 上的所有实函数全体
例5A,B,C三个字母构成的集合
例6平面上的向量全体
全体高个子并不构成一个集合,因为一个人究竟算不算高个子并没有明确的界限,有时难以判断他是否属于这个集合。
例1设 和 是定义在E上的函数,则对任意
例2.
例3若记
例4 若 是一族开区间,而 ,则存在
使得 (有限覆盖定理)
例5若 是定义在E上的函数,则
2、集合的交集
设A,B是任意两个集合,由一切既属于A又属于B的元素组成的集合C称为A和B的交集或积集,简称为交或积,记作 ,它可以表示为

实变函数(曹广福)1到5章答案

实变函数(曹广福)1到5章答案

第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。

若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:(i ))(inflim )(inf lim x x nnA nnA χχ=(ii ))(sup lim )(sup lim x x n nA nnA χχ=证明:(i ))(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf=≥x mA n m χ故1)(inf sup )(inf lim ==≥∈x x mnA nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf0=⇒=⇒∉≥x A x mnk m A nm A k χχ,故0)(inf sup =≥∈x mA nm N b χ ,即)(inf lim x nA nχ=0 ,从而)(inflim )(inf lim x x nnA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互相正交(ii )i ni i ni B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交.(ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i n i i n i A B 11==⋃⊂⋃,现在来证:i ni i n i B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|m in 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i n i B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即k a a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥ }1)(|{k a x f x E x m n m N n +≤∈≥∈ = }1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1ka x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim k a x f x E x m n +≤∈= }1)(|{ka x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:k a x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=8. 设)}({x f n 是区间(a ,b )上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是不可数的。

实变函数(程其襄版)第一至四章课后习题答案

实变函数(程其襄版)第一至四章课后习题答案
例14 设 ,则对任意 除有限个 外, ,即除有限个n外 因此 ,由 的任意性
,再由极限的唯一性,
上下极限还有用交集与并集来表示。
定理3
⑴ ; ⑵
证明我们利用
来证明⑴式.记 , .设 ,则对任意取定的 ,总有 ,使 ,即对任何 ,总有 ,故 .反之,设 ,则对任意的 ,总有 ,即总存在 ,有 ,所以 ,因此 ,即 .
2.集合的包含关系
若集合A和B满足关系:对任意 ∈A,可以得到x∈B,则成A是B的子集,记为A B或B A,若A B但A并不与B相同,则称A是B的真子集.
例7. 若 在R上定义,且在[a,b]上有上界M,即任意对
∈[a,b]有 M.用集合语言表示为:[a,b] { : M}.
用集合语言描述函数性质,是实变函数中的常用方法,请在看下例.
(1)单射:对任意 ,若 ,使得 ;
(2)满射:对任意 ,存在 ,使得 .
则称A和B对等,记为 ,规定 .
例1 我们可给出有限集合的一个不依赖与于元素个数概念的定义:集合A称为有限合,如果 或者A和正整数的某截断 对等。
注:有限集合的一个不依赖与于元素个数概念的定义,例如A的总个数与正整数的某个截断相对应。
⑵式可同样证明.
用定理3,例12中的⑴式和⑵式可分别简写为

.
如果 ,则称 收敛,记为 .若极限允许取 ,则单调数列总有极限,在集合论中也有类似的结论.
5.单调系列
如果集列 满足 , ,则称 为增加(减少)系列.增加与减少的集列统称为单调集列.容易证明:单调集列是收敛的.如果 增加,则 ,如果 减少,则 .请读者自证.
第一章 集合
早在中学里我们就已经接触过集合的概念,以及集合的并、交、补的运算,因此这章的前两节具有复习性质,不过,无限多个集合的并和交,是以前没有接触过的,它是本书中常常要用到,是学习实变函数论时的一项基本功。

胡适耕-实变函数答案-第一章(B)

胡适耕-实变函数答案-第一章(B)

胡适耕-实变函数答案-第一章(B)11第一章习题 B36.若A ΔB =A ΔC ,则B =C .证一:(反证)不妨设,∃x 0∈B ,且x 0∉C 1) x 0∈A ,则x 0∉A ΔB ,x 0∈A ΔC 这与A ΔB =A ΔC 矛盾2) x 0∉A ,则x 0∈A ΔB ,x 0∉A ΔC 这与A ΔB =A ΔC 矛盾所以假设不成立,即B =C .证二:()B A A ∆∆()[]()[]A B A B A A \\∆∆= =()()B A B B A =\ 同理()C C A A =∆∆,现在已知A B A C ∆=∆故上两式左边相等,从而C B =.37.集列{A n }收敛⇔{A n }的任何子列收敛.证 由习题8集列{}nA 收敛⇔特征函数列{}nA χ收敛,由数分知识得数列{}nA χ收敛⇔{}nAχ的任一子列{}jn A χ均收敛,又由习题811111) ∵ 0<na <1<nb ,0na↓,1n b ↓ ∴0,N ∃>当n>N 时,有na <x <nb∴当n>N 时,x ∈[na ,nb ] ∴(0,1]⊂lim[,]nnna b .2) 假设∃y >1,使y ∈lim[,]nnna b ,则y 属于集列{[,]nna b }中的无限多个集合.又因为y >1,1n b ↓ ,故0,N ∃>当n>N 时,有nb <y ,当n>N时,y ∉[,]nna b从而y 只会属于集列{[,]nna b }中的有限多个集合.这与y 会属于集列{[,]nna b }中的无限多个集合矛盾.所以假设不成立,即∀y ∈(1,)∞,有y ∉lim[,]nnna b .显然,∀y ∈(0]-∞,有y ∉lim[,]nnna b ,故]1,0(],[lim ⊂nn nb a .综上所述,lim[,]nnna b =(0,1].1240.设nf :R X →(n →∞),n f Aχ→(n →∞),求lim (1/2)n nX f ≥.解 1)∀0x A∈,n f Aχ→( n →∞),故0()n f x 0()1A x χ→=( n →∞).∴0,N ∃>当n>N 时,有0()nf x 1/2>. ∴当n>N 时,0(1/2)nx X f∈≥,从而0x ∈lim (1/2)nnX f≥.2)∀0cx A ∈,n f Aχ→( n→∞),故0()n f x 0()0A x χ→=( n →∞).∴0,N ∃>当n>N 时,有0()nf x 3/1>. ∴0lim (1/2)nnx X f∉≥ ∴lim (1/2)n nX f ≥=A41.设{nA }为升列,A⊂nA ,对任何无限集B ⊂A,存在n 使BnA 为无限集,则A 含于某个nA .证 假设A 不含于任何nA 中,又{nA }为升列,13则对1=n ,11\A A x ∈∃,由于n A A ⊂,故N n ∈∃1,使11n A x ∈,即 11\1A A x n ∈;对2=n ,22\A A x∈∃,又nA A ⊂故Nn∈∃2使⊂⊂∈+1222n n A A x .于是可取12n n>使22\2A A xn ∈.因此对i n =,1->∃i in n,in iA Ax i\∈.令B ={x 1, x 2,… x i …},则B ⊂A 且B 为无限集,但∀i ,B A ni ={x 1, x 2,… x i }为有限集,这与已知条件矛盾.∴假设不成立,即A 含于某个nA 中.42.设f :2x →2x ,当A ⊂B ⊂X 时f (A ) ⊂f(B ),则存在A ⊂X 使f (A )=A .证因为()XX f ⊂,故子集族()(){}BB f B X P X⊂∈=∆:20非空,令()X B A XP B ⊂=∈∆ 0,下证:1()AA f ⊂,即要证()X P A 0∈.首先由定义14BA ⊂对每个()X PB 0∈成立,那么由已知就有()()B f A f ⊂对一切()X P B 0∈成立,从而()()()()XP B XP B A B B f A f 00∈∈=⊂⊂.2再证()A f A ⊂.为此,由A 的定义,只要能证()()X P A A f 00∈=∆就可以了.但从1已证的()AA f A ⊂=0,又由已知f的单调性应有()()[]()00A A f A f f A f =⊂=,故确定()X P A 0∈.43.设X 是无限集,f :X →X ,则有X 的非空真子集A ,使f (A )⊂A .证∀x 1∈X ,若x 1≠x 2,令x 2=f ( x 1)若x 2≠x 3 ,令3x =f (2x )… 若1nn xx -≠,令1()nn xf x -=…1)若存在1ii x x +=,则令A ={x 1,x 2,…x i },显然f (A )⊂A .2)若不存在1ii x x +=,则令A ={x 1,x 2,…15x i ,…},显然f (A )⊂A . 44.设|A |>1,则有双射f :A→A,使得∀x ∈A :f (x )≠x ;当|A |=偶数或|A |ω≥时可要求f(f (x ))=x (∀x ∈A ).证 (1)|A |=2n +1, n ∈N ,则A ={x 1,x 2,…x 2n+1 },作映射:()111221i i x i nf x x i n +≤≤⎧=⎨=+⎩,显然f (x )是双射,且∀x ∈A ,有f (x )≠x .(2)|A |=2n ,n ∈N , 则A ={x 1,x 2,…x 2n },作映射:⎩⎨⎧=≤∃-=≤∃=-+m i n m x m i n m xx f i i i 2,12,)(11, 显然()f x 是双射,且∀x ∈A,有()f x x ≠且()()f f x x =.(3) |A |ω≥由A ×{0,1}~A 知,存在一双射{}:0,1h A A⨯→16令{}()01⨯=A h A,{}()12⨯=A h A又{}0⨯A ~{}1⨯A 及h 为双射,{}(){}()01A A ⨯⨯=∅{}(){}(){}010,1A A A ⨯⨯=⨯,知1A ~2A 且∅=21A A ,AA A =21 ,故A 可划分为两个互不相交等势的子集A 1和A 2。

实变函数第一章答案

习题1.3
1.证明:平面上顶点坐标为有理点的一切三角形之集 是可数集.
证明因为有理数集 是可数集,平面上的三角形由三个顶点所确定,而每个顶点由两个数决定,故六个数可确定一个三角形,所以 中的每个元素由 中的六个相互独立的数所确定,即 所以 为可数集.
2.证明:由平面上某些两两不交的闭圆盘之集 最多是可数集.
区间 中的全体有理数之集的基数是 ,这是因为: .
2.用 表示 上的一切连续实值函数之集,证明:
(1)设 , ,则

(2)公式
定义了单射 ;
(3) .
证明(1)必要性.显然.
充分性.假设 成立.因为 ,存在有理数列 ,使得 ,由 ,可得
及 .
又因为 为有理点列,所以有 ,故 ,都有 .
(2) ,设 ,即
6.证明:单调函数的不连续点之集至多是可数集.
证明不妨设函数 在 单调递增,则 在 间断当且仅当
.
于是,每个间断点 对应一个开区间 .
下面证明:若 为 的两个不连续点,则有 .
事实上,任取一点 ,使 ,于是

从而 对应的开区间 与 对应的开区间 不相交,即不同的不连续点对应的开区间互不相交,又因为直线上互不相交的开区间所构成的集合至多是可数集,所以可知单调函数的不连续点之集至多是可数集.
充分性.假设 成立,则 ,于是有 ,即
(3)必要性.假设 ,即 若 取 则 于是 但 与 矛盾.
充分性.假设 成立,显然 成立,即 .
3.证明定理1.1.6.
定理1.1.6 (1)如果 是渐张集列,即 则 收敛且
(2)如果 是渐缩集列,即 则 收敛且
证明(1)设 则对任意 存在 使得 从而 所以 则 又因为 由此可见 收敛且

(完整版)实变函数论课后答案第一章3

实变函数论课后答案第一章3(p20-21)第一章第三节1. 证明[]0,1上的全体无理数构成一不可数无穷集合.证明:记[]0,1上的全体有理数的集合为°()12,,,,nQ r r r =L L . []0,1全体无理数的集合为°R,则[]°°0,1Q R =U . 由于°Q 是一可数集合,°R 显然是无穷集合(否则[]0,1为可数集,°°Q R U 是可数集,得矛盾).故从P21定理7得 []°°°0,1QR R =U :. 所以°R=ℵ,°R 为不可数无穷集合. 2. 证明全体代数数(即整系数多项式的零点)构成一可数集合,进而证明必存在超越数(即非代数数). 证明:记全体整系数多项式的全体的集合为z P ,全体有理多项式的集合为Q P .则上节习题3,已知Q P 是可数集,而z Q P P ⊂,故z P 至多是可数集,()z Q P P ≤,而z P 显然为无穷集合,故z P 必为可数集.,0z z m m P P ∞==U .任取一,0,z f P m ∈∃≥有,z m f P ∈.f 的不同零点至多有m 个,故全体,z m f P ∈的零点的并至多为无数.((){},;0z mf P z f z ∈=U至多为可数集,所以全体代数数之集(){},0;0z mm f P z f z ∞=∈=UU也是至多可数集.又{},1;1,2,n N nx n ∀∈+=L 是可数集,110nx x n+=⇔=. 带市数显然有无穷个,故全体代数数之集为一可数集.3. 证明如果a 是可数基数,则2ac =.证明:一方面对于正整数N 的任意子集A ,考虑A 的示性函数()()()10A A An n An n n A ϕϕϕ=∈⎧⎪=⎨=∉⎪⎩当当{}2N A N ∀∈@的子集所构成的集令()()()0.1,2A A J A x ϕϕ==L则()()0,1J A x =∈若()()J A J B =,则()(),1,2,A B n n n ϕϕ=∀=L故A B =(否则()()0000,10A B n A n B n n ϕϕ∃∈∉⇒=≠=)故2N与()0,1的一个子集对等(()20,1N≤)另一方面,()0,1x ∀∈.令±{};,x A r r x r R =≤∈ (这里±0R 为()0,1中的全体有理数组成的集合) 若(),,0,1x y x y ≠∈,则由有理数的稠密性,x y A A ≠x A 是±0R 这一与N 对等的集合的子集. 故()0,1与±0R 的全体子集组成的集合的一个子集对等(()±00,1R ≤的全体子集组成集的势,即()()0,120,1N≤≤)也就与2N的一个子集对等. 由Berrstein 定理()0,12N:所以2ac =.4. 证明如果A B c =U ,则,A B 中至少一个为c . 证明:E A B c ==U ,故不妨认为(){},;01,01E x y x y =<<<<,,A B 为E 的子集.若存在x ,01x <<使得(){},;01x A E x y y ⊃=<<.则由于x E c =(显然()0,1x E :) 故A c ≥,而,A E A E c ⊂≤=. 由Berrsrein 定理A c =.若,01,x x x E A ∀<<⊄,则从x E E A B ⊂=U 知(){},;01x B E B x y y =<<≠∅I I所以(),x x y B ∃∈,则显然(){},;01xx y x <<具有势c故易知c B E c ≤≤= 由Berrsrein 定理B c = 证毕5. 设F 是[]0,1上全体实函数所构成的集合,证明2cF =证明:[]0,1∀的子集A ,作A 的示性函数()10A x Ax x A ϕ∈⎧=⎨∉⎩则映射()A A x ϕa规定了[]0,1的所有子集的集合到[]0,1上全体实函数所构成的集合的一个对应,且若A ,B ⊂[]0,1使得()()[],0,1A B x x x ϕϕ=∀∈成立 则必有A B = 所以[]0,12与F 的一个子集对等.反过来,任取()f x F ∈,()()[]{},;0,1f A t f t t =∈,fA 是f 在2R中的图象,是2R 中的一个子集.且若,f g F ∈,使f g A A =则[]0,1t ∀∈,()(),f g t f t A A ∈= 表明[]10,1t ∃∈使()()()()11,,t f t t g t =()()1,,t t f t g t t ⇒==∀故f g =.所以F 与2R 的全体子集所组成的集合的一个子集对等,故从[]20,1R :知[]20,122R F ≤=即F 与[]0,12的一个子集对等.所以由Berstein 定理[]0,122c F ==.。

胡适耕-实变函数答案-第一章(B)

第一章习题 B36.若A ΔB =A ΔC ,则B =C .证一:〔反证〕不妨设,∃x 0∈B ,且x 0∉C1) x 0∈A ,则x 0∉A ΔB ,x 0∈A ΔC 这与A ΔB =A ΔC 矛盾 2) x 0∉A ,则x 0∈A ΔB ,x 0∉A ΔC 这与A ΔB =A ΔC 矛盾 所以假设不成立,即B =C .证二:()B A A ∆∆()[]()[]A B A B A A \\∆∆= =()()B A B B A =\ 同理()C C A A =∆∆,现在已知A B A C ∆=∆故上两式左边相等,从而C B =. 37.集列{A n }收敛⇔{A n }的任何子列收敛.证由习题8集列{}n A 收敛⇔特征函数列{}n A χ收敛,由数分知识得数列{}nA χ收敛⇔{}nA χ的任一子列{}jn A χ均收敛,又由习题8可得{}jn A 收敛.38.设)2,1}(:/{ =∈=n Z m n m A n ,则lim n nA =Z ,lim n nA =Q .证显然有lim lim n n nnZ A A Q ⊂⊂⊂1) 假设∃x \,Q Z ∈使x ∈lim n nA∴∃N >0,当n>N 时,有n x A ∈,特别地,n x A ∈,1n x A +∈ ∴∃m 1,m 2∈Z ,使x =1m n ,x =21m n +∴1m n =21mn + 从而121,m m m n=+这与m 2∈Z 矛盾,所以假设不成立,即:lim n n A =Z .2〕∀x ∈Q,则∃m,n ∈Z,使得x =mn∴x=m n =2m nn⋅=…=1k k m n n +⋅=…∴x ∈k n A ,(k =1,2…),从而x ∈lim n nA ∴lim n nA =Q .39.设0<n a <1<n b ,0n a ↓,1n b ↓,则lim[,]n n na b =(0,1].证(0,1]x ∀∈1)∵0<n a <1<n b ,0n a ↓,1n b ↓∴0,N ∃>当n>N 时,有n a <x <n b ∴当n>N 时,x ∈[n a ,n b ]∴(0,1]⊂lim[,]n n na b .2)假设∃y >1,使y ∈lim[,]n n na b ,则y 属于集列{[,]n n a b }中的无限多个集合.又因为y >1,1n b ↓,故0,N ∃>当n>N 时,有n b <y ,当n>N 时,y ∉[,]n n a b 从而y 只会属于集列{[,]n n a b }中的有限多个集合. 这与y 会属于集列{[,]n n a b }中的无限多个集合矛盾. 所以假设不成立,即∀y ∈(1,)∞,有y ∉lim[,]n n na b .显然,∀y ∈(0]-∞,有y ∉lim[,]n n na b ,故]1,0(],[lim ⊂n n nb a .综上所述,lim[,]n n na b =(0,1].40.设n f :R X →〔n →∞〕,n f A χ→(n →∞),求lim (1/2)n nX f ≥.解1〕∀0x A ∈,n f A χ→( n →∞),故0()n f x 0()1A x χ→=( n →∞). ∴0,N ∃>当n>N 时,有0()n f x 1/2>.∴当n>N 时,0(1/2)n x X f ∈≥,从而0x ∈lim (1/2)n nX f ≥.2〕∀0cx A ∈,n f A χ→( n →∞),故0()n f x 0()0A x χ→=( n →∞).∴0,N ∃>当n>N 时,有0()n f x 3/1>. ∴0lim (1/2)n nx X f ∉≥∴lim (1/2)n nX f ≥=A41.设{n A }为升列,A ⊂n A ,对任何无限集B ⊂A ,存在n 使B n A 为无限集,则A 含于某个n A .证假设A 不含于任何n A 中,又{n A }为升列,则对1=n ,11\A A x ∈∃,由于n A A ⊂,故N n ∈∃1,使11n A x ∈,即11\1A A x n ∈;对2=n ,22\A A x ∈∃,又n A A ⊂故N n ∈∃2使⊂⊂∈+1222n n A A x .于是可取12n n >使 22\2A A x n ∈.因此对i n =,1->∃i i n n ,i n i A A x i \∈.令B ={x 1, x 2,…x i …},则B ⊂A 且B 为无限集, 但∀i ,BA ni ={x 1, x 2,…x i }为有限集,这与已知条件矛盾.∴假设不成立,即A 含于某个n A 中.42.设f :2x →2x ,当A ⊂B ⊂X 时f (A )⊂f (B ),则存在A ⊂X 使f (A )=A .证因为()X X f ⊂,故子集族()(){}B B f B X P X⊂∈=∆:20非空,令()X B A XP B ⊂=∈∆0,下证:1()A A f ⊂,即要证()X P A 0∈.首先由定义B A ⊂对每个()X P B 0∈成立,那么由已知就有()()B f A f ⊂对一切()X P B 0∈成立,从而()()()()XP B XP B A B B f A f 00∈∈=⊂⊂.2再证()A f A ⊂.为此,由A 的定义,只要能证()()X P A A f 00∈=∆就可以了.但从1已证的()A A f A ⊂=0,又由已知f 的单调性应有()()[]()00A A f A f f A f =⊂=,故确定()X P A 00∈.43.设X 是无限集,f :X →X ,则有X 的非空真子集A ,使f (A )⊂A .证∀x 1∈X ,若x 1≠x 2,令x 2=f (x 1)若x 2≠x 3 ,令3x =f (2x )… 若1n n x x -≠,令1()n n x f x -=…1〕若存在1i i x x +=,则令A ={x 1,x 2,…x i },显然f (A )⊂A . 2〕若不存在1i i x x +=,则令A ={x 1,x 2,…x i ,…},显然f (A )⊂A .44.设|A |>1,则有双射f :A →A ,使得∀x ∈A :f (x )≠x ;当|A |=偶数或|A |ω≥时可要求f (f (x ))=x (∀x ∈A ).证〔1〕|A |=2n +1,n ∈N ,则A ={x 1,x 2,…x 2n+1 },作映射:()111221i i x i nf x x i n +≤≤⎧=⎨=+⎩,显然f (x )是双射,且∀x ∈A ,有f (x )≠x . 〔2〕|A |=2n ,n ∈N , 则A ={x 1,x 2,…x 2n },作映射: ⎩⎨⎧=≤∃-=≤∃=-+mi n m x m i n m x x f i i i 2,12,)(11,显然()f x 是双射,且∀x ∈A ,有()f x x ≠且()()ff x x =.(3) |A |ω≥由A ×{0,1}~A 知,存在一双射{}:0,1h A A ⨯→令{}()01⨯=A h A ,{}()12⨯=A h A 又{}0⨯A ~{}1⨯A 与h 为双射,{}(){}()01A A ⨯⨯=∅{}(){}(){}010,1A A A ⨯⨯=⨯,知1A ~2A 且∅=21AA ,A A A =21 ,故A 可划分为两个互不相交等势的子集A 1和A 2。

卢同善实变函数青岛海洋大学出版社第一章习题答案

第一章习题答案第1-10,17题略. 从11题开始(9,10,11类似)11 []11k k E f a E f a ∞=≤=<+⎡⎤⎣⎦证明:任取左边的元素x ,则a x f ≤)(,当然对任意的k ,有1()k f x a <+,即,1()k x E f a k ∈<+∀⎡⎤⎣⎦. 因此,该x 含于右边. 得到左是右的子集;另一方面,任取右边的元素x ,则1()k x E f a k ∈<+∀⎡⎤⎣⎦,即1()()k f x a k <+∀. 让k →∞,得到()f x a ≤. 因此,该x 含于左边. 得到右是左的子集. 综上,左等于右.12 设实函数列{})(x f n 在E 上定义,又设{})(inf )(1x f x h n n ≥=. 证明对R a ∈∀,成立[] ∞=<=<1][n n a f E a h E . 证明:因))(()(n x f x h n ∀≤,故当()n f x a <时,必有()h x a <,这表明[])]([n a h E a f E n ∀<⊂<,因此[] ∞=<⊃<1][n n a f E a h E . 另一方面,任取][a h E x <∈,由下极限的定义,知存在n ,使a x f n <)((若否,则对任意的n ,有()n f x a ≥,这表明inf{()}()n f x h x a =≥,矛盾). 当然有[] ∞=<∈1n n a f E x ,故[] ∞=<⊂<1][n n a f E a h E . 综上,左等于右.13 实函数列{})(x f n 在E 上收敛到)(x f ,证明对任意的R a ∈∀,成立[] ∞=∞=∞=+<=≤111][k N N n k n a f E a f E . 证明:任取左边的元素x ,则a x f ≤)(. 由于)()(lim x f x f n n =∞→,所以对任意的k ,存在N ,使得当N n ≥时有k x f x f n 1)()(<-,即有ka k x f x f n 11)()(+<+<. 也即,对任意的N n ≥,恒有1n k x E f a ∈<+⎡⎤⎣⎦,所以1n k n N x E f a ∞=∈<+⎡⎤⎣⎦. 这表明x 是右边的元素,所以左是右的子集.另一方面,任取右边的元素x ,则对任意的k ,存在N ,使得当N n ≥时有k a x f n 1)(+<. 让∞→n ,得到)(,1)(lim )(k ka x f x f n n ∀+≤=∞→. 再由k 的任意性,得到a x f ≤)(. 这表明x 是左边的元素,所以右是左的子集. 综上,左右相等.14 若集列{}n A 单减,则 ∞===1lim lim n n n n A A A . 证明:因为{}n A 单减,所以mn m n A A ∞==,1m m m n m A A ∞∞===. 得到 ∞=∞=∞=∞→==11lim n n n n m m n n A A A ,∞=∞=∞=∞=∞=∞=∞→====11111lim n n m m n m m n n m m n n A A A A A .即, ∞===1lim lim n n n n A A A .15 证明)(lim )(lim x x n n A A χχ=证明:若0)(lim =x n A χ,显有)(lim )(lim x x n n A A χχ≤; 若1)(lim =x n A χ,由特征函数的定义知n A x lim ∈. 再由下限集的性质知存在N ,使)(N n A x n >∀∈,从而对N n >∀有1)(=x n A χ,故1)(lim =x n A χ. 此时)(lim )(lim x x n n A A χχ=. 总之,)(lim )(lim x x nn A A χχ≤. 另一方面:若0)(lim =x n A χ,显有)(lim )(lim x x n n A A χχ≥; 若1)(lim =x n A χ,又因为()1()n A x n χ≤∀,故1)(lim =x n A χ. 因此存在N ,使得1)(=x nA χ )(N n >∀. 由特征函数的定义知)(N n A x n >∀∈,再由下限集的性质知n A x lim ∈. 因此,1)(lim =x n A χ,也就得到)(lim )(lim x x n n A A χχ=. 总之)(lim )(lim x x n n A A χχ≥. 综合有)(lim )(lim x x n n A A χχ=. 16 证明定理1.2.4与Bernstein 定理等价.证明:必要性:由假设知存在A 到B B ⊂1上的双射f , B 到A A ⊂1上的双射g . 令2))((A A f g =. 则21)(A B g =,且2A 与A 对等(因为,f g 是单射). 又因为)(,11B g A B B =⊂,因此A A A ⊂⊂12. 由定理1.2.4知A A A ,,12三者对等,又1A 与B 对等,根据对等的传递性,得到A 与B 对等,故Bernstein 定理成立.充分性:设C B A ⊂⊂且C A ~. 一方面C B B ⊂~,另一方面B A C ⊂~,由Bernstein 定理知C B ~. 又C A ~,根据对等的传递性,得到C B A ~~. 即定理1.2.4成立. 18 设A 为无限集,B 为有限集,证明A B A ~\.证明:因为A 为无限集,B 为有限集,所以B A \是无限集. 由B B A ⊂⋂知道B A ⋂是有限集. 而()()B A B A A ⋂⋃=\,右边是一个无限集并上有限集,不改变对等关系(定理1.3.5),所以A B A ~\.19 设A 为无限集,B 为可数集,若B A \为无限集,证明A B A ~\. 并举反例说明“B A \为无限集”这一条件不可去.证明:因为B 为可数集,所以B A ⋂是至多可数集. 而()()B A B A A ⋂⋃=\,B A \又是无限集,由定理1.3.5知命题成立(与18题类似).20 空间中坐标为有理数的点的全体K 成一可数集.证明:显然{}(,,):,,K a b c a b c Q Q Q Q =∈=⨯⨯是三个可数集的乘积,从而是可数集. 21 1R 中以互不相交的的开区间为元素的集合为至多可数集.证明:设该集合为K . 因为对任意的开区间K b a ∈),(,存在有理数),(b a r ab ∈. 这样,可作一映射Q K f →:,使得()ab r b a f =),(. 由于K 中的开区间是互不相交的,所以这一映射是一单射. 因此Q K f K ⊂)(~,也就说明了K 是一至多可数集.22 1R 上单调函数)(x f 的不连续点的全体A 为至多可数集.证明:不妨设函数单增. 任取断点A x ∈0. 由于函数单调,所以在0x 点的左极限)(0x f -和右极限)(0x f +都存在,且)()(00x f x f ++<. 让断点0x 对应于开区间())(),(00x f x f ++,由于函数单增,所以不同断点所对应的开区间是不相交的. 再利用21题即得.23 设A 为无限集,证明必存在A A ⊂*,使A A ~*且*\A A 为一可数集. 证明:因A 为无限集,故A 有可数的子集{} ,,211a a A =. 令{} ,,,53111a a a A =,{} ,,,64212a a a A =. 取11*\A A A =,则11*\A A A =为可数集,A A ⊂*为无限集(因*12A A ⊂)11*A A A ⋃=,所以A A ~*.24 设A 为可数集,证明A 的所有有限子集的全体是可数集.证明:设{}12,,,,n A a a a =. A 的所有有限子集的全体为K . 对K B ∈∀,设{}m i i i a a a B ,...,,21=,令B 与数组()m i i i ,...,,21对应. 因为不同的集合的元素不完全相同,所以它们对应的数组也不同. 这样由编号定理知K 为至多可数集. 又因所有的单元素集在K 中,所以K 是无限集,因此K 是可数集.25 设A 为其长度不等于零的开区间所组成的不可数集. 证明:存在0>δ,使得A 中有无限多个开区间的长度均大于δ.证明:令n A 为A 中长度不小于n 1的开区间的全体,则 1≥=n n AA . 因为A 为不可数集,所以右端至少有一个集合是无限集(否则,右边是至多可数集). 取相应的的长度为δ即可.26 ]1,0[中无理数的全体成一不可数集.证明:反证法. 假设]1,0[中无理数的全体K 是至多可数集,而]1,0[中有理数的全体0Q 是可数集,这样0[0,1]K Q =是可数集(可数集和至多可数集的并是可数集). 这与]1,0[是不可数集矛盾.27整系数多项式的实根称为代数数,称非代数数的实数为超越数. 证明:代数数的全体成一可数集,进而证明超越数的存在.证明:所有整系数多项式的实根全体正是代数数的全体. 整系数多项式的全体是可数的,而每一个多项式至多有有限个实根. 又可数个有限集的并是至多可数集,这表明代数数的全体是至多可数集. 代数数的全体当然是无限集(因为整数是代数数),所以它是可数集. 因而,也表明超越数的全体是不可数集(利用19题得到).28 证明c a =2,其中a 为可数基数,c 为连续基数.证明:设},,,,{21 n r r r A =,即证明A 的所有子集的全体A 2的势为c . 作从A 2到二进位小数全体K 的映射:2A f K →为 n a a a B f 21.0)(=,其中当B r n ∈时,1=n a ;当B r n ∉时,0=n a . 因为不同的集合的元素不完全相同,所以该映射是单射,故c K A =≤2. 另一方面,作映射:2A g K →为B a a a g n =).0(21 ,其中{}:1,1,2,i i B r a i ===若,该映射也是单射,因此c K A =≥2. 综上,有c K A ==2. 29 ]1,0[上连续函数的全体[0,1]C 的基数是c .证明:因常函数都是连续函数,故[0,1]C R c ≥=. 设0[0,1]Q Q =⋂,则它是可数集. 不妨设{}012,,...,,n Q r r r =. 对任意的[0,1]f C ∈,让其对应于R ∞中的实数组{}12(),(),...,(),n f r f r f r ,则这个对应是从[0,1]C 到R ∞的一个单射. 事实上,若g f ,是对应于同一数组的两个连续函数,即(),...2,1,)(==i r g r f i i . 对任意的实数]1,0[∈a ,存在有理数序列{}]1,0[⊂k i r ,使得)(∞→→k a r k i . 这样由函数的连续性得到)()(lim )(lim )(a g r g r f a f k k i k i k ===∞→∞→,也即f g ≡,也就是说该对应是一个单射.因此[0,1]C 和∞R 的某子集对等,故有[0,1]C R c ∞≤=. 综上,[0,1]C c =.30 ]1,0[上单调函数的全体的基数是c .证明:类似上一题. ]1,0[上单调函数的全体K 的基数显是不小c ,因为)(,)(a ax x f ∀=都是K 中的元素. 对任一单调函数)(x f ,其断点的全体A 是至多可数集(第22题的结论). 令()A Q E ⋃⋂=]1,0[,则E 是可数集,设{} ,,,,21n a a a E =. 让函数)(x f 对应于()∞∈R a f a a f a a f a n n );(,;);(,);(,2211,这个对应是单射(方法类似于上题,不过要多考虑断点罢了). 因此,]1,0[上单调函数的全体K 的基数不超过∞R 的基数c . 命题得证. 31 ]1,0[上实函数的全体的基数是c 2.证明:设]1,0[上实函数的全体为]1,0[R . 对任意的集合]1,0[⊂A ,则其特征函数()[0,1]A x R χ∈,并且不同集合的特征函数是不同的. 所以]1,0[的子集的全体]1,0[2对等于]1,0[R 的一个子集,从而c R 22]1,0[]1,0[=≥. 另一方面,对任意实函数]1,0[R f ∈,让其和集合(){}2]1,0[:)(,R x x f x ⊂∈对应(该集合是函数的图像),当然这一对应是单射,从而]1,0[R 和2R 的某些子集构成的集合对等,也即2[0,1]22R c R ≤=. 综上,c R 2]1,0[=. 32 设c B A =⋃,证明A 和B 中至少有一为c .证明:不妨设,2R B A =⋃B A ,不相交. 显然B A ,的势都不超过c .对任意的R x ∈,作直线}:),{(R y y x L x ∈=,则x L 的势均为c .若存在R x ∈,使得A L x ⊂,则A 的势不小于x L 的势c ;若不存在R x ∈,使得A L x ⊂,即任取R x ∈,必有R x y ∈)(,使得A x y x ∉))(,(,这时必有B x y x ∈))(,(. 这表明集合{}B R x x y x ⊂∈:))(,(,而集合{}R x x y x ∈:))(,(的势为c ,故B 的势不小于c . 综上A 和B 中至少有一不小于c . 又B A ,的势都不超过c ,因此A 和B 中至少有一个为c . 注意:该题不好用反证法,因为集合的势小于c 时不能得到集合是至多可数集(康托连续统假设的不确定性).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题1.11.证明下列集合等式.(1) ()()()C A B A C B A \\=; (2) ()()()C B C A C B A \\\ =; (3) ()()()C A B A C B A \\\=.证明 (1) )()C \B (cC B A A =)()( c c C B A A B A = c C A B A )()( =)(\)(C A B A = .(2) cC B A A )(C \B)(=)()(c c C B C A ==)\()\(C A C A .(3) )(\C)\(B \cC B A A = c c C B A )( =)(C B A c = )()(C A B A c =)()\(C A B A =.2.证明下列命题.(1) ()A B B A = \的充分必要条件是:A B ⊂; (2) ()A B B A =\ 的充分必要条件是:=B A Ø; (3) ()()B B A B B A \\ =的充分必要条件是:=B Ø.证明 (1) A B A B B B A B B A B B A cc==== )()()()\(的充要条 是:.A B ⊂(2) ccccB A B B B A B B A B B A ===)()()(\)(必要性. 设A B B A =\)( 成立,则A B A c= , 于是有cB A ⊂, 可得.∅=B A反之若,∅≠B A 取B A x ∈, 则B x A x ∈∈且, 那么B x A x ∉∈且与cB A ⊂矛盾.充分性. 假设∅=B A 成立, 则c B A ⊂, 于是有A B A c= , 即.\)(A B B A = (3) 必要性. 假设B B A B B A \)()\( =, 即.\cC A B A B A == 若,∅≠B 取,B x ∈ 则,cB x ∉ 于是,cB A x ∉ 但,B A x ∈ 与cC A B A =矛盾.充分性. 假设∅=B 成立, 显然B A B A \= 成立, 即B B A B B A \)()\( =. 3.证明定理1.1.6.定理1.1.6 (1) 如果{}n A 是渐张集列, 即),1(1≥∀⊂+n A A n n 则{}n A 收敛且∞=∞→=1;lim n n n n A A(2) 如果{}n A 是渐缩集列, 即),1(1≥∀⊃+n A A n n 则{}n A 收敛且 ∞=∞→=1.lim n n n n A A证明 (1) 设),1(1≥∀⊂+n A A n n 则对任意 ∞=∈1,n n A x 存在N 使得,NAx ∈ 从而),(N n A x N ≥∀∈ 所以,lim n n A x ∞→∈ 则.lim 1n n n n A A ∞→∞=⊂ 又因为 ∞=∞→∞→⊂⊂1,lim lim n n n n n n A A A由此可见{}n A 收敛且 ∞=∞→=1;lim n n n n A A(2) 当)1(1≥∀⊃+n A A n n 时, 对于,lim n n A x ∞→∈存在)1(1≥∀<+k n n k k 使得),1(≥∀∈k A x k n 于是对于任意的,1≥n 存在0k 使得n n k >0, 从而,0n n A A x k ⊂∈ 可见.lim 1∞=∞→⊂n n n n A A 又因为,lim lim 1n n n n n n A A A ∞→∞→∞=⊂⊂ 所以可知{}n A 收敛且 ∞=∞→=1.lim n n n n A A4.设f 是定义于集合E 上的实值函数,c 为任意实数,证明: (1) ⎥⎦⎤⎢⎣⎡+≥=>∞=n c f E c f E n 1][1 ;(2) ⎥⎦⎤⎢⎣⎡+<=≤∞=n c f E c f E n 1][1 ; (3) 若))(()(lim E x x f x f n n ∈∀=∞→,则对任意实数c 有⎥⎦⎤⎢⎣⎡->=⎥⎦⎤⎢⎣⎡->=≥∞→∞=∞=∞=∞=k c f E k c f E c f E n n k n N n N k 1lim 1][111 .证明 (1) 对任意的[],c f E x >∈ 有,)(c x f > 则存在+∈Z n 使得nc x f 1)(+≥成立. 即,1⎥⎦⎤⎢⎣⎡+≥∈n c f E x 那么.11 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 故[];11 ∞=⎥⎦⎤⎢⎣⎡+≥⊂>n n c f E c f E 另一方面, 若,11 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 则存在+∈Z n 0使得,110 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 于是c n c x f >+≥01)(, 故[]c f E x >∈. 则有[].11 ∞=⎥⎦⎤⎢⎣⎡+≥⊃>n n c f E c f E(2) 设[]c f E x ≤∈, 则c x f ≤)(, 从而对任意的+∈Z n , 都有nc x f 1)(+<, 于是 ∞=⎥⎦⎤⎢⎣⎡+<∈11n n c f E x , 故有[];11 ∞=⎥⎦⎤⎢⎣⎡+<⊂≤n n c f E c f E另一方面, 设 ∞=⎥⎦⎤⎢⎣⎡+<∈11n n c f E x , 则对于任意的+∈Z n , 有nc x f 1)(+<, 由n 的任意性, 可知c x f ≤)(, 即[]c f E x ≤∈, 故[] ∞=⎥⎦⎤⎢⎣⎡+<⊃≤11n n c f E c f E . (3) 设[]c f E x ≥∈, 则c x f ≥)(. 由),)(()(lim E x x f x f n n ∈∀=∞→ 可得对于任意的+∈Z k , 存在N 使得)(1|)()(|N n k x f x f n ≥∀<-, 即)1(11)()(≥-≥->k kc k x f x f n , 即k c x f n 1)(->, 故)1(1lim ≥∀⎥⎦⎤⎢⎣⎡->∈∞→k k c f E x n n , 所以 ∞=∞→⎥⎦⎤⎢⎣⎡->∈11lim k n n k c f E x , 故[] ∞=∞→⎥⎦⎤⎢⎣⎡->⊂≥11lim k n n k c f E c f E ;另一方面, 设 ∞=∞→⎥⎦⎤⎢⎣⎡->∈101lim k n n k c f E x , 则对任意+∈Z k 有⎥⎦⎤⎢⎣⎡->∈∞→k c f E x n n 1lim 0. 由下极限的定义知:存在1N 使得当1N n ≥时, 有)(10+∈∀⎥⎦⎤⎢⎣⎡->∈Z k k c f E x n , 即对任意+∈Z k 有kc x f n 1)(0->; 又由),)(()(lim E x x f x f n n ∈∀=∞→ 知),()(lim 00x f x f n n =∞→ 即对任意的+∈Z k , 存在2N 使得当2N n ≥时, 有kx f x f n 1|)()(|00<-. 取},m ax {21N N N =,则有k c x f n 1)(0->与k x f x f n 1|)()(|00<-同时成立, 于是有k c x f k x f n 1)(1)(00->>+,从而kc x f 2)(0->, 由k 的任意性知:c x f ≥)(0, 即[]c f E x ≥∈0, 故有[] ∞=∞→⎥⎦⎤⎢⎣⎡->⊃≥11lim k n n k c f E c f E ;综上所述:[].11lim 111 ∞=∞=∞=∞=∞→⎥⎦⎤⎢⎣⎡->=⎥⎦⎤⎢⎣⎡->=≥k N N n n n n n k c f E k c f E c f E5.证明集列极限的下列性质.(1) cn n cn n A A ∞→∞→=⎪⎭⎫ ⎝⎛lim lim _____;(2) c n ncn n A A _____lim lim ∞→∞→=⎪⎭⎫ ⎝⎛; (3) ()n n n n A E A E ∞→∞→=lim \\lim ;(4) ()n n n n A E A E ∞→∞→=lim \\lim .证明 (1) cn n n nm c m n c n m m c n n m m cn n A A A A A ∞→∞=∞=∞=∞=∞=∞=∞→====⎪⎭⎫ ⎝⎛lim )()(lim 111_____ .(2) c n n n n nm c m c n m m c n n m m cn n A A A A A _____111lim )()(lim ∞→∞=∞=∞=∞=∞=∞=∞→====⎪⎭⎫ ⎝⎛ . (3) () ∞=∞=∞=∞=∞=∞=∞→===111))(()()\(\lim n nm n n m cm cm n nm mn n A E A E AE A Ec n nm m n c nm m n nm cmA E A E AE )())(()(111 ∞=∞=∞=∞=∞=∞====∞=∞=∞→==1lim \\n n m n n mA E AE .(4) () ∞=∞=∞=∞=∞=∞=∞→===111))(()()\(\lim n n m cm n nm n nm cm mn n A E A E AE A Ec n nm m n c nm m n n m cmA E A E AE )())(()(111 ∞=∞=∞=∞=∞=∞====∞=∞=∞→==1lim \\n nm n n mA E AE .6.如果}{},{n n B A 都收敛,则}\{},{},{n n n n n n B A B A B A 都收敛且 (1) ()n n n n n n n B A B A ∞→∞→∞→=lim lim lim ; (2) ()n n n n n n n B A B A ∞→∞→∞→=lim lim lim ; (3) ()n n n n n n n B A B A ∞→∞→∞→=lim \lim \lim .习题1.21.建立区间)1,0(与]1,0[之间的一一对应. 解 令1111{,,,,}2345E =, 111{0,1,,,}234F =,(0,1)\D E =,则(0,1)E D =,[0,1]F D =.定义:(0,1)[0,1]φ→为: ;11();(1,2,)210;2x x Dx x n n n x φ⎧⎪∈⎪⎪===⎨+⎪⎪=⎪⎩则φ为(0,1)[0,1]→之间的一个一一对应.2.建立区间],[b a 与],[d c 之间的一一对应,其中d c b a <<,. 解 定义: :[,][,]a b c d φ→为:()().([,])d c d c bc ad x x a c x x a b b a b a b aφ---=-+=+∀∈--- 可以验证: :[,][,]a b c d φ→为一个一一对应.3.建立区间),(b a 与],[d c 之间的一一对应,其中d c b a <<,. 解 令{,,,}234b a b a b a E a a a ---=+++,{,,,,}23d c d c F c d c c --=++ (,)\D a b E =. 定义:(,)[,]a b c d φ→为:;();(1,2.)2;.2d cbc ad x x D b a b a d c b ax c x a n n n b a c x a φ--⎧+∈⎪--⎪--⎪=+=+=⎨+⎪-⎪=+⎪⎩可以验证: :(,)[,]a b c d φ→为一个一一对应.4.试问:是否存在连续函数,把区间]1,0[一一映射为区间)1,0(?是否存在连续函数,把区间]1,0[一一映射为]4,3[]2,1[ ?答 不存在连续函数把区间[0,1]一一映射为(0,1); 因为连续函数在闭区间[0,1]存在最大、最小值.也不存在连续函数把区间[0,1]一一映射为[1,2][3,4]; 因为连续函数在闭区间[1,2]上存在介值性定理, 而区间[1,2][3,4]不能保证介值性定理永远成立.5.证明:区间2~)1,0()1,0(~)1,0(R ⨯且ℵ=2R . 证明 记(0,1)A =,则(0,1)(0,1)A A ⨯=⨯. 任取(,)x y A A ∈⨯, 设1231230.,0.,x a a a y b b b == 为实数,x y 正规无穷十进小数表示, 并令1122(,)0.f x y a b a b =, 则得到单射:f A A A ⨯→. 因此由定理 1.2.2知A A A ⨯≤.若令10.5A A =⨯, 则1~A A A A ⊂⨯. 从而由定理1.2.2知: A A A ≤⨯. 最后, 根据Bernstein 定理知: (0,1)~(0,1)(0,1)⨯.对于(,)(0,1)(0,1)x y ∀∈⨯,定义2:(0,1)(0,1)R φ⨯→为:(,)((),())22x y tg x tg y ππφππ=--,则φ为2(0,1)(0,1)R ⨯→的一个一一对应,即2(0,1)(0,1)~R ⨯. 又因为: (0,1)~R , 则由对等的传递性知: 2(0,1)~(0,1)(0,1)~~R R ⨯且2R R ==ℵ.6.证明:{}1:),(22≤+=y x y x A 与{}1:),(22<+=y x y x B 对等并求它们的基数. 证明 令221{(,):(1,2,3,)}E x y x y n n =+==, \D A E =, 221{(,):(1,2,3,)}1F x y x y n n =+==+.则,A E D B F D ==. 定义: :A B φ→为:2222(,);(,),(,)11;(1,2,3,),(,).1x y x y D x y x y x y n x y E n n φ∈⎧⎪=⎨+=+==∈⎪+⎩可以验证: :A B φ→为一一对应, 即~A B . 又因为2~(0,1)(0,1)~~B R R ⨯, 所以A B ==ℵ.7.证明:直线上任意两个区间都是对等且具有基数ℵ.证明 对任意的,I J R ⊆, 取有限区间(,)a b I ⊆,则(,)a b I R ℵ=≤≤=ℵ, 则由Bernstern 定理知I =ℵ, 同理J =ℵ. 故I J ==ℵ.习题1.31.证明:平面上顶点坐标为有理点的一切三角形之集M 是可数集.证明 因为有理数集Q 是可数集,平面上的三角形由三个顶点所确定,而每个顶点由两个数决定,故六个数可确定一个三角形,所以M 中的每个元素由Q 中的六个相互独立的数所确定,即Q},,,,:{621621∈=x x x a M x x x 所以M 为可数集.2.证明:由平面上某些两两不交的闭圆盘之集M 最多是可数集.证明 对于任意的M O ∈, 使得Q ∈)(O f . 因此可得:Q →M f :. 因为1O 与2O 不相交,所以)()(21O f O f ≠. 故f 为单射,从而a M =≤Q .3.证明:(1)任何可数集都可表示成两个不交的可数集之并;(2)任何无限集都可表成可数个两两不交的无限集之并.证明 (2) 当E 可数时,存在双射Q )1,0(:→E f . 因为∞=⎪⎪⎭⎫⎝⎛⎪⎭⎫⎢⎣⎡+=11,11)1,0(n n n Q Q所以∞=∞=--=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+==11111,11))1,0((n n n A n n f f E Q Q .其中:)(),3,2,1(1,111j i A A n n n f A j i n ≠Φ==⎪⎪⎭⎫⎝⎛⎪⎭⎫⎢⎣⎡+=- 且Q . 又因为Q Q ⎪⎭⎫⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+-n n n n f 1,11~1,111且Q ⎪⎭⎫⎢⎣⎡+n n 1,11 可数,所以E 可表示成可数个两两不交的无限集之并.当E 不可数时,由于E 无限,所以存在可数集E E ⊂1, 且1\E E 不可数且无限,从而存在可数集12\E E E ⊂,且)(\\)\(2121E E E E E E =无限不可数. 如此下去,可得),3,2,1( =n E n 都可数且不相交,从而1011)()\(E E E E E E i i n i ==∞=∞=.其中)0(≥i E i 无限且不交.4.证明:可数个不交的非空有限集之并是可数集.5.证明:有限或可数个互不相交的有限集之并最多是可数集.证明 有限个互不相交的有限集之并是有限集;而可数个互不相交的有限集之并最多是可数集.6.证明:单调函数的不连续点之集至多是可数集.证明 不妨设函数f 在),(b a 单调递增,则f 在0x 间断当且仅当0)(lim )(lim )0()0(_000>==--+→→+x f x f x f x f x x x x .于是,每个间断点0x 对应一个开区间))0(),0((00+-x f x f .下面证明:若x x '''<为()f x 的两个不连续点,则有(0)(0)f x f x '''+≤-. 事实上,任取一点1x ,使1x x x '''<<,于是11(0)lim ()inf{()}()sup {()}lim ()x x x x x x x x x f x f x f x f x f x f x +-'>'''→→'''<<'+==≤≤=,从而x '对应的开区间((0),(0))f x f x ''-+与x ''对应的开区间((0),(0))f x f x ''''-+不相交,即不同的不连续点对应的开区间互不相交,又因为直线上互不相交的开区间所构成的集合至多是可数集,所以可知单调函数的不连续点之集至多是可数集.7.证明:若存在某正数d 使得平面点集E 中任意两点之间的距离都大于d ,则E 至多是可数集.证明 定义映射}:)3,{(:E x dx E f ∈→,即))(3,()(E x d x D x f ∈=,其中)3,(d x D 表示以E x ∈为中心,以3d 为半径的圆盘. 显然当y x ≠时,有∅=)3,()3,(dy D d x D ,即)()(y f x f ≠,于是f 为双射,由第2题知:a E x dx ≤∈}:)3,{(,故a E ≤.习题1.41.直线上一切闭区之集具有什么基数?区间],[b a 中的全体有理数之集的基数是什么? 答 直线上一切闭区间之集的基数是c . 这是因为:2),(],[:R ∈→b a b a f 为单射,而R ∈→a b a f ],[:为满射,所以c M c =≤≤=2R R .区间],[b a 中的全体有理数之集的基数是c ,这是因为:a b a a =≤≤Q Q ],[. 2.用],[b a C 表示],[b a 上的一切连续实值函数之集,证明: (1) 设},,,,{],[21 n r r r b a =Q ,],[,b a C g f ∈,则⇔=g f ),2,1)(()( ==k r g r f k k ;(2) 公式)),(,),(),(()(21 n r f r f r f f =π定义了单射)(],[:R S b a C →π;(3) c b a C =],[. 证明 (1) 必要性. 显然.充分性. 假设),2,1)(()( ==k r g r f k k 成立. 因为},,,{\],[321 r r r b a x ∈∀,存在有理数列∞=1}{n n x ,使得x x n n =∞→lim ,由],[,b a c g f ∈,可得)()lim ()(lim x f x f x f n n n ==∞→∞→及)()lim ()(lim x g x g x g n n n ==∞→∞→.又因为∞=1}{n n x 为有理点列,所以有)()(n n x g x f =,故],[b a x ∈∀,都有)()(x g x f =.(2) ],[,b a c g f ∈∀,设)()(g f ππ=,即)),(,),(),(()),(,),(),((2121 n n r g r g r g r f r f r f =. 由(1)知:g f =. 故π为单射.(3) 由(2)知:c R S b a c =≤)(],[;又由],[b a c ⊂R ,可得],[b a c c ≤=R . 故c b a C =],[.3.设],[b a F 为闭区间]1,0[上的一切实值函数之集,证明: (1) ]},[:))(,{()(b a x x f x f ∈=π定义了一个单射)(],[:2R P b a F →π;(2) ]1,0[⊂∀E ,E E χα=)(定义了单射],[])1,0([:b a F P →α;(3) ],[b a F 的基数是c2.证明 (1) ],[,b a F g f ∈∀,设)()(g f ππ=,即]},[:))(,{(]},[:))(,{(b a x x g x b a x x f x ∈=∈.从而]),[)(()(b a x x g x f ∈∀=,故π为单射.(2) ]1,0[,⊂∀F E ,设)()(F E αα=,则F E F E χααχ===)()(,故α为单射.(3) 由(1)知:c P b a F 2)(],[2=≤R ;又由(2)知:],[2])1,0([b a F P c ≤=,故c b a F 2],[=.4.证明:c n =C .证明 因为R R C ⨯~,而c =⨯R R ,故c =C ;又由定理1..4.5知:c n =C . 5.证明:若E 为任一平面点集且至少有一内点,则c E =.证明 显然c E =⨯≤R R . 设00E x ∈,则0>∃δ使得E x B ⊂),(0δ,可知E x B c ≤=),(0δ,故c E =.第一章总练习题.1 证明下列集合等式.(1) ()()F F E F E E F E \\\ ==; (2) ()()()G F G E G F E \\\ =.证明 (1) 因为\()()()()()\c c c c c E EF E EF EE F E E E F E F ====,()\()()()\c c c EF F EF F E F F F E F ===.所以\\()()\E F E EF E F F ==. (2) 因为()\()()()(\)(\),c c c c E F G EF G EFG EG FG E G F G ====所以()()()G F G E G F E \\\ =..2 证明下列集合等式.(1) ()B A B A n n n n \\11∞=∞== ;(2) ()B A B A n n n n \\11∞=∞== .证明 (1)1111\()()(\)ccn n n n n n n n A B A B A B A B ∞∞∞∞=======. (2)1111\()()(\)c c n n nn n n n n A B A B A B A B ∞∞∞∞=======.3.证明:22[][][]c cE f g c E f E g +≥⊂≥≥,其中g f ,为定义在E 的两个实值函数,c 为任一常数.证明 若()()22c c x E f E g ∉≥≥, 则有()2c f x <且()2cg x <, 于是()()()()f x g x f g x c +=+<,故()x E f g c ∉+≥. 所以()()()22c cE f g c E f E g +≥⊂≥≥.4.证明:nR 中的一切有理点之集n Q 与全体自然数之集对等.证明 因为0Q =ℵ,所以0Q Q Q Q n=⨯⨯⨯=ℵ(推论1.3.1). 又因为0N =ℵ, 所以0Q n N ==ℵ, 故Q ~n N .5.有理数的一切可能的序列所成之集)(Q S 具有什么基数?6.证明:一切有理系数的多项式之集][x Q 是可数集. 证明 设},Q ,,,,,0,][:][{][Q 1100111∈≠++++==---n n n n n n n n n n a a a a a a x a x a x a x P x P x于是.][Q ][Q 0∞==n n x x显然,Q ~][Q 1n +x n 所以,Q ][Q 1n a x n ==+ 因此由定理1.3.5知:.][Q a x =7.证明:一切实系数的多项式之集][x R 的基数为c .证明 记},R ,,,,,0,][:][{][R 1100111∈≠++++==---n n n n n n n n n n a a a a a a x a x a x a x P x P x于是.][R ][R 0∞==n n x x显然,R ~][R 1n +x n 所以,R ][R 1n c x n ==+ 因此由定理1.4.3知:.][R c x =8.证明:全体代数数(即可作为有理系数多项式之根的数)之集是可数集,并由此说明超越数(即不是代数数的实数)存在,而且全体超越数之集的基数是c .证明 由于有理系数多项式的全体是可数集,设其元素为,,,,,,210 n P P P P 记多项式)(x P n 的全体实根之集为,n A 由于n 次多项式根的个数为有限个,故n A 为有限集,从而代数数全体 ∞==n nAA 为可数个有限集的并,故A 为可数集,即.a A =设超越数全体所成之集为,B 即,\R A B = 则R,=B A 从而B 必为无限集,由于A 为可数集,而任一无限集添加一个可数集其基数不变,故.R cB A B ===9.证明:A B B A \~\,则B A ~. 证明 因为),()\(),()\(B A A B B B A B A A ==又因为,)(\)(\,~,\~\∅==B A A B B A B A B A B A A B B A所以由保并性知),()\(~)()\(B A A B B A B A即.~B A10.证明:若,,D B B A <≤则D A <.证明 (反证法) 假设,D A = 则由已知可得,B D ≤ 这与D B <矛盾. 故有D A <.11.证明:若c B A = ,则c A =或c B =.证明 假设,a B A == 则有,a B A = 这与c B A = 矛盾,故有c A =或c B =.12.证明:若c A k k =+∈Z ,则存在+∈Z k 使得c A k =.证明同上.。

相关文档
最新文档