高阶统计量信号处理方法

合集下载

高阶谱 第1章 高阶统计量的定义与性质

高阶谱  第1章 高阶统计量的定义与性质

第1章 高阶统计量的定义与性质1.1 准备知识1. 随机变量的特征函数若随机变量x 的分布函数为)(x F ,则称⎰⎰∞∞-∞∞-===Φdx x f e x dF e e E x j x j x j )()(][)(ωωωω为x 的特征函数。

其中)(x f 为概率密度函数。

离散情况:}{,][)(k k k kx j x j x x p p p e e E k ====Φ∑ωωω特征函数)(ωΦ是概率密度)(x f 的付里叶变换。

例:设x ~),(2σa N ,则特征函数为dx e e x j a x ⎰∞∞---=Φωσσπω222/)(21)(令σ2/)(a x z -=,则dz e aj z j z⎰∞∞-++-=Φωσωπω221)(根据公式:AB AC CxBx AxeAdx e 222--∞∞--±-=⎰π,则 2221)(σωωω-=Φa j e若0=a ,则2221)(σωω-=Φe。

2. 多维随机变量的特征函数设随机变量n x x x ,,,21 联合概率分布函数为),,,(21n x x x F ,则联合特征函数为),,,(][),,,(21)()(2122112211n x x x j x x x j n x x x dF e eE n n n n ⎰⎰∞∞-+++∞∞-+++==Φωωωωωωωωω令T n x x x ],,,[21 =x ,T n ],,,[21ωωω =ω,则⎰=ΦdX f e Tj )()(x ωx ω 矩阵形式或 n n x jn dx dx x x f eknk k ,,),,(),,,(11211⎰⎰∞∞-∞∞-∑=Φ=ωωωω 标量形式其中,),,,()(21n x x x f f =x 为联合概率密度函数。

例:设n 维高斯随机变量为T n x x x ],,,[21 =x ,T n a a a ],,,[21 =a⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=nn n n n c c c c c c2111211c )])([(],cov[k k i i k i ik a x a x E x x c --== x 的概率密度为⎭⎬⎫⎩⎨⎧---=)()(21exp )2(1)(2/12/a x c a x cx T n P π x 的特征函数为⎭⎬⎫⎩⎨⎧-=Φc ωωωa ωT T j 21ex p )( 矩阵形式其中,T n ],,,[21ωωω =ω,⎭⎬⎫⎩⎨⎧-=Φ∑∑∑===n i nj j i ij ni i i n C a j 1112121exp ),,,(ωωωωωω 标量形式 3. 随机变量的第二特征函数定义:特征函数的对数为第二特征函数为 )(ln )(ωωΦ=ψ (1) 单变量高斯随机过程的第二特征函数 22221ln )(22σωωωσωω-==ψ-a j e a j(2) 多变量情形j n i i nji ij i ni i n C a j ωωωωωω∑∑∑===-=ψ1112121),,,(1.2 高阶矩与高阶累积量定义1. 单个随机变量情形 (1) 高阶矩定义随机变量x 的k 阶矩定义为⎰∞∞-==dx x p x x E m k k k )(][ (1.1)显然10=m ,][1x E m ==η。

基于高阶统计量的短波通信信号特征分析

基于高阶统计量的短波通信信号特征分析

得出高阶统计量可以作为一类 有效 的特 征参数 , 适用 于短波通信信号特征识别的结论 。
关键词
中图分类号
Re s e a r c h f o r t he S ho r t wa v e Co mm u ni c a t i o n S i g n al o f Hi g h- o r de r S t a t i s t i c ’ S Char a c t e r i s t i c
Cl a s s Nu mb e r TN91
1 引言
人们对信号进行处 理 , 其最 终 目的就 是要对 单通 道或
多 通 道 的有 限长 观 测 数 据 进 行 必 要 的 处 理 , 从 而 检 测 出 隐
它们的谱 。本文主要讨 论 高阶矩 和高 阶累积 量 , 对 它们 的高阶矩谱和高 阶累积量谱暂不作分析 。我们 首先将利用 特征函数来定义高阶矩 和高 阶累积 量 , 然后 导出它们 的相 关性质 , 最后推 导出高阶矩 和高阶累积量之间的变换 关系。
c p ( 1 , 2 , …, ) 一E{ 1 2 ” }

在现代 战争 中, 通信方便面临着 日益严 重的对抗威 胁 , 而无源或被 动探测技术是解决通 信对抗威胁 的有效途 径之


其 中对 接收信号进行 高阶统 计量 的处 理是一 个重 要 的
研究方 向, 它能辅助我方 有效地 提高 区域 防御 系统 的生存
总第 2 3 3 期 2 0 1 3 年第 1 1 期
舰 船 电 子 工 程
S h i p El e c t r o n i c En g i n e e r i n g
Vo 1 . 3 3 No . 1 l

随机过程高阶统计量方法

随机过程高阶统计量方法

随机过程高阶统计量方法一、概述高阶统计量(Higher-order Statistics)是指比二阶统计量更高阶的随机变量或随机过程的统计量。

二阶统计量有:随机变量(矢量):方差、协方差(相关矩)、二阶矩。

随机过程:自相关函数、功率谱、互相关函数、互功率谱、自协方差函数等。

高阶统计量有:随机变量(矢量):高阶矩(Higher-order Moment) ,高阶累积量(Higher-order Cumulant) 从统计学的角度,对正态分布的随机变量(矢量),用一阶和二阶统计量就可以完备地表示其统计特征。

如对一个高斯分布的随机矢量,知道了其数学期望和协方差矩阵,就可以知道它的联合概率密度函数。

对一个高斯随机过程,知道了均值和自相关函数(或自协方差函数),就可以知道它的概率结构,即知道它的整个统计特征。

但是,对不服从高斯分布的随机变量(矢量)或随机过程,一阶和二阶统计量不能完备地表示其统计特征。

或者说,信息没有全部包含在一、二阶统计量中,更高阶的统计量中也包含了大量有用的信息。

高阶统计量信号处理方法,就是从非高斯信号的高阶统计量中提取信号的有用信息,特别是从一、二阶统计量中无法提取的信息的方法。

从这个角度来说,高阶统计量方法不仅是对基于相关函数或功率谱的随机信号处理方法的重要补充,而且可以为二阶统计量方法无法解决的许多信号处理问题提供手段。

可以毫不夸张地说,凡是使用功率谱或相关函数进行过分析与处理,而又未得到满意结果的任何问题,都值得重新试用高阶统计量方法。

高阶统计量的概念于1889 年提出。

高阶统计量的研究始于六十年代初,主要是数学家和统计学家们在做基础理论的研究,以及针对光学、流体动力学、地球物理、信号处理等领域特定问题的应用研究。

直到八十年代中、后期,在信号处理和系统理论领域才掀起了高阶统计量方法的研究热潮。

高阶统计量方法已在雷达、声纳、通信、海洋学、电磁学、等离子体物理、结晶学、地球物理、生物医学、故障诊断、振动分析、流体动力学等领域的信号处理问题中获得应用。

高阶统计量PPT课件

高阶统计量PPT课件

x4 (t) x2 (t)
3
高斯信号: 零峰度 亚高斯信号: 负峰度 超高斯信号: 正峰度
16
高阶累积量和多谱的性质
❖ 主要性质 (8个性质)
最重要的性质如下:
➢ 和的累积量等于累积量之和,累积量因此得名。 ➢ 随机信号通过线性系统后的累积量等于该随机信号
的累积量与线性系统冲激响应累积量的卷积 ➢信号的高阶累积量能够决定信号模型的冲激响应h(n),
• 解决办法
-当用单谱估计AR模型时,只要把不稳定极点替换为其
倒数极点(反演技术)即可,这是因为
S2,x (z) A1(z) A1(z 1) S2,x (z 1)
-当用多谱估计AR模型时,不能作这种替换. 以双谱为例
S3,x (z1, z2 ) A1(z1 ) A1(z2 ) A1(z11z21)
即用信号模型的输出信号(即观测到的信号)y(n)的高 阶累积量就能决定h(n)。
17
高阶累积量和多谱的性质
❖ 主要性质(续)
➢ 确定性序列的多谱: 确定性序列{h(1),…,h(k)}的k阶累量
Ck,h (1,..., k1) h(n)h(n 1)...h(n k1)
(7)
n
其 k 阶谱为
k 1
x
c4
4
m4 3m22
4
m4 3 4 4
m4
4
3
10
高阶谱
功率谱的缺点:px ( f ) X ( f ) 2 X ( f ) X *( f ) 由功率谱只能恢复 X ( f ),不可能恢复 X ( f ) 基于自相关函数的辨识系统,无法辨识非最小相位系统
“模型的多重性” “自相关函数等价性” “功率谱等价性”
谱来衡量,亦也可以用多谱的平坦度来衡量。说明如下:

基于高阶统计量的BCG信号特性分析

基于高阶统计量的BCG信号特性分析

基于高阶统计量的BCG信号特性分析王子民;王曼;刘振丙;伍锡如【摘要】为了实现对心脏活动的非接触、无感觉检测分析,使用PVDF压电薄膜传感器,开发了心冲击图信号(脉搏信号-心电信号)综合采集设备.提出用高阶统计量来分析BCG信号,保留了BCG信号的相位信息.设备采集21名健康成年人运动前、后信号进行了信号差异性的对比分析,结果表明,运动前、后信号高阶统计量特征有显著差异,该方法能够区分不同状态下的BCG信号.【期刊名称】《桂林电子科技大学学报》【年(卷),期】2018(038)005【总页数】8页(P373-380)【关键词】BCG信号;信号处理;高阶统计量;双谱分析【作者】王子民;王曼;刘振丙;伍锡如【作者单位】桂林电子科技大学计算机与信息安全学院 ,广西桂林 541004;桂林电子科技大学广西自动检测技术与仪器重点实验室 ,广西桂林 541004;桂林电子科技大学广西信息科学实验中心 ,广西桂林 541004;桂林电子科技大学电子工程与自动化学院 ,广西桂林 541004;桂林电子科技大学计算机与信息安全学院 ,广西桂林 541004;桂林电子科技大学电子工程与自动化学院 ,广西桂林 541004;桂林电子科技大学广西信息科学实验中心 ,广西桂林 541004【正文语种】中文【中图分类】TP391.4随着社会发展,由于工作压力增大,肥胖和环境污染,人们容易出现突发心脏问题,在过去的15年中,心脏病死亡人数占据各大疾病死亡人数之首,这越来越引起人们对心脏健康的重视。

95%的心脏病突发状况都发生在医院外,若能在早期采取保护措施,检测评估心脏功能和心脏活动的相对变化,提前预警,可降低心血管系统相关的疾病风险,因此人们对心脏日常监护的需求不断提高,医院以外的持续心脏监测技术呈现出其巨大的潜力,人们期望在日常生活中通过便捷的方式监测心脏活动,进而达到疾病预防的目的。

心脏搏动时血液从血管中喷射过程中会引起皮肤表面振动,对这种周期性微小振动进行检测并处理后,可得到心冲击图(ballistocardiogram,简称BCG)信号,BCG信号反映了心脏的力学特性[1],相较于心电图(electrocardiogram,简称ECG)信号,它不需要在体表贴附电极,也不需要专业医护人员来操作,是一种非接触式、无创、无感觉的心脏监护方法[2],在家庭医疗和日常监护上有突出的优势。

盲信号处理ch2-3

盲信号处理ch2-3

2004-10-632004-10-62004-10-6Where is the phase?Channel 12004-10-6channel 22004-10-6channel 32004-10-6Same Amplitude2004-10-6Different Phasechannel 12004-10-6Channel 22004-10-6channel 32004-10-6Same Auto-correlation2004-10-6Different TOM(Channel1)2004-10-6Different TOM(Channel 2)2004-10-6Different TOM(Channel 3)2004-10-6Amplitude of TOM2004-10-6Phase of TOM (Channel 1)2004-10-6Phase of TOM (Wavelet2)2004-10-6Phase of TOM (Wavelet3)2004-10-6Same cross-correlationDifferent TOCMTOCM of x1 and x2TOCM of y1 and y22004-10-6222004-10-6232004-10-6242004-10-6252004-10-6262004-10-6高阶统计量和二阶统计量对于非高斯信号,仅用二阶统计量来描述是不够的,因为其高阶统计量并不为零。

信道估计中,信道的二阶统计量丢失了相位信息,而高阶统计量保留了相位信息。

高阶统计量高阶矩高阶累计量高阶矩谱高阶累计量谱2004-10-62004-10-6312004-10-632高阶矩和高阶累计量关系高阶矩2004-10-634 2004-10-6352004-10-62004-10-6372004-10-6确定性信号的高阶谱2004-10-62004-10-6422004-10-6432004-10-6442004-10-645累计量投影性质2004-10-647三阶累计量支撑域信道的阶数决定其高阶累计量的支撑域。

15_高阶统计量与分数低阶统计量信号处理

15_高阶统计量与分数低阶统计量信号处理

2014-6-17
大连理工大学
9
• 信号的双谱和三谱
– 信号的双谱和三谱分别是信号的三阶累积量和四阶 累积量的二维和三维傅里叶变换:
C3 (w1 , w2 )
k1 k2

c (k , k ) exp[ j(k w k w )]
3 1 2 1 1 2 2
4 1 2 3 1 1 2 2
• 由性质4得出一重要结论:若一个非高斯信号是在与 之独立的加性高斯有色噪声中被观测,则观测过程 中的高阶累计量将与非高斯信号的高阶累积量恒等。
– 性质5:若随机变量 {xi } 一子集与其余部独立,则
cum( x1, x2 ,
cum( x1, x2 ,
2014-6-17
, xk ) 0
, xk ) cum( x1, x2 , , xk )
2014-6-17
大连理工大学
17
– 高斯随机变量的第二特征函数是第一特征函数的自 然对数 () ln () 22 / 2 – 高斯变量的各阶累积量,即
c1 0, c2 2 , , ck 0, k 3,4,.....
– 综上所述,任意高斯随机过程的二阶矩和二阶累积 量相等,均等于其方差;
– 不存在二阶和高阶统计量; – 因此常规的基于二阶统计量的信号处理算法退化; – 常用分数低阶统计量的方法进行信号处理。
2014-6-17
大连理工大学
11
• 分数低阶统计量
– 统计矩从0阶一直延伸至无穷,最常用的是一阶和 二阶统计量; – (0,2)阶的统计量称为分数低阶统计量; – 有多种分数低阶统计量,例如共变、分数阶相关、 分数阶协方差等; – 分数低阶统计量适合于Alpha稳定分布信号处理。

高阶累积量在信号处理中的作用

高阶累积量在信号处理中的作用

高阶累积量在信号处理中的作用高阶累积量在信号处理中的作用,听起来好像个高深莫测的学问,其实它就像是信号世界中的调皮小精灵,悄悄地在每个数据背后舞动。

想象一下,咱们平时听到的音乐、看到的图像,背后全是信号在默默运作。

信号处理可不是无聊的数字游戏,它像是一场精彩的魔术表演,技术和艺术交织在一起,让生活变得更美好。

高阶累积量,听上去很复杂,其实说白了就是在观察信号时,我们不仅仅看它的基本形状,还要深挖一下,看看它内在的复杂性。

就像是翻开一本书,光看封面不够,得翻到里面,读读字句,才能发现故事的真谛。

常规的统计方法像是简单的食谱,只能告诉你材料是什么,但高阶累积量则是给你提供了烹饪的秘密技巧,让你的菜肴味道更加丰富。

这就好比在夏天喝的那杯冰镇饮料,不仅仅是水和冰块的组合,还得加点柠檬汁,来点薄荷,才能让人瞬间清凉透心。

在信号处理中,噪声就像是扰人的苍蝇,时不时地飞来打扰我们的美好时光。

高阶累积量帮助我们识别这些噪声,像个无敌的“苍蝇拍”,一拍就打掉。

你想啊,当我们听音乐的时候,总希望能享受到清晰动人的旋律,而不是被噪声搅和得七零八落。

高阶累积量能够帮助我们提取信号的更深层次的特征,把好东西留住,把坏东西赶走。

就像是在果园里,仔细挑选那些最甜的水果,绝对不能错过。

再说说非高斯性,听起来就像个难缠的怪兽,其实它就是信号中那些不按常理出牌的部分。

生活中有太多意外发生,信号处理也不例外。

高阶累积量就是为了处理这些非高斯性,像个聪明的侦探,发现那些隐藏的线索。

比如,你在海滩上捡到一块漂亮的贝壳,别人可能只看到沙子,而你却能一眼认出它的独特之处。

更有趣的是,高阶累积量在图像处理中的作用,简直是给图像加了层“滤镜”。

拍个照,光影、色彩、纹理,都是信号,而高阶累积量则帮助我们更清晰地看出图像背后的故事。

谁说信号处理就得枯燥无味?想象一下,用高阶累积量分析一张风景照片,能发现那阳光照射的角度、树影的形状,每一个细节都能通过数据变得生动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高阶统计量方法已在雷达、声纳、通信、海洋学、电磁学、等离子体 物理、结晶学、地球物理、生物医学、故障诊断、振动分析、流体动力学 等领域的信号处理问题中获得应用。典型的信号处理应用包括系统辨识与 时间序列分析建模、自适应估计与滤波、信号重构、信号检测、谐波恢复、 图像处理、阵列信号处理、盲反卷积与盲均衡等。
2
6. J. M. Mendel 的综述文章”Tutorial on Higher-Order Statistics (Spectra) in Signal Processing and System Theory: Theoretical Results and Some Applications”. Proc. IEEE, 1991 (主要是关于非最小相位系统辨识)。
3
信号检测、分类等问题,有可能从高阶统计量获得信号的显著分类特征。 4、检测和表征信号中的非线性以及辨识非线性系统。 如用来解决非线性引起的二次、三次相位耦合问题。
参考资料: 1、 张贤达,《时间序列分析-高阶统计量方法》,清华大学出版社,1996。 2、 沈凤麟等,《生物医学随机信号处理》(第 9 章),中国科学技术大学出
版社,1999。 3、 J. M. Mendel. “Tutorial on Higher-order Statistics (Spectra) in Signal
Processing and Systems Theory: Theoretical Results and Some Applications”. Proc. IEEE, Vol.79, pp.278-305, 1991 4、 C. L. Nikias & A. P . Petropulu. Higher-order Spectral Analysis: A Nonlinear Processing Framework. Prentice-Hall. 1993 5、 C. L. Nikias & J. M. Mendel. “Signal Processing with Higher-order Spectra”. IEEE Signal Processing Magazine,Vol.10, July, pp.10-37, 1993 6、 C. L. Nikias & M. R. Raghuveer. “Bispectrum Estimation: A Digital Signal Processing Framework”. Proc. IEEE, Vol.75, pp.869-891, 1987 7、 P. A. Delaney & D. O. Walsh. “A Bibliography of Higher-Order Spectra and Cumulants”. IEEE Signal Processing Magazine, Vol.11 July, pp. 61-70, 1994 8、 J. A. Cadzow. “Blind Deconvolution via Cumulant Extrema”. IEEE Signal Processing Magazine, Vol.13, No.3, pp.24-42, 1996 9、 .de/HOSHOME/
4
二、高阶统计量的定义、性质和估计
(一) 高阶矩、高阶累积量及其谱
(从随机变量→随机矢量→随机过程) 1、随机变量的特征函数与累积量 定义:设随机变量 x 具有概率密度 f(x),其特征函数定义为
∫ Φ(s) = +∞ f (x)esxdx = E{esx} −∞
其中 s 为特征函数的参数。 (可看作 f(x)的拉普拉斯变换) 特征函数Φ(s)只是参数 s 的函数。对Φ(s)求 k 次导数,可得
1
特别是从一、二阶统计量中无法提取的信息的方法。从这个角度来说,高 阶统计量方法不仅是对基于相关函数或功率谱的随机信号处理方法的重 要补充,而且可以为二阶统计量方法无法解决的许多信号处理问题提供手 段。可以毫不夸张地说,凡是使用功率谱或相关函数进行过分析与处理, 而又未得到满意结果的任何问题,都值得重新试用高阶统计量方法。
高阶统计量的概念于 1889 年提出。 高阶统计量的研究始于六十年代初,主要是数学家和统计学家们在做 基础理论的研究,以及针对光学、流体动力学、地球物理、信号处理等领 域特定问题的应用研究。直到八十年代中、后期,在信号处理和系统理论 领域才掀起了高阶统计量方法的研究热潮。标志性的事件有: 1. K. S. Lii , M. Rosenblatt “Deconvolution and Estimation of Transfer Function Phase and Coefficients for non-Gaussian Linear Processes”. Ann. Statistcs,Vol.10, pp.1195-1208, 1982 首次用高阶统计量解决了非最小相位系统的盲辩识问题。 2. C. L. Nikias, M. R. Raghuveer 的综述文章“Bispectrum Estimation: A Digital Signal Processing Framework”在 Proc. IEEE 发表,1987 July. 3. 1989、1991、1993、1995、1997、1999 年举办了六届关于高阶统计量 的信号处理专题研讨会(海军研究办公室,NSF, IEEE Control System Society, IEEE ASSP Society, IEEE Geoscience and Remote sensing Society)。 4. IEEE Trans. on AC 1990 年 1 月专辑。 5. IEEE Trans. on ASSP 1990 年 7 月专辑。
∫ ∫ ∞ e sx dF (x) = ∞ e sx dG(x)−∞ Nhomakorabea−∞
则 F(x) ≡ G(x)
5
由矩生成函数可以定义随机变量x的累积量生成函数(又叫第二特征
函数)及累积量。
定义:设随机变量 x 的矩生成函数为Φ(s),则函数
Ψ(s) = ln Φ(s)
(Higher-order Cumulant)。 ¾ 随机过程:高阶矩、高阶累积量、高阶谱(Higher-order Spectra,
Polyspectra) 。 从统计学的角度,对正态分布的随机变量(矢量),用一阶和二阶统 计量就可以完备地表示其统计特征。如对一个高斯分布的随机矢量,知道 了其数学期望和协方差矩阵,就可以知道它的联合概率密度函数。对一个 高斯随机过程,知道了均值和自相关函数(或自协方差函数),就可以知 道它的概率结构,即知道它的整个统计特征。 但是,对不服从高斯分布的随机变量(矢量)或随机过程,一阶和二 阶统计量不能完备地表示其统计特征。或者说,信息没有全部包含在一、 二阶统计量中,更高阶的统计量中也包含了大量有用的信息。高阶统计量 信号处理方法,就是从非高斯信号的高阶统计量中提取信号的有用信息,
7. C. L. Nikias & A. P. Petropula 的专著 Higher-order Spectral Analysis: A Nonlinear Processing Framework,由 Prentice-Hall 1993 出版。
8. Signal Processing, 1994 4 月专辑。 9. Circuits, Systems, and Signal Processing, 1994.6 月专辑。
在信号处理中使用高阶统计量的主要动机可以归纳成四点: 1、抑制未知功率谱的加性有色噪声的影响。 2、辨识非最小相位系统或重构非最小相位信号。 自相关函数或功率谱是相盲的,即不包含信号或系统的相位信息。仅 当系统或信号是最小相位时,二阶统计量的方法才能获得正确的结果。相 反,高阶统计量既包含了幅度信息,又保留了信号的相位信息,因而可以 用来解决非最小相位系统的辨识或非最小相位信号的重构问题。 3、提取由于高斯性偏离带来的各种信息 对于非高斯信号,其高阶统计量中也包含了大量的信息。对模式识别、
专题内容
一、概述 ...................................................... 1 二、高阶统计量的定义、性质和估计 .............................. 5
(一) 高阶矩、高阶累积量及其谱 ............................................................ 5 (二)高阶累积量与高阶谱的性质 ....................................................... 11 (三)高阶累积量与高阶谱的估计 ....................................................... 19 三、非最小相位系统的辨识 ..................................... 21 (一)基本问题 ....................................................................................... 21 (二) MA 系统的辨识 ................................................................................ 25 (三)ARMA 系统的辨识 ........................................................................... 35 四、谐波恢复 ................................................. 42 (一) 基本问题 .......................................................................................... 42 (二) 谐波恢复的高阶累积量方法 .......................................................... 43 五、空间窄带信号源的波达方向估计 ............................. 46 (一) 基本问题 .......................................................................................... 46 (二) 基于二阶统计量的 DOA 估计方法及其不足 ............................... 47 (三) 基于高阶统计量的 DOA 估计方法................................................ 53
相关文档
最新文档