建筑结构与受力分析(力学知识)
单元二 杆件和结构的受力分析受力图 建筑力学

本单元首先阐述了工程中常见 的约束及其约束反力,然后讨 论杆件和结构的受力分析,作 受力图。
单元重点
1
掌握常见典型约束的性质及约束反力的确定。
2
能够完整、准确的画出杆件和结构的受力图。
1
学习任务1 约束及约束反力
物体受到的力一般分为两类:一类是使物体运动 或使物体有运动趋势的力,称为主运动力,即前 述的荷载;另一类是约束对物体的约束反力,又 称为被动力。一般主动力是已知的,而约束反力
是未知的。在受力分析计算中,约束反力和已知
的主动力共同作用使物体平衡,利用平衡条件就 可以求解出约束反力来。
柔பைடு நூலகம்约束
由绳索、链条、皮带等柔性物体形成的约束,称为柔体约 束。柔体只能承受拉力,不能承受压力,所以作为约束, 他们只能限制物体沿柔体中心线且离开柔体的运动,而不 能限制物体沿其他方向的运动。因此,柔体约束的约束反 力是通过接触点,沿柔体中心线且背离物体的拉力,常用 T表示。
而处于平衡状态,故链杆也称为二力杆。链杆约束只能限 制物体沿链杆方向的运动,而不能限制其他方向的运动。
固定铰支座
用圆柱铰链把结构或构件与支座地板链接,并将底板固定 在支撑物上构成的支座,称为固定铰支座。固定铰支座只 能限制构件在垂直于销钉平面内任意方向的移动,而不能 限制构件绕销钉的转动,可见其约束性能与圆柱铰链相同。
圆柱铰链约束
圆柱铰链简称铰链,是由一个圆柱形销钉插入两个物体的圆孔中 构成,并且认为销钉和圆孔的表面都是光滑的。圆柱铰链的约束 反力可用一个大小与方向均未知的力F表示,也可用两个相互垂 直的未知分力来表示。
链杆约束
两端用铰链与物体分别连接且中间不受力(自重忽略不计)
结构的计算简图及受力分析—支座的简化(建筑力学)

支座的简化
3 固定(端)支座 既限制构件沿任何方向移动,又限制构件转动的支座。
固定端支座计算简图
支座反力
正交方向的两个力: FAx、FAy限制移动
一个反力偶:
MA限制转动
支座的简化
3 固定(端)支座 如图所示的钢筋混凝土柱:
将柱的下端插入杯形基础预留的杯口中后,用细石混凝土浇筑填实, 当柱插入杯口深度符合一定要求时,可认为柱脚是固定在基础内的, 限制柱脚的水平移动、竖向移动和转动, 因此可简化为固定(端)支座,其简图及支座反力如右图所示。
常见约束类型及约束反力
(3)圆柱铰链约束 约束力作用线通过销钉中心与接触点。 接触点的位置一般不能预先确定, 铰链的约束力方向不定, 通常用两个正交分力表示。
支座的简化
支座:是将结构物与基础或地面连接在一起的装置或构造 支座的作用是把结构物与基础或地面连接起来,使结构物能稳固在地基上 对结构物或构件来说,支座实质上也是一种约束 在对具体结构物进行分析时,当一个构件支承于另一个构件时,其连接处 对前一构件来说也称为支座。 实际结构中,基础对结构的支承形式多种多样,但根据支座的实际构造和约 束特点,在平面杆系结构的计算简图中,支座通常可简化为:固定铰支座、 活动铰支座、固定端支座和定向支座4种基本类型。
支座的简化
1 固定铰支座 用圆柱铰链把结构或构件与支座底板连接,并将底板固定在支承物上构成的支座。 固定铰支座计算简图
固定铰支座能限制构件在垂直于销钉平面内任意方向的移动, 而不能限制构件绕销钉的转动。 对构件的支座反力如图所示:——正交方向的两个分力
支座的简化
1 固定铰支座
在房屋建筑中,构造要求各不相同,但只要它具有约束两个方向的移动的 性能,而不约束转动,即可视为固定铰支座。
建筑力学知识点总结

建筑力学知识点总结一、静力平衡静力平衡是建筑力学中的基础知识点,它涉及到建筑结构各部分之间的受力关系。
在静力平衡中,我们需要掌握以下内容:1. 应力分析:建筑结构受到不同方向的力,需要进行应力分析,并确定各部分的受力情况。
2. 受力分析:对不同形状、结构的建筑进行受力分析,包括梁、柱、板、框架等。
3. 各种受力形式:拉力、压力、剪力、弯矩等受力形式的分析和计算。
4. 杆件受力:对杆件在受力时的受力情况进行分析,包括张力、挠度、位移等。
5. 平衡条件:在建筑结构中,各部分之间需要满足外力和内力平衡的条件,需要进行平衡分析。
二、结构稳定性结构稳定性是建筑力学中的重要知识点,它涉及到建筑结构在承受外部荷载时的稳定性情况。
在结构稳定性中,我们需要掌握以下内容:1. 稳定条件:建筑结构需要满足一定的稳定条件,包括受力平衡、几何稳定、材料稳定等。
2. 稳定性分析:对不同形式的建筑结构进行稳定性分析,包括平面结构、空间结构、倾斜结构等。
3. 屈曲分析:对建筑结构在受力时的屈曲情况进行分析和计算,包括临界载荷、屈曲形式等。
4. 建筑高度:建筑结构的高度对其稳定性有一定的影响,需要进行高度稳定性分析。
5. 结构材料:不同材料的建筑结构在受力时的稳定性情况有所不同,需要进行材料稳定性分析。
三、弹性力学弹性力学是建筑力学中的重要分支,它涉及到建筑结构在受力时的弹性变形情况。
在弹性力学中,我们需要掌握以下内容:1. 弹性模量:建筑结构在受力时的弹性模量情况对其受力性能有一定的影响,需要进行弹性模量分析和计算。
2. 应变分析:建筑结构在受力时会产生一定的应变,需要进行应变分析和求解。
3. 弹性极限:建筑结构在受力时会产生一定的弹性极限,需要进行弹性极限分析和计算。
4. 应力-应变关系:建筑结构在受力时的应力和应变之间存在一定的关系,需要进行应力-应变关系分析和求解。
5. 弹性能力:建筑结构的弹性能力对其受力性能有一定的影响,需要进行弹性能力分析和评定。
建筑力学与结构学习计划200字

建筑力学与结构学习计划200字第一部分:建筑力学基础知识1.1 建筑力学的基本概念- 了解力学的定义和基本原理- 掌握建筑结构的受力分析方法- 学习建筑材料的力学性能1.2 建筑结构设计原理- 理解建筑结构设计的基本原理- 学习建筑结构的稳定性和可靠性- 掌握力学方法在结构设计中的应用1.3 建筑结构材料的性能与应用- 了解常见建筑材料的力学性能- 学习建筑材料的选用原则- 掌握建筑材料的施工和加工工艺第二部分:结构力学基础知识2.1 结构受力分析- 学习结构受力的基本原理- 掌握受力分析的方法和技巧- 理解结构受力的影响因素2.2 结构设计原理- 理解结构设计的基本原理- 学习结构材料的选用和设计- 掌握结构设计的施工和加工工艺2.3 结构稳定性和可靠性- 了解结构稳定性和可靠性的概念- 学习结构稳定性和可靠性分析的方法- 掌握结构稳定性和可靠性的设计原则第三部分:建筑力学与结构实践3.1 结构力学实验- 参与结构力学实验课程- 学习结构材料的力学性能测试方法- 掌握实验数据的处理和分析技巧3.2 建筑结构设计实践- 参与实际建筑结构设计项目- 学习建筑结构设计的实际应用- 掌握结构设计的实际操作技能3.3 结构施工实践- 参与建筑结构施工项目- 学习结构施工的实际操作方法- 掌握建筑结构施工的实际技能总结与展望通过以上学习计划,我将全面掌握建筑力学和结构学的基础知识和实践技能,为将来从事建筑结构设计、施工和实验研究提供坚实的理论基础和实践经验。
我相信在学习和实践中,我将迎来更多挑战和机遇,不断提升自己,成为一个优秀的建筑力学与结构学专业人才。
建筑力学中的各种名词解释

建筑力学中的各种名词解释引言:建筑力学是研究建筑物结构力学行为的学科,它涉及到大量的专业名词和术语。
本文将对建筑力学中的各种名词进行解释和阐述,希望能够为读者提供一些帮助和理解。
一、受力分析受力分析是建筑力学中最基础也最重要的内容之一。
在建筑结构中,力的作用可以分为静力和动力。
静力是指力的平衡状态,其大小和方向相等;动力则是力的不平衡状态,会导致结构的变形和破坏。
在受力分析中,我们常用到的名词有以下几个:1.应力(Stress):在结构中发挥作用的力产生的内部反作用力。
它可以分为正应力、剪应力和轴心力。
2.应变(Strain):由于外力作用而导致的结构变形程度。
应变可以分为线性应变和非线性应变。
3.弹性(Elasticity):指结构材料的恢复能力,当外力作用消失时能够恢复到原来的形状。
4.屈服(Yield):结构材料在受力情况下出现的可逆性变形。
超过一定应力值后,材料无法恢复原状,并被认为已经屈服。
5.失稳(Instability):结构在受力过程中由于外力作用超过其承载能力而导致的倒塌。
二、承载力分析承载力分析是建筑力学中的关键内容之一,它主要研究结构的稳定性和承载能力。
1.静力学平衡(Static Equilibrium):结构受力状态下各部分力的相互平衡。
2.荷载(Load):指施加在结构上的外力,包括自重荷载、活载和地震荷载等。
3.承载能力(Bearing Capacity):结构能够承受的最大荷载。
4.强度(Strength):材料或者结构在承载外力作用下不发生破坏的能力。
5.变形(Deformation):由于外力作用引起的结构形状、尺寸、位置的改变。
三、构件和构造构件和构造涉及到建筑结构中的各个部分,是结构力学中重要的概念。
1.梁(Beam):用于承担和传递荷载的构件,其承载方式通常为弯曲。
2.柱(Column):用于承担和传递上部结构荷载的垂直构件。
3.墙(Wall):承担纵向、横向荷载传递作用的结构构件。
建筑力学的知识点公式总结

建筑力学的知识点公式总结1. 受力分析在建筑力学中,受力分析是非常基础的知识点,它是分析结构在外力作用下的受力和变形情况。
受力分析的基本原理是平衡条件,即结构受力平衡,外力和内力之和为0。
常见的受力分析问题包括梁的受力分析、柱的受力分析、桁架的受力分析等。
2. 弹性力学弹性力学是研究材料在外力作用下的变形和应力、应变关系的学科。
在建筑力学中,弹性力学是非常重要的知识点,它涉及了材料的力学性质、变形规律和材料的弹性极限等。
弹性力学的基本公式包括胡克定律、杨氏模量、泊松比等。
3. 结构力学结构力学是研究结构在外力作用下的受力和变形情况的学科。
在建筑力学中,结构力学包括了梁的受力分析、柱的受力分析、框架结构的受力分析等。
结构力学的基本公式包括静力平衡方程、变形公式、内力计算公式等。
4. 桥梁力学桥梁力学是研究桥梁结构在外力作用下的受力和变形情况的学科。
在建筑力学中,桥梁力学是一个重要的分支学科,它涉及了桥梁的受力分析、变形分析、挠度计算等。
桥梁力学的基本公式包括桁架结构的受力分析公式、桁架结构的位移计算公式等。
5. 基础力学基础力学是研究基础在外力作用下的受力和变形情况的学科。
在建筑力学中,基础力学是非常重要的知识点,它涉及了基础的受力分析、变形分析、承载力计算等。
基础力学的基本公式包括基础的受力分析公式、基础的变形计算公式等。
综上所述,建筑力学是土木工程学科中的重要基础学科之一,它涉及了受力分析、弹性力学、结构力学、桥梁力学和基础力学等多个方面的知识。
掌握建筑力学的知识对于土木工程师来说是非常重要的,它可以帮助工程师更好地设计和施工结构,确保结构的安全性和稳定性。
建筑力学的知识点和公式虽然繁多,但只有通过实践和不断的学习,才能真正掌握其中的精髓。
建筑力学知识点归纳总结

建筑力学知识点归纳总结一、建筑力学概述建筑力学是研究建筑结构受力、变形和稳定的一门工程学科,主要包括静力学、材料力学、结构力学和工程力学等内容。
在建筑工程中,建筑力学是一个非常重要的学科,它对建筑结构的设计、施工和使用具有重要的指导意义。
二、静力学基础知识1.力,力是物体受到的外部作用而产生的相互作用,是矢量量。
2.力的作用点,力作用的位置称为力的作用点。
3.力的方向,力的方向是力的作用线,是力的矢量方向。
4.力的大小,力的大小又叫力的大小,是力的矢量大小。
5.平衡,如果物体受到的所有外力的合力为零,则物体处于平衡状态。
6.受力分析,受力分析是指对受力物体进行力的平衡分解和求解的过程。
7.力的合成,力的合成是指将几个力按照一定规律组合成一个力的过程。
8.力的分解,力的分解是指将一个力按照一定规律分解成几个分力的过程。
9.力的共线作用,共线力是指作用在一个平面上的几个力共线的情况,此时可以采用平行四边形法则计算合力。
三、材料力学基础知识1.材料的分类,建筑材料一般分为金属材料、非金属材料、复合材料等。
2.拉伸应力和应变,拉伸应力是指物体在拉伸力作用下单位横截面积所受的力,拉伸应变是指单位长度的伸长量。
3.拉压比强度,拉压比强度是指材料的拉伸强度和压缩强度的比值。
4.剪切应力和应变,剪切应力是指物体在剪切力作用下单位横截面积所受的力,剪切应变是指单位长度的变形量。
5.剪应力比强度,剪应力比强度是指材料的抗剪强度和抗拉强度的比值。
6.弹性模量,弹性模量是指材料在拉伸和压缩时产生的应力与应变之比。
7.材料的破坏模式,材料主要包括拉伸、压缩、剪切、扭转等几种破坏模式。
四、结构力学基础知识1.刚性和柔性,建筑结构在受力下表现出的抗变形能力称为刚性,某些结构在受力下产生较大变形,称为柔性。
2.受力构件,建筑结构中的受力构件主要包括梁、柱、墙、板等。
3.梁的受力状态,梁在受力状态下通常会受到弯矩、剪力和轴力的作用。
绘制受力图—受力分析与受力图(建筑力学)

2) 画BC 部分的受力图。BC部分的E处受
到主动力偶M的作用。B处为活动铰支座,
其反力FB垂直于支承面;C处为铰链约 束,约束力FC通过铰链中心。由于力偶 必须与力偶相平衡,故FB的指向向上, FC的方向铅垂向下。BC 部分受力如图。
M
FC
FB
取分离体 画主动力 画约束力
3) 画AC 部分的受力图。AC 部分的D处
受到主动力 F 的作用。C 处的约束力为
FC,FC 与 FC 互为作用力与反作用力。
A处为固定端,其反力为FAx、FAy、MA。
MA
F 60
AC部分受力如图。
取分离体
FAx
FAy
FC
画主动力
画约束力
通过以上例题可以看出,为保证受力图的正确性,不能多画力、少画 力和错画力。为此,应着重注意以下几点:
受力分析与受力图
受力分析与受力图
在求解工程中的力学问题时,一般首先需要根据问题的已知条件和待求 量,选择一个或几个物体作为研究对象,然后分析它受到哪些力的作用,其 中哪些是已知的,哪些是未知的,此过程称为受力分析。
对研究对象进行受力分析的步骤如下: 1)取分离体。将研究对象从与其联系的周围物体中分离出来,单独画出。 分离出来的研究对象称为分离体。 2) 画主动力和约束反力。画出作用于研究对象上的全部主动力和约束力。 得到的图称为受力图或分离体图。
例: 小车连同货物共重W,由绞车通过钢丝绳牵引沿斜面匀速上升(如图)。不 计车轮与斜面间的摩擦,试画出小车的受力图。
解 (1) 取分离体。将小车从钢丝绳和
斜面的约束中分离出来,单独画出。
作用于小车上的主动力为W,其作用
点为重心C,铅垂向下。
取分离体
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
W
简图
柔绳约束
1 建筑力学预备知识
1.3.2 柔体约束
A F1
B
F2
A
F1
F1'
A
B
F2
F2'
B
1 建筑力学预备知识
1.3.3 光滑接触面约束 当两个物体直接接触,而接触面处的摩擦很小可以忽 略不计时,称为光滑接触面约束。
只能限制物体沿接触面的公 法线方向进入接触面的运动
约束力:过接触点,沿接触面的公 法线,箭头指向物体,用FN表示。
•刚体:是指在任何情况下都不变形的物体。实际上任何物 体在力的作用下都要产生变形(称为变形体),但是在工 程实际中构件的变形通常都非常微小,因此,在研究物体 的平衡问题,可以忽略不计,可以把物体抽象为刚体。
1 建筑力学预备知识
•力的三要素:力的大小、方向、作用点。 力是矢量。
•力的表示方法:用一个带箭头的线段来表示力。
从力F的始点A和终点B分别 向y轴作垂线,得垂足 a 和 b , 则线段 a b称为力F在y轴上的投 影,用Fy表示。
b Fy a
O
y
F B
A a Fx b
x
1 建筑力学预备知识
1.5 力的合成与分解
1.5.1 力在坐标轴上的投影 Fx和Fy的计算公式: Fx=±Fcosα Fy=±Fsinα 力的投影为代数量,其正负号规 定如下:若投影的始端a(或 a)到 投影的末端b(或 b )方向与x轴 (或y轴)的正向一致,则投影Fx (或Fy)为正;反之为负。 Fy a
只能限制物体沿链杆 中心线趋向或离开链 杆的运动
F
A
约束力:沿链杆中心线, 箭头指向或背离物体, 用F表示。
F FAx FAy
B
A
FB
B FB B
C
链杆约束
C FC
链杆是二力 杆,即链杆 受压(压杆) 或受拉(拉杆)
问题1:AB杆是不是链杆?
问题2:教材P10图1.6a中 AB杆是不是链杆?
1 建筑力学预备知识
1 建筑力学预备知识
1.3.2 柔体约束
由柔软的绳索、链条、胶带等构成的约束,称为柔体 约束。 约束力:恒为拉力,用FT表 柔体约束只能限制物 示。作用在接触处,作用线 体沿柔体约束的中心 沿柔体约束的中心线(即长度 线离开约束的运动 方向),箭头背离物体。
限制方向 运动方向
FT
A
W
A
A W 受力图
表示两个不同的力。
当出现二力平衡、三力平衡或作用力与反作用力关系时,
应符合二力平衡公理、三力平衡汇交定理或作用力与反作 用力公理,并在受力图上正确画出。
要正确判断二力杆。
常见约束及约束反力 汇总表
1 建筑力学预备知识
1.5 力的合成与分解
力系中各力的作用线 都处于同一个平面, 称为平面力系。 在平面力系中,各力的 作用线都汇交与一点, 称为平面汇交力系。
三力平衡(F1F2F3) 转化为二力平衡 (F3F12)
二力平衡公理: F3的作用线必过 O点
1 建筑力学预备知识
1.3 约束 与约束反力
1.3.1 约束与约束反力的概念 在空间能够任意运动的物体,称为自由体。受到周围其 他物体限制而不能任意运动的物体,称为非自由体。 •约束:若一个物体受到周围其它物体的限制,这些周围的 物体就称为该物体的约束。 •约束反力:约束施加于被约束物体上的力,称为约束反 力,简称为约束力或反力。 •主动力:使物体产生运动或运动趋势的力。在工程中,把 主动力称为荷载。如重力、风荷载等。 •被动力:对物体的运动或运动趋势起限制作用的力。如约 束反力。
限制物体在任何方 向的移动和转动 约束力:限制物体移动的约束力 FAX、FAy,限制转动的约束力偶 mA
A mA FAx
固定端支座
B
A
B
FAy
1 建筑力学预备知识
1.3.8 固定端支座
A mA FAx FAy A B
B
1 建筑力学预备知识
1.4 物体的受力分析及受力图
•受力分析:就是分析物体(即研究对象)受到的全部主动 力和约束反力。 •分离体:就是解除所有约束后得到的物体,又称为隔离体 或脱离体。 •受力图:在分离体上画出其所受的全部主动力和约束反力。
1 建筑力学预备知识
1.4 物体的受力分析及受力图
体操运动员做十字支撑
1 建筑力学预备知识
1.4 物体的受力分析及受力图
选择研究对象
画受力图的步骤
取分离体
画受力图
1 建筑力学预备知识
1.4 物体的受力分析及受力图
注意点
分析约束的类型和性质,确定相应的约束力。 既不要漏力,也不要多画力。
不同的力,应当用不同的字母标注,不能用相同的字母
推论:三力平衡汇交定理 刚体在共面且不平行的三个力作用下平衡,则这三个力 的作用线必定汇交于一点。(反之不成立) F1 力F1和F2的作 F
1
三力共面 平 衡
用线交于O点
A
F1 F3 F2
O
AHale Waihona Puke F12 F2F3C
B
C
F2 B
将力F1和F2沿作 用线移至交点O
将力F1和F2合成为 一个合力F12(力的 可传性原理)
可动铰 支 座
固定铰 支 座
1 建筑力学预备知识
1.3.7 可动铰支座
A
计算简图
A
A
FA
A
受力图
1 建筑力学预备知识
1.3.6 固定铰支座 1.3.7 可动铰支座
固定铰支座
可动铰支座
1 建筑力学预备知识
1.3.8 固定端支座 如果物体与支座固定在一起,使物体既不能沿任何方 向移动,也不能转动,这类约束称为固定端支座或固定支 座。
平面汇交力系
在平面力系中,各力的 作用线都互相平行,称 为平面平行力系。 在平面力系中,各力的作用 线既不完全平行,也不完全 相交,称为平面一般力系。
平面力系
平面平行力系
平面一般力系
1 建筑力学预备知识
1.5 力的合成与分解
1.5.1 力在坐标轴上的投影
从力F的始点A和终点B分别 向x轴作垂线,得垂足a和b,则 线段ab称为力F在x轴上的投影, 用Fx表示。
1 建筑力学预备知识
1.2.4 力的平行四边形法则 利用力的平行四边形法则,也可以将一个力分解为作用 于同一点的两个分力。在工程中,常将力F沿互相垂直的两 个方向分解,得到水平分力Fx和垂直分力Fy,这种分解称为 正交分解。 Fy α Fx F
Fx=Fcosα Fy=Fsinα
1 建筑力学预备知识
公法线
FN
FN
FN
1 建筑力学预备知识
1.3.4 圆柱铰链约束
用一个园柱形销钉将两个带孔的物体连接在一起,且 接触面光滑,构成光滑圆柱铰链约束,又称为中间铰。
只能限制两物体 间的相对移动, 不能限制两物体 间的相对转动
当物体受力后, 销钉和孔壁在某 处接触,构成光 滑接触面约束。
约束力:过接触 处,通过销钉中 心,方向未知, 用FN表示。
A
计算简图
A
受力图
A
A
FA
FAx A FAy
1 建筑力学预备知识
1.3.6 固定铰支座
1 建筑力学预备知识
1.3.7 可动铰支座
在固定铰支座的底部安装几个辊轴(圆柱形滚轮), 支承于支承面上,这种约束称为可动铰支座,又称为活动 铰支座。
只能限制物体在 垂直于支承面方 向的运动 约束力:垂直于 支承面,指向待 定,用F表示
1.2.3 加减平衡力系公理 在作用于刚体的力系中,加上或减去任意个平衡力系, 不改变原力系对刚体的作用效应。 推论:力的可传性原理 作用于刚体上的力可沿其作用线滑移至刚体内的任意点, 而不改变力对刚体的作用效应。
B F A B F1 F2
=
B
F1
F A
=
A
在B点加上一对平衡力 F1和F2,且F1=F2=F
1 建筑力学预备知识
1.2 静力学公理
1.2.1 作用力与反作用力公理
两物体之间的作用力和反作用力,总是大小相等、方向相 反、作用线相同,并分别作用在这两个物体上。(即为Newton 第三定律) 注:在以后的受力分析中经常用到,特别是对物体系统进 行分析时。 Fw
作用力与反作用力 (FN,FN′ )
F1
F2
q
1 建筑力学预备知识
1.1.2 力系
•力系:作用于物体上的一群力。
•等效力系:对物体的作用效果相同的两个力系。 •合力 与分力:如果某力系与一个力等效,则这一力称为力 系的合力,而力系中的各个力则称为这一合 力的分力。 •平面力系:如果力系中各力作用线处在同一平面内,则称 为平面力系,否则称为空间力系。 •力系的简化或合成:求与复杂力系相等效的简单力系的过
1 建筑力学预备知识
本章学习内容及学习要求
力的概念 静力学公理
掌握力的基本知识 掌握受力分析的方法 熟练绘制受力图
约束与约束反力
受力分析与受力图 力矩与力偶 平面力系的平衡 掌握平面力系的平衡 熟练运用平衡方程求解未知力
1 建筑力学预备知识
1.1 力的概念
1.1.1 力 •力的概念:物体间相互的机械作用。 •力的作用效应 外效应(使物体的运动状态产生变化) 内效应(使物体的形状和大小发生改 变,即产生变形)
1 建筑力学预备知识
1.3 约束 与约束反力
1.3.1 约束与约束反力的概念
主动力一般是已知的或是可以预先确定的,而约束力随 主动力的变化而变化,一般是未知的。确定未知的约束力, 是静力平衡计算的主要内容。
约 束 力