课程名称:现代信号处理-------高阶统计量及其谱分析(精)

合集下载

现代信号处理

现代信号处理

求离散时间信号x(t)为严格平稳随机信号的条件。
1.2相关函数、协方差函数、功率谱密度
1.2.1自相关函数、自协方差函数、功率谱密度
二阶统计量 相关函数:信号 x(t ) Rxx ( ; t ) E{x(t ) x* (t )} 协方差函数: Cxx ( ; t ) E{[ x(t ) mx (t )][ x(t ) mx (t )]*} 高阶统计量(k 3) k 阶矩: (t1 , , tk ) E{x(t t1 ) x(t t2 ) x(t tk )} k 阶累积量(cumulant) c(t1 , , tk ) cum{x(t t1 ), x(t t2 ), , x(t tk )}
2. 两个随机信号的二阶统计量(续)

互协方差函数
C xy ( ) E [ x(t ) mx ][ y (t ) m y ]* 不含直流分量
两个减去均值的信号存在共性部分(确定量)和非共性部 分(随机量),而共性部分相乘总是取相同符合,使得该 部分加强,从而保留下来;而两个信号的非共性部分是随 机的,它们的乘积有时为正,有时为负,通过数学期望的 平均运算后,会相互抵消。这表明,互协方差函数能把两 个信号的共性部分提取出来,并抑制掉非共性部分。因此 互协方差函数描述了两个信号之间的相关程度。但这种相 关程度是用绝对量衡量的,不方便,对互协方差进行归一 化,得到互相关系数,两个信号间的相关程度就直观了。


“零均值化”:均值不为0的信号减去其均值 注:一些书将“零均值化”信号的相关函数的Fourier变换 定义为功率谱。
自功率谱密度是实函数,而互功率谱是复函数。其实部称 同相谱,虚部称正交谱。
2. 两个随机信号的二阶统计量(续)

《现代信号处理》教学大纲

《现代信号处理》教学大纲

《现代信号处理》教学大纲适用专业:信息与通信工程、物联课程性质:学位课网工程、电子与通信学时数:32 学分数: 2课程号:M081001 开课学期:秋季第(1)学期大纲执笔人:何继爱大纲审核人:陈海燕一、课程的地位和教学目标现代信号处理作为信息类专业研究生的一门专业基础课,是在传统数字信号处理基础上,基于概率统计的思想,用数理统计、优化估计、线性代数和矩阵计算等工具,研究有限数据量的随机信号的分析与处理,且系统可能是时变、非线性的,它是近代才发展起来的前沿学科。

主要讨论基于信号模型分析和滤波的基本理论和基本方法;以现代谱估计和自适应滤波为核心内容,并介绍现代信号处理的新技术。

该课程为众多信号处理的应用领域打下基础,包括通信、声学、图像、雷达、声纳、生物医学等领域的信号处理。

本课程的知识目标是使学生牢固掌握现代信号处理一些最基本的理论、方法和应用,并能跟踪和学习新的理论、方法和技术;内容涉及随机信号统计分析、现代谱估计、自适应滤波器、时频分析与二次型时频分布、信号多速率变换、盲信分离和阵列信号处理方法等;建立现代信号处理的知识体系,对课程内容总体把握;具有一定的实验和模拟仿真的基本知识。

了解现代信号处理重要新技术的发展趋势,为从事信息与通信工程及相关电子系统的工程设计打下坚实的基础。

本课程的能力目标是通过课程的学习提高学生的分析计算方法、演绎推理方法和归纳法等基本数学处理方法;运用数学、物理及工程概念及方法发现问题、分析问题和解决问题的能力,以及理论与实际相结合的能力;能够触类旁通,提高学生的科学学习方法;掌握通信学科的信号分析与处理基本理论和技能,思路开阔,具有运用所学知识的能力、搜集和提炼信息的能力、团队合作能力、表达能力和创新能力等。

本课程的专业素质目标通过本课程的课堂学习、单元知识及章节总结、习题及专题研讨培养学生培养良好严谨的科学研究态度和正确的思维方法,使学生敢于提出问题、善于分析问题和解决问题的能力及具有团队合作精神。

清华大学《现代信号处理》课件

清华大学《现代信号处理》课件

现代信号处理(离散随机信号处理)电子工程系本课程要讨论的主要问题:(1)对信号特性的了解随机信号(随机过程,时间序列––随机过程的一个实现)信号模型→参数估计→现代谱估计:参数化谱估计讨论信号模型及模型参数的估计问题,比较参数谱估计方法和周期图方法的优劣。

(2)对统计意义下最优滤波器设计的研究平稳条件下:Wiener滤波器理论非平稳条件下:Kalman滤波理论上的目标,实际算法可达到的最佳结果(3)对环境的自适应,具备“学习能力”的滤波算法自适应均衡、波束形成、线性自适应滤波器(4)更多信息的利用,挖掘(针对非高斯问题)线性系统、功率谱:二阶矩,高斯过程的完全刻划非线性、多谱:高阶量,循环平稳(5)对时间(空间)–––频率关系的适应性:全局特性与局域特性,小波变换,时频分析信号处理算法设计面向的几个主要因素n信噪比n先验知识n雷达n通信系统n电子对抗n对先验知识的利用:统计基础上的假设、学习过程n算法复杂性与性能要求的匹配性一些进展中的课题盲自适应信号处理序列贝叶斯估计、粒子滤波阵列信号处理等等与信号处理紧密关联的学科人工神经网络统计学习理论模式识别等等教材n张旭东,陆明泉:离散随机信号处理,2005年10月,清华大学出版社主要参考书①S. Haykin, Adaptive Filter theory, Third Edition, Prentice-Hall, 1996,//Fouth Edition 2001 (电子工业出版社均有影印本)①S.M. Kay, Modern Spectral Estimation: Theory & Application,Prentice-Hall, 1988①S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice Hall PTR, 1993.①S. Mallat, A Wavelet Tour of Signal Processing, Academic press, 1998,Second Edition 1999①扬福生, 小波变换的工程分析与应用, 科学出版社, 2000.① D. G. Manolakis, et,al. Statistical and Adaptive Signal Processing, Mcgraw-Hall, 2000.①J. G. Proakis, et al. Algorithms for Statistical Signal Processing, Prentice hall, 2002①张贤达现代信号处理第2版清华大学出版社课程成绩n平时作业10%n2个Matlab作业40%(布置后2周内提交)n期末开卷考试50%1.1随机信号基础被噪声干扰的初相位是随机值的正弦波信号本质上均是随机的,但将信号作为随机信号处理,还是做为确定信号处理,与我们的应用目标和我们的先验知识有关,一般地,我们总是选择对应用有利的处理方式。

中科院课件---《现代信号处理的理论与方法》课程回顾祥解

中科院课件---《现代信号处理的理论与方法》课程回顾祥解
随机信号 x(t)的k阶矩:
, xk t xt k1
mkx 1, ,k1 Ext xt 1 xt k1
随机信号 x(t)的k阶累积量:
ckx 1, ,k1 cumxt, xt 1, , xt k1
矩和累积量的估计
矩的估计:
mˆ k1
累积量的估计:
谱、双谱和三谱的BBR公式:
Py
2 x
H
H
*
2 x
H 2
By 1,2 3xH 1 H 2 H * 1 2
Ty 1,2,3 4xH 1 H 2 H 3 H * 1 2 3
FIR系统辨识
n
L1
2
2
2
30 1
1
4
6
Lm
5
1
2 c3y n1, n2 3x h k h k n1 h k n2
二次叠加原理

z(t) c1z1(t) c2 z2 (t)

Pz (t,) | c1 |2 Pz1 (t,) | c2 |2 Pz2 (t,) c1c2*Pz1,z2 (t,) c1*c2Pz2,z1 (t,)
式中: Pz1 Pz2
z1(t)和z2(t)的自时频分布;
P 和 分 z1,z2
幅值和相位分别为:
at s2 t sˆ2 t
t
arctan
sˆt st
瞬时频率
❖ 瞬时频率:表征了信号在局部时间点上的瞬态频 率特性,整个持续期上的瞬时频率反映了信号频 率的时变规律。
fi
t
1
2
d dt
arg
zt
1
0 E
'(t) | x(t) |2 dt
➢ 信号的中心频率是其瞬时频率在整个时间轴上的加 权平均。

《现代信号处理》课程设计任务书(09级)

《现代信号处理》课程设计任务书(09级)

中南大学本科生课程设计任务书课程名称现代信号处理指导教师赵亚湘学院信息科学与工程学院专业班级通信工程0901-0905班0()()sin()()anTa x n x nT Ae nT u nT -==Ω中 南 大 学课程设计任务书一、课程设计目的:1.全面复习课程所学理论知识,巩固所学知识重点和难点,将理论与实践很好地结合起来。

2.提高综合运用所学知识独立分析和解决问题的能力; 3.熟练使用一种高级语言进行编程实现。

二、课程设计内容1. 给定模拟信号:)()sin()(0t u t Ae t at a x Ω=-,式中128.444=A,α=,s rad /2500π=Ω。

对()a t x 进行采样,可得采样序列1) 选择采样频率s f =1 kHz ,观测时间50=p T ms ,观测所得序列()x n 及其幅频特性|()|jw X e 2) 改变采样频率s f =300Hz ,观测此时|()|jw X e 的变化 3) 令采样频率s f =200Hz ,观测此时|()|jw X e 的变化要求分析说明原理,绘出相应的序列及其它们对应的幅频特性曲线,指出|()|jw X e 的变化,说明为什么?2. 已知Gaussian 序列固定序列()x n 中的参数p=8,令q 分别等于2,4,8,观察它们的时域和幅频特性,了解当q 取不同值时,对信号序列的时域及幅频特性的影响;固定q=8,令p 分别等于8,13,14,观察参数p 变化对信号序列的时域及幅频特性的影响,观察p 等于多少时,会发生明显的泄漏现象,混叠是否也随之出现?记录实验中观察到的现象,绘出相应的时域序列和幅频特性曲线。

并理论分析说明产生这些变化的原因 3. 一个连续信号含两个频率分量,经采样得2(),015()0,n p q en x n --⎧⎪≤≤=⎨⎪⎩其它x(n)=sin2π*0.125n+cos2π*(0.125+Δf)n n=0,1……,N -1已知N=16,Δf 分别为1/16和1/64,观察其幅频特性;当N=128时,Δf 不变,其结果有何不同,为什么?分析说明原因,并打印出相应的幅频特性曲线4. 产生一个淹没在噪声中的信号()x t ,例如由50Hz 和120Hz 的正弦信号以及一个零均值的随机噪声叠加而成。

现代信号处理研究生课程报告

现代信号处理研究生课程报告

华南师范大学现代信号处理课程设计课程名称:现代信号处理课程题目: wiener滤波器和kalman滤波器的原理分析及其matlab实现指导老师:李xx专业班级: 2015级电路与系统姓名: xxxx学号: xxxxwiener滤波器和kalman滤波器的原理分析及matlab实现摘要:信号处理的实际问题,常常是要解决在噪声中提取信号的问题,因此,我们需要寻找一种所谓有最佳线性过滤特性的滤波器。

这种滤波器当信号与噪声同时输入时,在输出端能将信号尽可能精确地重现出来,而噪声却受到最大抑制。

Wiener滤波Kalman滤波就是用来解决这样一类从噪声中提取信号问题的一种过滤(或滤波)方法[1]。

Wiener滤波与Kalman滤波都是解决最佳线性过滤和预测问题,并且都是以均方误差最小为准则的。

但与Wiener滤波器不同的是,Kalman滤波器是一种自适应滤波器,Kalman滤波器提供了推导称作递推最小二乘滤波器的一大类自适应滤波器的统一框架。

关键词:Wiener滤波Kalman滤波均方误差最小自适应滤波器目录第一章绪论 (4)1.1滤波器的发展历程 (4)1.2 现代信号处理的滤波器分类 (5)1.3 wiener和kalman滤波各自的运用领域 (6)1.3.1 wiener滤波的运用范围 (6)1.3.2 kalman滤波的运用范围 (6)第二章 wiener和kalman的各自的滤波原理 (7)2.1 wiener滤波器的原理分析 (7)2.2维纳-霍夫方程 (9)2.2 kalman滤波的自适应原理分析 (11)2.3 wiener滤波和kalman滤波的区别与联系 (13)第三章 wiener和kalman滤波的matlab仿真实现 (14)3.1 FIR维纳滤波器的matlab实现 (14)3.2 kalman滤波器的matlab实现 (19)第四章总结与展望 (23)参考文献 (25)第一章绪论1.1滤波器的发展历程从滤波器的发展现状来看,滤波器从处理信号的类型可以分为模拟滤波器和数字滤波器,模拟滤波器可分为无源滤波器(Passive filter)和有源滤波器(Active filter),而数字滤波器已可用计算机软件实现,也可用大规模集成数字硬件实时实现。

中科院课件--《现代信号处理的理论和方法》Chapter+2

中科院课件--《现代信号处理的理论和方法》Chapter+2
满足各子集合的并集 I p I,即 I1, I2, , I p 1, 2, , k
mx I 随机信号x t 的k阶矩
cx I 随机信号x t 的k阶累积量
mx
Ip
符号集为I
的矩
p
cx
Ip
符号集为I
的累积量
p
❖ 矩与累积量之间的相互关系:
q
mx I E x1 , , xk cx I p qp1 I p I p1
ln 22
2
由于 ' 2, '' 2, k 0, k 3, 4,
可得高斯变量的各阶累积量为:
0
ckx 2
0
k 1 k 2 k 3, 4,
矩与累积量的转换关系
❖ 集合I={1,2,…,k}的无序、非空、无交连分割
令{ x1,…, xk}是k个随机变量组成的集合,其符号集为I={1,2,…,k}。
cum x1 , , xk cum xi1 , , xik i 1
,ik 是1, , k 的一个排列.
例: c3x m, n c3x n, m c3x n, m n c3x n m, m
c3x m n, n c3x m, n m
c3x m, n m cum x t , x t m, x t n m
第二章 高阶统计和高阶谱方法
❖ 2.1 矩与累积量 ❖ 2.2 矩与累积量的性质 ❖ 2.3 高阶谱 ❖ 2.4 非高斯信号与线性系统 ❖ 2.5 相位估计 ❖ 2.6 系统辨识
2.1 矩与累积量
❖ 引言 ❖ 高阶矩与高阶累积量的定义 ❖ 高斯信号的高阶矩与高阶累积量 ❖ 矩与累积量的转换关系
引言
ln
dk
0
jk

现代信号处理ModernSignalProcessing40页PPT

现代信号处理ModernSignalProcessing40页PPT
凡不是广义平稳的信号
遍历性
若 N li m E 2N 11tN Nx(tt1)Lx(ttk)(t1,L,tk)2 0
则 {x(t)}称 为 均 方 遍 历 信 号 。
2.两个随机信号的二阶统计量
互相关函数
Rxy()@E{x(t)y*(t)}
相同部分相乘(相同符号) 不同(随机)部分相乘 (平均意义上,相互抵消)。
考核方式 习题(11%) 计算机仿真(实验3次,24%) 考试(65%)
第一章 随机信号
本章主要介绍随机信号的基本概念:相关 函数、功率谱密度、两个信号的正交、统计不 相关和统计独立、相干信号以及它们的几个典 型应用。
1.信号分类
信号——信息的载体
连 续 时 间 信 号s(t) t 离 散 时 间 信 号s(k) k为 整 数
▪ 时分多址(TDMA: time-division multiple access): 各个用户的信号波形在时域上无重叠 正交(时域正交)
用户1和用户2之间有一个保护时隙
b
a si
(t)s*j (t)dt
0,
i j
共享:整个频带
正交的两个典型应用(续)
▪ 频分多址(FDMA: frequency-division multiple access): 各个用户的信号波形在频域上无重叠 频域正交
E wi 2 qiHqi
im1
im1
由wi qiHx得:E wi 2 E qiHxxHqi qiHE xxH qi qiHRxqi
正交的两个典型应用(续)
M
最优化: min Em min
q
H i
R
x
q
i
im 1

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程名称:现代信号处理 -------高阶统计量及其谱分析
课程编号:0211007(博士生 0221024(硕士生学分:3 学时:46
授课对象:博士 /硕士研究生任课教师:姬红兵教授
联系电话:88204144 地点 :办公楼 424室
Email:
教材:
1. Higher-Order Spectral Analysis, C. L. Nikias and A. P. Petropulu, Prentice Hall, 1993.
参考资料:
1、“高阶统计量及其谱分析” ,张贤达,清华大学出版社。

2、“现代信号处理” ,张贤达,清华大学出版社。

3、期刊:IEEE Transactions on Signal Processing, Proceedings of IEEE, IEEE Signal Processing Magazine等。

6、 HOS 主页:.
先修课程:信号与系统,随机信号分析(处理 ,数字信号处理。

课程介绍:本课程主要介绍现代信号处理中的“高阶统计量及其谱分析”和“时频分析” 等内容。

重点介绍随机信号和确定性信号的矩和累积量以及高阶谱的定义和基本性质; 高阶累积量和高阶谱的估计方法, 包括常规非参数估计法和基于 AR 、MA 和 ARMA 模型的参数估计法。

并介绍高阶累积量及其谱在信号检测、系统辩识、非线性检测等方面的应用。

课程目的:通过本课程的学习,使学生对高阶统计量及其谱的性质和估计算法, 估计性能、计算复杂性, 以及这些算法在信号处理和相关研究领域的应用奠定一个坚实的基础。

考核方式及要求:
1、考核方式:笔试(硕士生+综述或研究报告
2、提交内容:文献专题综述(或翻译报告或研究报告 1篇。

要求打印稿和电子版文件一同提交。

电子版文件命名格式:“现代信号处理 07(博 /硕 -姓名”发至
hbji@。

3、提交期限:于 2007年 6月 30日前;
更新日期:2007年 3月 1日
课程内容第一部分基本定义与性质
一 . 绪论
1.1 功率谱
1.2 信号处理中为什么用多谱?
1.3 应用
二 . 随机信号的累积量谱
2.1 引言
2.2 矩和累计量
2.3 累积量谱
2.4 非高斯线性过程的累计量谱
2.5 非线性过程检测与辨识
三 . 确知信号的矩谱
3.1 引言
3.2 能量信号的矩
3.3 周期能量信号的矩谱
3.4 功率信号的矩
3.5 周期功率信号的矩谱
第二部分高阶谱估计与信号恢复
四 . 高阶谱估计的常规方法 (非参数
4.1 引言
4.2 间接法
4.3 直接法
4.4 复调制法
4.5 常规法的统计特性
4.6 双谱混叠的测试
4.7 在极坐标栅格上的双谱计算
五 . 高阶谱估计的参数化方法
5.1 引言
5.2 MA方法
5.3 非因果 AR 方法
5.4 ARMA方法
5.5 模型定阶
5.6应用
六 . 利用高阶谱恢复信号的非参数方法
6.1 从高阶谱估计幅度和相位
6.2 相位恢复算法
6.3仅利用双谱相位重构信号
第三部分应用专题
七 . 瞬态信号分析
10.1瞬态信号的参数估计
10.2瞬态信号检测
十一 . 时间序列中非线性的检测与表征11.1一般 V olterra 系统
11.2 二次相位耦合
11.3 三次相位耦合
十二 . 基于高阶谱的时频分布
12.1 Wigner 多谱
12.2 Wigner高阶谱的应用
Course Outline: PART I: BASIC DEFINITIONS AND PROPERTIES
•Introduction
o Power Spectrum
o Why polyspectra in signal processing?
o Applications
•Cumulant Spectra of Stochastic Signals
o Moments and cumulants
o Cumulant spectra
o Cumulant spectra of non-Gaussian linear processes o Detecting and identifying nonlinear processes •Moment Spe ctra of Deterministic Signals
o Moments of energy signals
o Moments spectra of aperiodic energy signals o Moments of power signals
o Moment spectra of periodic power signals
PART II: HIGHER-ORDER SPECTRA ESTIMATION AND SIGNAL RECONSTRUCTION
•Conventional M ethods for the Estimation of Higher-Order Spectra
o Indirect class of conventional methods
o Direct class of conventional methods
o Statistical properties of conventional methods
o Bispectrum computation on polar rasters
•Higher-Order Cepstra (Polycepstra
o The complex cepstrum
o The differential cepstrum
o The power cepstrum
o The bicepstrum and tricepstrum
o The cepstrum of bicoherency
o Inverse filter reconstruction
o The cross-bicepstrum
•Nonparametric Methods
o Magnitude and phase estimation from higher-order spectra o Phase recovery algorithms
o Signal reconstruction from only the phase of the bispectrum •Parametric Methods
o MA methods
o Noncausal AR methods
o ARMA methods
o Model order determination
PART III: SPECIAL TOPICS
•Analysis of transient sig nals
•Nonlinearities in Time Series
o V olterra Systems
o Quadratic filter identification techniques
o Methods for the detection of quadratic phase coupling •Time-Frequecy Distributions Based on Higher-Order Statistics。

相关文档
最新文档