正截面承载力计算

合集下载

第四章 受弯构件正截面承载力计算

第四章 受弯构件正截面承载力计算

因此得出
b

1
1
fy
cu E s
第四章 受弯构件正截面承载力计算
由平衡条件: 1 fcbxb= fyAs
可得出 1fcbbh0fyAs,max ---(4-15)
可推出适筋受弯构件最大配筋率max与 b
的表达式
maxAbs,m 0 hax b
1fc fy
---(4-16)
fy h0
360 465
0.2% h 0.2% 500 0.215%,可以。
h0
465
例题2
第四章 受弯构件正截面承载力计算
已知一单跨简支板,计算跨L0=2.34m,承受均 布荷载qk=3kN/m2(不包括板自重);混凝土 强度等级为C30;钢筋采用HPB235级钢筋。可
最小配筋率ρmin
第四章 受弯构件正截面承载力计算
4.2.2适筋受弯构件截面受力的几个阶段
第一阶段 —— 截面开裂前阶段。
第二阶段 —— 从截面开裂到纵向受拉钢筋屈服前阶段。
第三阶段 —— 钢筋屈服到破坏阶段。
第四章 受弯构件正截面承载力计算
各阶段和各特征点的截面应力 — 应变分析:
第四章 受弯构件正截面承载力计算
由式(4-16)可知,当构件按最大配筋率配筋时,由式
M1fcb(xh02 x) (4-9a)
可以求出适筋受弯构件所能承受的最大弯矩为
M m a1 x fc b 0 2b h ( 1 0 .5 b )sb b 0 2h 1 fc
其中, sb ----截面最大的抵抗矩系数,可查表。
坏。
第四章 受弯构件正截面承载力计算
受弯构件的配筋形式
P
P

7.2 正截面受弯承载力计算

7.2  正截面受弯承载力计算

7.2 正截面受弯承载力计算第7.2.1条矩形截面或翼缘位于受拉边的倒T形截面受弯构件,其正截面受弯承载力应符合下列规定(图7.2.1):M≤α1fcbx(h-x/2)+f'yA's(h-α's)-(σ'p0-f'py)A'p(h-α'p) (7.2.1-1)混凝土受压区高度应按下列公式确定:α1fcbx=fyAs-f'yA's+fpyAp+(σ'p0-f'py)A'p(7.2.1-2)混凝土受压区高度尚应符合下列条件:x≤ζb h(7.2.1-3)x≥2α'(7.2.1-4)图7.2.1:矩形截面受弯构件正截面受弯承载力计算式中M--弯矩设计值;α1--系数,按本规范第7.1.3条的规定计算;fc--混凝土轴心抗压强度设计值,按本规范表4.1.4采用;A s 、A's--受拉区、受压区纵向普通钢筋的截面面积;A p 、A'p--受拉区、受压区纵向预应力钢筋的截面面积;σ'p0--受压区纵向预应力钢筋合力点处混凝土法向应力等于零时的预应力钢筋应力;b--矩形截面的宽度或倒T形截面的腹板宽度;h--截面有效高度;α's 、α'p--受压区纵向普通钢筋合力点、预应力钢筋合力点至截面受压边缘的距离;α'--受压区全部纵向钢筋合力点至截面受压边缘的距离,当受压区未配置纵向预应力钢筋或变压区纵向预应力钢筋应力(α'p0-f'py)为拉应力时,公式(7.2.1-4)中的α'用α's代替。

第7.2.2条翼缘位于受压区的T形、I形截面受弯构件(图7.2.2),其正截面受弯承载力应分别符合下列规定:1当满足下列条件时f y As+fpyAp≤α1fcb'fh'f+f'yA's-(σ'p0-f'py)A'p(7.2.2-1)应按宽度为b'f的矩形截面计算;2当不满足公式(7.2.2-1)的条件时M≤α1fcbx(h-x/2)+α1fc(b'f-b)h'f(h-h'f/2)+f'yA's(h-α'sp0-f'py)A'p(h-α'p(7.2.2-2)混凝土受压区高度应按下列公式确定:α1fc[bx+(b'f-b)h'f]=fyAs-f'yA's+fpyAp+(α'p0-f'py)A'p(7.2.2-3)式中h'f--T形、I形截面受压区翼缘高度;b'f--T形、I形截面受压区的翼缘计算宽度,按本规范第7.2.3条的规定确定。

混凝土受弯构件正截面承载力计算

混凝土受弯构件正截面承载力计算
h0—有效高度。 1.最大配筋率及界限相对受压区高度
r As f y As a1 fcbx x a1 fc
bh0 bh0 f y bh0 f y h0 f y

x
h0

r
a1 fc
fy
令b为 = r max时的相对受压区高度,即
rmax
b
a1
f
fc
y
= r max时的破坏形态为受压区边缘混凝土达到极限压
c fc e0 e ecu
n
2
1 60
(
fcu,k
50)
2.0
各系数查表4-3
e0 0.002 0.5( fcu,k 50)105 0.002
ecu 0.0033 0.5( fcu,k 50)105 0.0033
4.钢筋应力—应变关系的假定(本构关系)
Ese e e y fy e ey
4.3钢筋混凝土受弯构件正截面试验研究
一、受弯构件正截面破坏过程
受弯构件正截面破坏分为三个阶段 • 第一阶段:裂缝开裂前 • 第二阶段:从开裂到钢筋屈服 • 第三阶段:从钢筋屈服到梁破坏
(1)第I阶段
当荷载比较小时,混凝土基本处 于弹性阶段,截面上应力分布为三 角形,荷载-挠度曲线或弯矩-曲率 曲线基本接近直线。截面抗弯刚度 较大,挠度和截面曲率很小,钢筋 的应力也很小,且都于弯矩近似成 正比。
My
Mu
Failure”,破坏前
可吸收较大的应变
能。
0
f
2.超筋梁(Over reinforced)破坏
钢筋配置过多,将发生这种破坏。 破坏特征:破坏时钢筋没有达到屈服强度,破坏是由 于压区混凝土被压碎引起,没有明显预兆,为脆性破 坏。

7.3 正截面受压承载力计算

7.3  正截面受压承载力计算

7.3 正截面受压承载力计算第7.3.1条钢筋混凝土轴心受压构件,当配置的箍筋符合本规范第10.3节的规定时,其正截面受压承载力应符合下列规定(图7.3.1):N≤0.9φ(fc A+f'yA's) (7.3.1)式中N--轴向压力设计值;φ--钢筋混凝土构件的稳定系数,按表7.3.1采用;fc--混凝土轴心抗压强度设计值,按本规范表4.1.4采用;A--构件截面面积;A's--全部纵向钢筋的截面面积。

当纵向钢筋配筋率大于3%时,公式(7.3.1)中的A应改用(A-A's)代替。

钢筋混凝土轴心受压构件的稳定系数表7.3.1图7.3.1:配置箍筋的钢筋混凝土轴心受压构件第7.3.2条钢筋混凝土轴心受压构件,当配置的螺旋式或焊接环式间接钢筋符合本规范第10.3节的规定时,其正截面受压承载力应符合下列规定(图7.3.2):N≤0.9(fc Acor+f'yA's+2αfyA'ss0) (7.3.2-1)A ss0=πdcorAss1/s (7.3.2-2)式中fy--间接钢筋的抗拉强度设计值;Acor--构件的核心截面面积:间接钢筋内表面范围内的混凝土面积;Ass0--螺旋式或焊接环式间接钢筋的换算截面面积;dcor--构件的核心截面直径:间接钢筋内表面之间的距离;Ass1--螺旋式或焊接环式单根间接钢筋的截面面积;s--间接钢筋沿构件轴线方向的间距;α--间接钢筋对混凝土的约束的折减系数:当混凝土强度等级不超过C50时,取1.0,当混凝土强度等级为C80时,取0.85,其间接线性内插法确定。

注:1按公式(7.3.2-1)算得的构件受压承载力设计值不应大于按本规范公式(7.3.1)算得的构件受压承载力设计值的1.5倍;2当遇到下列任意一种情况时,不应计入间接钢筋的影响,而应按本规范第7.3.1条的规定进行计算:1)当l/d>12时;2)当按公式(7.3.2-1)算得的受压承载力小于按本规范公式(7.3.1)算得的受压承载力时;3)当间接钢筋的换算截面面积Ass0小于纵向钢筋的全部截面面积的25%时。

钢筋混凝土受弯构件正截面承载力简便计算

钢筋混凝土受弯构件正截面承载力简便计算

钢筋混凝土受弯构件正截面承载力简便计算摘要:一、引言二、钢筋混凝土受弯构件正截面承载力计算方法1.基本概念2.影响因素3.计算公式及步骤三、简便计算方法1.经验公式2.修正系数法3.截面分类法四、计算实例1.实例一2.实例二3.实例三五、结论与建议正文:一、引言钢筋混凝土受弯构件在我国建筑行业中有着广泛的应用,其正截面承载力计算一直是工程技术人员关注的问题。

为了简化计算过程,本文将介绍一种简便的计算方法,以提高工程实践中的工作效率。

二、钢筋混凝土受弯构件正截面承载力计算方法1.基本概念正截面承载力:指受弯构件在正截面上能承受的最大弯矩引起的内力。

影响因素:材料强度、截面尺寸、钢筋配置等。

2.影响因素(1)材料强度:包括混凝土抗压强度fc和钢筋抗拉强度fs。

(2)截面尺寸:截面宽度b、截面高度h。

(3)钢筋配置:包括钢筋直径d、钢筋间距s和钢筋数量n。

3.计算公式及步骤根据我国现行的设计规范,正截面承载力计算公式如下:c = fc * b * h * γcs = fs * d * (h - d / 2) * γs其中,Nc为混凝土截面承载力,Ns为钢筋截面承载力,γc和γs分别为混凝土和钢筋的截面折减系数。

三、简便计算方法1.经验公式根据工程实践经验,可得以下经验公式:c = 0.85 * fc * b * hs = 0.85 * fs * d * (h - d / 2)2.修正系数法针对不同钢筋直径和截面尺寸,采用修正系数进行计算。

3.截面分类法根据截面尺寸和钢筋配置,将受弯构件分为若干类别,各类别计算公式如下:(1)类别一:h / d ≤ 25c = 0.75 * fc * b * hs = 0.75 * fs * d * (h - d / 2)(2)类别二:25 < h / d ≤ 50c = 0.85 * fc * b * hs = 0.85 * fs * d * (h - d / 2)(3)类别三:h / d > 50c = 1.0 * fc * b * hs = 1.0 * fs * d * (h - d / 2)四、计算实例1.实例一某受弯构件,混凝土抗压强度fc = 20MPa,截面宽度b = 200mm,截面高度h = 300mm,钢筋直径d = 16mm,钢筋间距s = 200mm,钢筋数量n = 4。

轴心受压构件正截面承载力计算

轴心受压构件正截面承载力计算

轴心受压构件正截面承载力计算d d 式中 N 轴向力设计值 (包括γ0和ϕ值在内);γd 钢筋混凝土结构的结构系数,见附录3表3; N u 截面极限轴向力;ϕ 钢筋混凝土构件的稳定系数,见表5-2;表5-2 钢筋混凝土轴心受压构件的稳定系数ϕA 构件截面面积(当配筋率%3/>=A A s c f 混凝土的轴心抗压强度设计值(计算现浇混凝土柱时,如截面长边或直径小于300mm 时,则式(5-1)中混凝土强度设计值应乘以系数0.8); y f ' 纵向钢筋的抗压强度设计值;s A ' 全部纵向钢筋的截面面积。

(三)普通箍筋柱正截面承载力计算方法 1.截面设计(1)根据构造要求确定构件截面的形状和尺寸,选定材料的强度等级; (2)确定稳定系数ϕ:利用表5-2 ;稳定系数ϕ值主要与柱的长细比l 0/b 有关,此处b 为矩形截面柱短边尺寸,0l 为柱子的计算长度(与柱两端的约束情况有关,可自表5-1查得,其中l 为构件支点间长度,s 为拱轴线的长度)。

表5-1 受压构件的计算长度l 0(3s()s y c dd u1A f A f N N ''+=≤ϕγγ(4)选择纵向钢筋钢筋混凝土柱内配置的纵向钢筋常用Ⅱ级或Ⅲ级,并应符合下列要求:1)纵向钢筋的根数不得少于4根,每边不得少于2根;直径不应小于12mm ,工程中常用钢筋直径为12~32mm ,宜选用根数较少的粗直径钢筋以形成劲性较好的骨架。

2)在轴向受压时沿截面周边均匀布置;在偏心受压时沿截面短边均匀布置。

3)现浇立柱纵向钢筋的净距不应小于50mm ,同时中距也不应大于350mm 。

在水平位置上浇筑的装配式柱,其净距与梁相同,当偏心受压柱的长边大于或等于600mm 时,应在长边中间设置直径为10~16mm ,间距不大于500mm 的纵向构造钢筋,同时相应地设置联系拉筋。

(5)并验算配筋率ρ:1)当截面尺寸由承载力条件控制时,偏心受压柱的受压钢筋或受拉钢筋的配筋率不应小于0.25%(Ⅰ级钢筋)或0.2%(Ⅱ级、Ⅲ级钢筋);轴心受压柱全部纵向受力钢筋的配筋的配筋率不应小于0.4%。

第三章-钢筋混凝土受弯构件正截面承载力计算

截面抗裂验算是建立在第Ⅰa阶段的基础之上,构 件使用阶段的变形和裂缝宽度的验算是建立在第 Ⅱ阶段的基础之上,而截面的承载力计算则是建 立在第Ⅲa阶段的基础之上的。
§3.3 建筑工程中受弯构件正截面承载力计算方法
3.3.1 基本假定 建筑工程中在进行受弯构件正截面承载力计 算时,引人了如下几个基本假定; 1.截面应变保持平面; 2.不考虑混凝土的抗拉强度; 3.混凝土受压的应力一应变关系曲线按下列 规定取用(图3-9)。
εcu——正截面处于非均匀受压时的混凝土极限压应变 ,当计算的εcu值大于0.0033时,应取为0.0033;
fcu,k——混凝土立方体抗压强度标准值;
n——系数,当计算的n大于2.0时,应取为2.0。
n,ε0,εcu的取值见表3—1。
由表3-1可见,当混凝土的强度等级小于和等于C50时,
n,ε0和εcu均为定值。当混凝土的强度等级大于C50时,随 着混凝土强度等级的提高,ε0的值不断增大,而εcu值却逐渐
M
f y As (h0
x) 2
(3-9b)
式中M——荷载在该截面上产生的弯矩设计值; h0——截面的有效高度,按下式计算
h0=h-as
h为截面高度,as为受拉区边缘到受拉钢筋合力作用点的距离。
对于处于室内正常使用环境(一类环境)的梁和板,
当混凝土强度等级> C20,保护层最小厚度(指从构件 边缘至钢筋边缘的距离)不得小于25mm,板内钢筋的混凝 士保护层厚度不得小于15mm
当εc≤ ε0时 σc=fc[1-(1- εc/ ε 0)n]
当ε0≤ εc ≤ εcu时 σc=fc
(3-2) (3-3)
(3-4)
(3-5)
(3-6)
式中 σc——对应于混凝土应变εc时的混凝土压应力;

正截面承载力计算

第四章受弯构件正截面承载力计算思考题4.1梁中纵向受力钢筋的净间距在梁上部和下部各为多少?答:纵向受力钢筋在梁上部的净间距≧30mm且≧1.5d,d为上部纵向钢筋的直径;梁下部的净间距≧25mm,且≧d,d为下部纵向钢筋的直径。

4.2梁中架立钢筋和板中分布筋各起什么作用?如何确定其位置和数量?答:架立钢筋为满足构造上或施工上的要求而设置的定位钢筋。

作用是把主要的受力钢筋(如主钢筋,箍筋等)固定在正确的位置上,并与主钢筋连成钢筋骨架,从而充分发挥各自的受力特性。

架立钢筋的直径一般在10~14mm 之间。

位置:分布在梁上端的两角板中分布筋作用1、承担由于温度变化火收缩引起的内力2、对思辨支承的单向板,可以承担长边方向实际存在的一些弯矩3、有助于将板上作用的集中荷载分散到较大的面积上,以使更多的受力钢筋参与工作4、与受力赶紧组成钢筋网,便于在施工中固定受力钢筋的位置。

位置:分布筋放在受力筋及长向支座处负弯矩钢筋的内侧,单位长度上的分布筋,其截面面积不应小于单位长度上受力钢筋截面面积的12%,且不宜小于板截面面积的0.15%;气间距不应该大于250mm,直径不宜小于6mm。

4.3梁、板中混凝土保护层的作用是什么?正常环境中梁、板混凝土保护层的最小厚度多少?答:保护侧的的作用:1、保护钢筋在正常情况下,不过早的背腐蚀,保证结构的耐久性2、保护层能有效地控制裂缝的开展,是影响表面裂缝宽度的主要因素3、能够显著减小纵向裂缝的危害,影钢筋锈蚀的发展速度,决定了外围混凝土的劈裂抗力、减少裂缝出现的几率4、关系到构件的承载力(截面有效高度、钢筋和混凝土的粘结强度)、适用性(表面裂缝宽度、出现塑性下沉裂缝的机率),而且对结构构件的耐久性有决定性影响(脱顿时间、腐蚀速度和劈裂抗力)保护层的最小厚度:4.4什么叫配筋率?配筋率对梁的正截面承载力有何影响?答:配筋率是钢筋混凝土构件中纵向受力钢筋的面积与构件的有效面积之比(轴心受压构件为全截面的面积)。

正截面承载力计算

相对界限受压区高度b 的比较
二、计算方法
控制截面:在等截面受弯构件中指弯矩组合设计值最大的
截面。在变截面中还包括截面尺寸相对较小,而弯矩组合 设计值相对较大的截面 受弯构件正截面承载力计算:可分为对控制截面进行截面
设计和截面复核两类计算问题。
1、截面设计 已知荷载效应,求材料、截面尺寸和配筋等。 第一步:选择混凝土等级和钢筋品种 第二步:确定截面尺寸:按照配筋率确定或按照跨度确定。
2014年课程单元教学设计大赛
结构设计原理
道路与桥梁工程系 郭天惠
工作任务1.1 单筋矩形截面受弯构件计算
知识回顾
上一讲的内容
1、正截面承载力计算基本假设 2、简化-等效矩形应力图形 3、承载力计算公式的适用条件 (1)超筋与适筋的界限:界限受压区高度 (2)少筋与适筋的界限:最小配筋率
工程实例 人行道板、行车道板, 小跨径板梁桥、T形 梁桥的主梁、横隔梁
As =
f cd bh0 9.2 220 456 0.3444 =1630mm2 f sd 195
由教材附表1-6选择钢筋
多方案,如选用3Φ28,As=1847mm2>计算As=1630mm2 满足要求 2Φ28+1Φ25,As=1723mm2>计算As =1630mm2 也满足要求 (不要比计算值超出过多,不经济,可能超筋,最好在5%以内。钢筋直 径类型不宜太多)
适用条件: (1)为防止出现超筋梁情况,计算受压区高度x应满足:
x b h0
(3-16)
b
ξb——相对界限受压区高度
由混凝土强度等级别和钢筋种类确定 (3-16)亦可理解为: 限制受压区最大高度,保证适筋梁的塑性破坏 限制承载力上限值 表3-2

轴心受压构件正截面承载力计算

轴心受压构件正截面承载力计算首先,要计算轴心受压构件的正截面承载力,我们需要了解构件的几何参数,例如截面的尺寸和形状,以及构件的材料特性,如弹性模量和抗压强度等。

下面介绍一种常用的计算方法,即欧拉公式。

欧拉公式适用于细长的杆件,可以计算其承载力。

根据欧拉公式,轴心受压构件的正截面承载力可以表示为:Pcr = (π^2 * E * I) / (Lr)^2其中,Pcr 是构件的临界承载力,E 是构件的弹性模量,I 是构件截面的惯性矩,Lr 是约化长度。

对于不同的构件形状,惯性矩I的计算公式也不同。

以下是一些常见形状的惯性矩计算公式:1.矩形截面:I=(b*h^3)/12,其中b是截面的宽度,h是截面的高度;2.圆形截面:I=π*(d^4)/64,其中d是截面的直径;3.方管截面:I=(b*h^3-(b'*h')^3)/12,其中b是外边框的宽度,h是外边框的高度,b'是内边框的宽度,h'是内边框的高度。

约化长度Lr的计算取决于构件的边界条件。

以下是一些常见边界条件的约化长度计算公式:1.双端固定支承:Lr=L;2.一端固定支承、一端支座支承:Lr=0.7*L;3.双端支座支承:Lr=2*L。

通过使用上述公式,我们可以计算出轴心受压构件的正截面承载力。

需要注意的是,上述公式是基于一些理想化假设和条件下推导得出的,实际工程中还需要考虑一些因素,例如构件的稳定性和局部细部构造等。

因此,在实际设计中,应该根据具体情况综合考虑各种因素,并结合相关的规范和标准进行设计和验证,以确保构件的安全性和可靠性。

总之,轴心受压构件正截面承载力计算是工程设计中的重要环节。

通过合理的参数选择和计算,可以确定构件能够安全承受的最大压力,从而保证结构的安全和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最小配筋率的确定原则:配筋率 为的钢筋混凝土受弯构件,按Ⅲa 阶段计算的正截面受弯承载力应等于同截面素混凝土梁所能承受的弯矩M cr (M cr 为按Ⅰa 阶段计算的开裂弯矩)。

对于受弯构件, 按下式计算:(2)基本公式及其适用条件 1)基本公式式中:M —弯矩设计值;f c —混凝土轴心抗压强度设计值; f y —钢筋抗拉强度设计值; x —混凝土受压区高度。

2)适用条件l 为防止发生超筋破坏,需满足ξ≤ξb 或x ≤ξb h 0; l 防止发生少筋破坏,应满足ρ≥ρmin 或 A s ≥A s ,min=ρmin bh 。

在式(3.2.3)中,取x =ξb h 0,即得到单筋矩形截面所能min t y max(0.45f /f ,0.2% )ρ= (3.2.1) sy c 1A f bx f =α(3.2.2)()20c 1x h bx f M -≤α(3.2.3) ()20y s x h f A M -≤(3.2.4)或承受的最大弯矩的表达式: (3)计算方法 1)截面设计己知:弯矩设计值M ,混凝土强度等级,钢筋级别,构件截面尺寸b 、h求:所需受拉钢筋截面面积A s 计算步骤:①确定截面有效高度h 0h 0=h -a s式中h —梁的截面高度;a s —受拉钢筋合力点到截面受拉边缘的距离。

承载力计算时,室内正常环境下的梁、板,a s 可近似按表3.2.4取用。

表 3.2.4 室内正常环境下的梁、板a s 的近似值(㎜)②计算混凝土受压区高度x ,并判断是否属超筋梁若x ≤ξb h 0,则不属超筋梁。

否则为超筋梁,应加大截面尺寸,或构件种类纵向受力 钢筋层数混凝土强度等级 ≤C20 ≥C25 梁一层 40 35 二层65 60 板一层2520提高混凝土强度等级,或改用双筋截面。

③计算钢筋截面面积A s ,并判断是否属少筋梁若A s ≥ρmin bh ,则不属少筋梁。

否则为少筋梁,应A s=ρmin bh 。

④选配钢筋2)复核己知截面的承载力己知:构件截面尺寸b 、h ,钢筋截面面积A s ,混凝土强度 等级,钢筋级别,弯矩设计值M 求:复核截面是否安全 计算步骤:①确定截面有效高度h 0 ②判断梁的类型李永生2010若,且,为适筋梁;若x >,为超筋梁;若A s <ρminbh ,为少筋梁。

③计算截面受弯承载力M u 适筋梁超筋梁bf f A x c 1ys α=bh A s min ρ≥0b h x ξ≤0b h ξ()20y s u x h f A M -=)5.01(b b 20c 1max u,ξξα-=bh f M对少筋梁,应将其受弯承载力降低使用(已建成工程)或修改设计。

④判断截面是否安全若M ≤M u ,则截面安全。

【例 3.2.1】 某钢筋混凝土矩形截面简支梁,跨中弯矩设计值M =80kN ·m ,梁的截面尺寸b ×h =200×450mm ,采用C25级混凝土,HRB400级钢筋。

试确定跨中截面纵向受力钢筋的数量。

李永生2010【解】查表得f c =11.9 N/mm 2,f t =1.27 N/mm 2,f y =360 N/mm 2,α1=1.0,ξb =0.5181. 确定截面有效高度h 0假设纵向受力钢筋为单层,则h 0=h -35=450-35=415mm 2. 计算x ,并判断是否为超筋梁= =91.0㎜<=0.518×415=215.0mm不属超筋梁。

b f Mh h x c 12002α--=2009.110.11080241541562⨯⨯⨯⨯--0b h ξ李永生20103. 计算A s ,并判断是否为少筋梁=1.0×11.9×200×91.0/360=601.6mm 20.45f t /f y =0.45×1.27/360=0.16%<0.2%,取ρmin =0.2%A s ,min =0.2%×200×450=180mm 2<A s =601.6mm 2不属少筋梁。

4. 选配钢筋选配4 14(A s =615mm 2),如图3.2.4所示。

y1s f bx f A c α=【例3.2.2】某教学楼钢筋混凝土矩形截面简支梁,安全等级为二级,截面尺寸b ×h =250×550mm ,承受恒载标准值10kN/m (不包括梁的自重),活荷载标准值12kN/m ,计算跨度=6m ,采用C20级混凝土,HRB335级钢筋。

试确定纵向受力钢筋的数量。

【解】查表得f c=9.6N/mm2,f t =1.10N/mm2,f y =300N/mm2,ξb=0.550,α1=1.0,结构重要性系数γ0=1.0,可变荷载组合值系数Ψc=0.71. 计算弯矩设计值M钢筋混凝土重度为25kN/m3 ,故作用在梁上的恒荷载标准值为g k=10+0.25×0.55×25=13.438kN/m 简支梁在恒荷载标准值作用下的跨中弯矩为 M gk=g k l 02/8=13.438×62/8=60.471kN. m 简支梁在活荷载标准值作用下的跨中弯矩为: M qk=q k l 02/8=12×62/8=54kN ·m由恒载控制的跨中弯矩为γ0 (γG M gk+γQ Ψc M q k )=1.0×(1.35×60.471+1.4×0.7×54)=134.556kN ·m 由活荷载控制的跨中弯矩为γ0(γG M gk+γQ M q k )=1.0× (1.2×60.471+1.4×54)=148.165kN ·m取较大值得跨中弯矩设计值M =148.165kN ·m 。

李永生20102. 计算h 0假定受力钢筋排一层,则h 0=h -40=550-40=510mm 3. 计算x ,并判断是否属超筋梁=140.4mm <ξb h 0=0.550×510=280.5mm 不属超筋梁。

4. 计算A s ,并判断是否少筋A s =α1f c bx /f y =1.0×9.6×250×140.4/300=1123.2mm 22506.90.110165.1482510510262c 1200⨯⨯⨯⨯--=--=bf Mh h x α0.45f t/f y=0.45×1.10/300=0.17<0.2%,取ρmin=0.2%ρmin bh=0.2%×250×550=275mm2<A s =1123.2mm2不属少筋梁。

5.选配钢筋选配2 18+2 20(A s=1137mm2),如下图。

【例3.2.3】如图3.2.7所示,某教学楼现浇钢筋混凝土走道板,厚度h=80mm,板面做20mm 水泥砂浆面层,计算跨度2m,采用C20级混凝土,HPB235级钢筋。

试确定纵向受力钢筋的数量。

【解】查表得楼面均布活荷载2.5kN/m2,f c=9.6N/mm2,f t =1.10N/mm2,f y =210N/mm2,§b=0.614,α1=1.0,结构重要性系数γ0=1.0(教学楼安全等级为二级),可变荷载组合值系数Ψc=0.7(1)计算跨中弯矩设计值M钢筋混凝土和水泥砂浆重度分别为25kN/m3 和20kN/m3,故作用在板上的恒荷载标准值为80mm厚钢筋混凝土板0.08×25=2 kN/m220mm水泥砂浆面层0.02×20=0.04 g k=2.04kN/m2取1m板宽作为计算单元,即b=1000mm,则g k=2.04kN/m,q k=2.5 kN/mγ0(1.2g k+1.4q k)=1.0(1.2×2.04+1.4×2.5)=5.948kN/mγ0(1.35g k+1.4Ψc q k)=1.0(1.35×2.04+1.4×0.7×2.5)=5.204kN/m取较大值得板上荷载设计值q=5.948 kN/m板跨中弯矩设计值为M=q l02/8=5.948×22/8=2.974kN·m李永生2010(2)计算纵向受力钢筋的数量h 0=h -25=80-25=55mm=5.95mm <ξb h 0=0.614×55=33.77mm不属超筋梁。

A s =α1f c bx /f y =1.0×9.6×1000×5.95/210=272mm 20.45f t /f y =0.45×1.10/210=0.24%>0.2%取ρmin =0.24%ρminbh =0.24%×1000×80=192mm 2<A s =272mm 210006.90.110974.225555262c 1200⨯⨯⨯⨯--=--=bf Mh h x α不属少筋梁。

受力钢筋选用φ8@180(A s=279mm2),分布钢筋按 构造要求选用φ6@250。

相关文档
最新文档