建筑结构与受力分析

合集下载

2 建筑结构及受力分析平面力系

2 建筑结构及受力分析平面力系

2.1.3 平面汇交力系合成与平衡的解析法
【例 2. 8】 托架 ABC 如图 2. 16a 所示,杆 AC 中点受集中力 F = 60 kN 作用。 如不计杆自重,试求杆 BC 和铰 A 所受的力。
2.2 力矩和力偶
2.2.1 力矩
1. 力对点之矩
一个力对某点 O 的力矩等于该力的大小与 O 点到力作用线垂直距离的乘积。 以符号MO(F)表示,即: MO(F) = ± Fd 式中 O 点称为力矩中心,简称矩心;d 称为臂(力和力臂是使物体发生转动的两个必不可少的因素);其正 负号用以区别力使物体绕矩心转动的方向;通常规定:力使物体绕矩心逆时针方向转动时,力矩为正,反之 力矩为负。 力矩的单位决定于力和力臂的单位,在国际单位制中通常用 N· m 或 kN· m,有时工程中还采用工程单位 制 kgf· m。 在给定的平面内,力矩由两个因素决定:一是它的大小,二是它的转向。
2 平面力系
建筑结构及受力分析
2.1 平面汇交力系 2.2 力矩和力偶
2.3 平面一般力系 2.4 平面平行力系的平衡方程


2.1 平面汇交力系
2.1.1 力的合成与分解
1. 合力与分力的概念
作用于刚体上的力系,如果可以用一个力 R 代替而不改变原力系对刚体的作用效果,则这个力 R 称为原 力系的合力,而原力系的各力就是合力 R 的分力。
2.2.2 力偶
【例 2. 12】 如图所示结构,荷载 F1 = F2 = 20 kN,试求 A、B 两支座的约束反力(不计杆自重)。
2.2.2 力偶
【例 2. 13】求图 2. 23a 所示梁的支座反力。
2.3 平面一般力系
2.3.1 力的平移定理
力的平移定理:作用在刚体上的力,可以平行移动到刚体上的任意一点,但必须同时附加一个力偶,其 力偶矩等于原力对新作用点的矩。

10建筑结构及受力分析钢筋混凝土受压构件

10建筑结构及受力分析钢筋混凝土受压构件

10建筑结构及受力分析钢筋混凝土受压构件钢筋混凝土是一种常用的建筑材料,用于制作建筑结构和构件。

在建筑结构中,钢筋混凝土受压构件起着承载和传递重荷载的作用。

了解建筑结构及受力分析,对于设计和施工过程中的安全和可靠性至关重要。

建筑结构通常由多个构件组成,这些构件承担着不同的受力作用。

其中,受压构件是由钢筋和混凝土组成的,它们的受力状态需要进行分析。

在受压构件中,混凝土主要承担着压力作用,而钢筋主要承担着拉力作用。

由于混凝土的强度相对较低,所以钢筋起着增强混凝土抗压性能的作用。

受压构件的受力分析需要考虑以下几个方面:1.荷载分析:设计中需要对受压构件所承受的荷载进行分析。

这些荷载包括常规荷载(例如:自重、活载)和不常规荷载(例如:风载、地震载)。

2.内力分析:根据荷载分析结果,可以得出受压构件的内力分布情况。

这些内力包括压力、弯矩和剪力。

内力的分布情况对于受压构件的设计和计算非常重要。

3.断面设计:根据内力分析结果,可以进行受压构件的断面设计。

在设计过程中,需要选择合适的截面形状和尺寸,以满足设计要求和抗压性能。

4.钢筋设计:在受压构件中,钢筋的主要作用是增强混凝土的抗压性能。

设计过程中需要确定钢筋的数量、直径和布置方式,以满足结构的强度和稳定性要求。

5.受压构件的验算:通过对受压构件进行验算,可以验证设计结果的合理性和可行性。

验算包括对截面尺寸、钢筋数量和结构稳定性进行检查和计算。

钢筋混凝土受压构件的设计和受力分析是建筑结构设计过程中非常重要的一部分。

通过合理的设计和分析,可以确保建筑结构的安全和可靠性。

同时,还可以优化结构,提高结构的抗震性能和使用寿命。

建筑领域的专业人员应该具备良好的结构分析和设计能力,以确保建筑结构的质量和安全。

装配式建筑的结构设计与受力分析

装配式建筑的结构设计与受力分析

装配式建筑的结构设计与受力分析一、引言近年来,装配式建筑作为一种新型的建筑模式,已经逐渐受到人们的关注和重视。

相比传统建筑方式,装配式建筑具有快速、环保、经济等优势,但在结构设计和受力分析方面仍存在一些挑战。

本文将探讨装配式建筑的结构设计与受力分析的相关问题。

二、装配式建筑的结构设计要点1.1 综合考虑建筑形态特点装配式建筑通常采用标准化部件进行快速拼装,因此在结构设计时应充分考虑这些部件的尺寸、重量以及连接方式等因素。

合理选择并设计部件形态,能够提高施工效率和整体承载能力。

1.2 提高整体结构刚度由于装配式建筑大量使用轻质材料,其整体刚度较传统混凝土结构较低。

因此,在结构设计时需要采取相应措施提高整体刚度。

例如通过增加横向连接板或调整柱网布置来增强抗震性能。

1.3 考虑不同受力特点装配式建筑的受力特点与传统建筑有所不同,主要体现在两个方面:首先是部件之间的连接受力,其次是整体结构的变形。

在结构设计过程中,需要对这些特点进行充分考虑,并优化连接节点和梁柱布置。

三、装配式建筑结构的受力分析方法2.1 静力分析静力分析是一种常用的装配式建筑结构受力分析方法。

通过对构件和连接节点施加静态荷载,计算每个节点和构件的内力大小以及变形情况。

根据计算结果可以评估结构安全性,并进行必要的优化调整。

2.2 动力分析动力分析是一种更加精确的装配式建筑受力分析方法。

通过模拟地震等外部载荷作用下结构的动态反应,计算出各个节点和构件的振动频率、振型以及随时间变化的响应。

该方法能够更准确地评估结构抗震性能,并进行相应设计和改进。

2.3 数值模拟数值模拟是一种常用于复杂结构受力分析的方法,在装配式建筑中同样适用。

通过采用有限元分析等数值计算方法,可以模拟和计算出结构在不同工况下的受力情况。

这种方法能够更全面地分析结构的受力性能,并进行优化设计。

四、装配式建筑结构设计与受力分析的案例研究3.1 A项目A项目是一座装配式建筑,采用轻质钢结构和预制混凝土板拼装而成。

建筑结构的力学分析方法

建筑结构的力学分析方法

建筑结构的力学分析方法建筑结构的力学分析方法是建筑工程领域中的重要基础理论之一,它通过对结构物所受力学作用进行分析,确定结构的承载能力和稳定性,为工程设计、施工和使用提供依据。

本文将介绍一些常用的建筑结构力学分析方法,包括受力分析、应力分析和位移分析等。

一、受力分析受力分析是建筑结构力学分析的基础,它通过对结构物受力情况进行研究,确定负荷的作用点、大小和方向。

常用的受力分析方法有静力分析和动力分析。

静力分析是指建筑结构在静止状态下所受的力学作用。

通过对结构物的几何形状和受力情况进行分析,可以计算出各个构件所受的内力和外力。

静力分析常用的方法有受力平衡法和受力分解法。

受力平衡法是根据力的平衡条件,通过分析力的合成与分解,确定结构物各个部分的受力情况。

受力分解法是将外力分解为垂直和水平方向的力,通过分析结构物在不同方向上的受力情况,来求解结构的内力。

动力分析是指建筑结构在受到动力荷载作用下的力学响应。

它主要应用于地震工程和风力工程中。

动力分析的方法有模态分析和响应谱分析。

模态分析是通过对结构物的振动模态进行分析,计算出各个模态的振型、振动频率和振动模态下的内力。

响应谱分析是通过结构物在地震或风荷载作用下的响应谱进行分析,计算出结构物在频率和幅值上的响应。

二、应力分析应力分析是建筑结构力学分析的重要内容,它通过对结构物材料的强度和变形特性进行分析,确定结构的强度和稳定性。

常用的应力分析方法有材料力学和有限元分析。

材料力学是通过应力-应变关系进行分析,计算出结构物在受力下的应力和应变。

常用的应力分析方法有轴力分析、弯矩分析和剪力分析。

轴力分析是研究结构物在受到轴向力作用时的应力分布和承载能力。

弯矩分析是研究结构物在受到弯曲力作用时的应力分布和承载能力。

剪力分析是研究结构物在受到剪切力作用时的应力分布和承载能力。

有限元分析是一种数值计算方法,它将结构物分解为有限个单元,利用数值计算的方法求解结构的应力和应变。

建筑结构与力学模型分析

建筑结构与力学模型分析

建筑结构与力学模型分析建筑结构在建筑设计中起着至关重要的作用。

通过力学模型的分析,我们可以了解建筑结构所受到的各种力的作用,并对结构的承载能力和安全性进行评估。

本文将以建筑结构与力学模型分析为题,探讨建筑结构的基本原理和力学模型的应用。

一、建筑结构的基本原理建筑结构是指由构件组成的系统,能够承受自身重量以及外部荷载作用下的力和力偶,并将其传递到地基上。

建筑结构的基本原理包括平衡条件、截面强度和变形控制。

1. 平衡条件建筑结构在静力学中必须满足平衡条件。

平衡条件包括转动平衡和受力平衡两个方面。

转动平衡是指结构的每一部分都不发生转动。

受力平衡是指结构的每一部分所受到的外部力和力偶之和等于零。

2. 截面强度截面强度是指结构构件截面所能承受的最大荷载。

截面强度的大小取决于构件材料的性能和构件的几何形状。

常见的截面形状包括矩形、圆形和T形等。

3. 变形控制在设计建筑结构时,需要控制结构的变形,以确保结构的稳定性和使用性能。

变形控制包括两个方面:一是限制结构的最大变形,以防止结构过度变形导致破坏;二是控制结构的变形分布,以保证结构各部分的变形均匀。

二、力学模型的应用力学模型是一种模拟建筑结构受力情况的方法。

通过建立力学模型,可以对结构的力学性能进行分析和评估。

常见的力学模型包括静力模型和动力模型。

1. 静力模型静力模型是基于静力学原理建立的模型,用于分析结构在静力荷载作用下的力学性能。

静力模型的分析可以包括结构的内力、应力分布、变形等方面。

静力模型常用于桥梁、建筑和机械结构等的设计和分析。

2. 动力模型动力模型是基于动力学原理建立的模型,用于分析结构在动态荷载作用下的响应。

动力模型的分析可以包括结构的振动频率、振型、应力和变形等方面。

动力模型常用于地震工程和风工程等领域的设计和分析。

三、建筑结构与力学模型的应用示例为了更好地理解建筑结构与力学模型的应用,以下是一个建筑结构的力学模型分析示例。

假设我们需要分析一座高层建筑的结构。

建筑结构的稳定性分析

建筑结构的稳定性分析

建筑结构的稳定性分析在建筑工程中,结构的稳定性是一个重要的考量因素。

一个稳定的建筑结构可以保证建筑物在各种力的作用下都能保持良好的性能和安全性。

本文将从静力学的角度来分析建筑结构的稳定性,并介绍一些评估和加固结构稳定性的方法。

一、静力学基础建筑结构的稳定性分析是建立在静力学原理之上的。

静力学是研究物体在静止状态下受力平衡的学科。

在建筑工程中,我们通常使用平衡方程和力的平衡条件来分析建筑结构的稳定性。

建筑结构中的力通常可以分为重力和外部荷载两部分。

二、建筑结构的受力分析在进行建筑结构的稳定性分析之前,我们首先需要了解结构的受力情况。

建筑结构受到的力包括竖向重力、风荷载、地震力等。

通过分析每一个结构构件所受的力和力的方向,我们可以确定结构的受力情况,并评估结构的稳定性。

三、结构的稳定性评估1. 建筑结构的稳定性评估是指通过对结构进行力学分析,判断结构是否能够抵抗外部荷载,保持稳定和安全。

评估结构的稳定性可以采用静力学方法,如平衡方程和力的平衡条件。

此外,还可以使用专业软件对结构进行数值模拟和分析。

2. 结构的稳定性评估还可以考虑结构的刚度和承载能力。

结构的刚度是指结构对于外部荷载的抵抗能力,而承载能力是指结构能够承受的最大力。

通过评估结构的刚度和承载能力,可以判断结构在不同工作状态下的稳定性和安全性。

四、结构稳定性的增强方法为了增强建筑结构的稳定性,我们可以采取以下一些方法:1. 加强结构的连接部位。

连接部位是结构中容易发生断裂和失稳的地方,通过加强连接部位的设计和施工,可以提高结构的稳定性和安全性。

2. 增加结构构件的尺寸和截面积。

结构构件的尺寸和截面积直接影响结构的刚度和承载能力,通过增加构件的尺寸和截面积,可以提高结构的稳定性和安全性。

3. 使用高强度材料。

高强度材料具有较高的抗拉强度和抗压强度,可以增加结构的承载能力和稳定性。

在设计和施工过程中,选择适当的材料对于增强结构的稳定性至关重要。

结论建筑结构的稳定性是建筑工程中的一个重要问题,直接关系到建筑物的安全性和使用寿命。

建筑结构与受力分析精选全文

建筑结构与受力分析精选全文
必要条件-防止曲屈
箍筋应做成封闭式箍筋间距不应大于15倍受压钢筋最小直径或400mm箍筋直径不应小于受压钢筋最大直径1/4一层内当受压钢筋多于4根时,应采用复合箍筋
(2)保证受压钢筋达到设计强度条件
充分条件-屈服
≥0.002
若取
则近似可得: x≥2as
计算公式及适用条件
基本假定及破坏形态与单筋相类似, 以IIIa作为承载力计算模式。
与bf'h的矩形截面相同:
适用条件:
(一般能够满足)
2. 第一类单筋T形截面的计算公式
3. 第二类单筋T形截面的计算公式
(1) 基本公式
(2) 适用条件
,一般均满足,可不验算


(a)
(b)
(c)
利用叠加原理
钢筋混凝土受弯构件正截面承载力计算
受弯构件:
同时受到弯矩 M 和剪力V 共同作用, 而N 可以忽略的构件。
第一节 一般构造要求
一、截面形式
受弯构件截面类型:梁、板
二、截面尺寸
1、矩形截面和T形截面梁高h和梁宽b
梁的截面尺寸宜取整数,以50mm作为级差;梁高h常采用200、250、300、350、400……750、800、900、1000mm。梁的宽度b常采用120、150、180、200、220、250、300、350mm等。
【解】(1)设计参数查表 fc=14.3N/mm2, fy= fy = 300N/mm2 c1min=25mm;假定受拉筋为两排, 设 as=60mm,则 h0=700-60=640mm, a1=1.0, b1=0.8 。
(2)计数配筋
故应设计成双筋截面。取x=xb
受拉筋选用7 25,As=3436mm2;受压筋选用2 14mm2, As=3436mm2。

结构的计算简图及受力分析

结构的计算简图及受力分析

结构的计算简图及受力分析3.1 荷载的分类实际的建筑结构由于其作用和工作条件不同,作用在它们上面的力也显示出多种形式。

如图3.1所示的工业厂房结构,屋架所受到的力有:屋面板的自重传给屋架的力,屋架本身的自重,风压力和雪压力以及两端柱或砖墙的支承力等。

图3.1在建筑力学中,我们把作用在物体上的力一般分为两类:一类是主动力,例如重力、风压力等;另一类是约束力,如柱或墙对梁的支承力。

通常把作用在结构上的主动力称为荷载。

荷载多种多样,分类方法各不相同,主要有以下几种分类方法:(1)荷载按其作用在结构上的空间范围可分为集中荷载和分布荷载作用于结构上一点处的荷载称为集中荷载。

满布在体积、面积和线段上的荷载分别称为体荷载、面荷载和线荷载,统称为分布荷载。

例如梁的自重,用单位长度的重力来表示,单位是N/m或kN/m,作用在梁的轴线上,是线荷载。

对于等截面匀质材料梁,单位长度自重不变,可将其称为线均布荷载,常用字母q表示(图3.2)。

当荷载不均匀分布时,称为非均布荷载,如水对水池侧壁的压力是随深度线性增加的,呈三角形分布。

图3.2(2)荷载按其作用在结构上的时间分为恒载和活载恒荷载是指永久作用在结构上的荷载,其大小和位置都不再发生变化,如结构的自重。

活荷载是指作用于结构上的可变荷载。

这种荷载有时存在、有时不存在,作用位置可能是固定的也可能是移动的,如风荷载、雪荷载、吊车荷载等。

各种常用的活荷载可参见《建筑结构荷载规范》。

(3)荷载按其作用在结构上的性质分为静力荷载和动力荷载静力荷载是指荷载从零缓慢增加到一定值,不会使结构产生明显冲击和振动,因而可以忽略惯性力影响的荷载,如结构自重及人群等活荷载。

动力荷载是指大小和方向随时间明显变化的荷载,它使结构的内力和变形随时间变化,如地震力等。

3.2 约束与约束反力1)约束和约束反力的概念所谓约束,是指能够限制某构件位移(包括线位移和角位移)的其他物体(如支承屋架的柱子,见图 3.1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

建筑中由若干构件连接而成的能承受作用 的平面或空间体系称为建筑结构,在不致混淆 时可简称结构。
注:“作用”——能使结构或构件产生效应 (内力、变形、裂缝等)的各种原因的总称。 作用可分为直接作用和间接作用。
直接作用——即习惯上所说的荷载,指施 加在结构上的集中力或分布力系,如结构自重、
结构——建筑物中承受荷载并起骨架作用的部分。 构件——结构中的单个部分。
2.建筑结构的类型 (1)按建筑材料划分
(2) 按结构型式划分
钢筋混凝土结构 钢结构 砌体(包括砖砌块、石等)结构 木结构 塑料结构 充气结构 墙体结构 框架结构 深梁结构 筒体结构 拱结构 网架结构 空间薄壁(包括折板)结构 钢索结构 舱体结构
(3)按体型划分
单层结构(多用于单层工业厂房、食堂等) 多层结构(一般2~7层) 高层结构(一般8层以上) 大跨结构(跨度大约在40~50m以上)
力学的分支学:理论力学、材料力学、结构 力学、板壳力学、弹性力学、弹塑性力学、塑性 力学、断裂力学、流体力学、复合材料力学、实 验力学、计算力学、量子力学等。作为高等职业 教育的一门课程,
“建筑力学”的内容只是力学中最基本的应 用广泛的部分。它将静力学、材料力学、结构力 学三门课程的主要内容贯通融合成为一体。
(3)怎样充分发挥所采用材料的作用。这是结构的另 一重要功能。材料是结构之所以存在的根本条件
(4)结构所要解决的问题还有其它表现,如连接构造 问题、经济问题等。
建筑结构的特点
1.混凝土结构 优点: 1)强度高;2)耐久性好;3)耐火性好; 4)可模性好;5)整体性好;6)易于就地取材。
缺点: 结构自重大、抗裂性较差、一旦损坏修复比较困 难、施工受季节环境影响较大等。
建筑结构计算基本原则
1.1 荷载分类及荷载代表值
1.永久荷载 永久荷载亦称恒荷载,是指在结构使用期间,其值
不随时间变化,或者其变化与平均值相比可忽略不计的荷 载,如结构自重、土压力、预应力等。
2.可变荷载 可变荷载也称为活荷载,是指在结构使用期间,其
值随时间变化,且其变化值与平均值相比不可忽略的荷载, 如楼面活荷载、屋面活荷载、风荷载、雪荷载、吊车荷载 等。
3.偶然荷载 在结构使用期间不一定出现,而一旦出现,其量值
很大且持续时间很短的荷载称为偶然荷载,如爆炸力、撞 击力等。
2.砌体结构
优点: 1)可就地取材。 2)具有很好的耐火性,较好的化学稳定性和大气 稳定。 3)一般较钢筋混凝土结构可以节约水泥和钢材, 可以节
约木材,可连续施工。 4)采用砌块或大型板材作墙体时,可以减轻结构 自重,
加快施工进度,进行工业化生产和施工
2.砌体结构
缺点: 1)自重大。 2)砌筑工作相当繁重。 3)砂浆和砖石间的粘结力较弱。 4)粘土砖用量很大,往往占用农田,影响农业生 产。 5)砌块结构造价略高于砖石结构。
3.钢结构
优点: 1)钢结构自重轻而承载力高 。 2)钢材最接近于匀质等向体 。 3)钢材的塑性和韧性好 。 4)钢材具有可焊性 。 5)钢结构具有不渗漏的特性 。 6)钢结构制造工厂化、施工装配化 。 缺点: 1)钢材耐腐蚀性差,应采取防护措施 。 2)钢结构耐热性能好,但防火性能差 。
结构的应用
1.混凝土结构的工程应用 (1)房屋建筑工程 (2)桥梁工程 (3)特种结构与高耸结构 (4)水利及其他工程
2.砌体结构
(1)一般民用建筑中的基础、内外墙、柱、过梁、屋 盖和地沟等构件。
(2)在工业厂房中,用来砌筑围护墙、烟囱、料斗、 地沟、管道支架、对渗水性要求不高的水池等特 殊结构。
(3)农村建筑如猪圈、粮仓等。
结构的组成
平衡 物体相对于地面处于静止或作匀速直线运动
的状态称为平衡。
外荷 载
风(雪) 压
吊车 荷载
单层工业厂房荷载作用图 单层工业厂房荷载作用图
一、建筑力学的任务
研究构件的承载能力—强度、刚度和稳定性问题
结构必须具备可靠、适用、耐久的功能。 强度:在使用期内,务必使结构和构件安全可靠, 不发生破坏,具有足够的承载能力。 结构和构件抵抗破坏的能力称为强度。 刚度:在使用期内,务必使结构和构件不发生影 响正常使用的变形。结构或构件抵抗变形的能力 称为刚度。 稳定性:在使用期内,务必使结构和构件平衡形 态保持稳定。 稳定性是结构或构件保持原有平衡形态的能力。
(4)在交通运输方面,砌体结构除可用于桥梁,隧道 外,各式地下渠道,涵洞,挡土墙也常用砌筑。
(5)在水利建设方面,可以用石料砌筑坝、堰和渡槽 等。
3.钢结构
(1)重型工业厂房 (2)大跨度结构 (3)高耸结构和高层建筑 (4)受动力荷载作用的结构 (5)可拆卸和移动的结构 (6)容器和管道 (7)轻型钢结构 (8)其他建筑物
二、建筑力学的研究对象
1.结构按几何观点分为: 杆件结构、薄壁结构、实体结构。 杆件 板(壳) 实体
2.结构按空间观点分为:平面结构、空间结构。 建筑力学研究平面杆件结构。
建筑力学的研究对象是结构。
构件 分类
结构
杆 板壳
特点
杆件的截面尺 寸远小长度
平面杆系结构
块体
薄壁杆
1.建筑结构的概念
建筑结构是建筑物的基本组成部分, 建筑结构是指建筑物中用来承受各种作用 的受力体系。通常,它又被称为建筑物的 骨架。组成结构的各个部件称为构件。在 房屋建筑中,组成结构的构件有板、梁、 屋架、柱、墙、基础等。
图1-1 建筑结构的各种形式 (a)墙体结构;(b) 框架结构;(c) 深梁结构;(d) 筒体结构;(e) 拱结构;
(f) 网架结构;(g) 空间薄壁结构;(h) 钢索结构;(i) 折板结构
杆件结构Βιβλιοθήκη 杆件结构巴黎的埃菲尔铁塔
杆件、板壳、实体复合结构__伦敦桥
杆件结构___海洋石油钻井平台
杆件结构___北京 、中国体育场
板壳结构_____悉尼歌剧院(澳大利亚)
3.结构所要解决的问题
(1)使骨架形成的空间能良好地服务于人类生活、生 产的要求和人类对美观的需要。前者是物质的, 后者是精神的。这是结构之所以存在的根本目的。
(2)结构要抵御自然界各种作用力(地心吸力、风力、 地震力等),因而需要有抵抗力的功能。这是结构 之所以存在的根本原因。
相关文档
最新文档