实验三动态规划求多段图问题
实验三-动态规划法求多段图问题

本科实验报告课程名称:算法设计与分析实验项目:动态规划法求多段图问题实验地点:专业班级:学号:学生姓名:指导教师:实验三动态规划法求多段图问题一、实验目的1.掌握动态规划算法的基本思想2.掌握多段图的动态规划算法3.选择邻接表或邻接矩阵方式来存储图4、分析算法求解的复杂度。
二、实验内容设G=(V,E)是一个带权有向图,其顶点的集合V被划分成k>2个不相交的子集Vi,1<i<=k,其中V1和Vk 分别只有一个顶点s(源)和一个顶点t(汇)。
图中所有边的始点和终点都在相邻的两个子集Vi和Vi+1中。
求一条s到t的最短路线。
参考讲义p136图5-24中的多段图,试选择使用向前递推算法或向后递推算法求解多段图问题。
三、实验环境程序设计语言:c++编程工具:microsoft visual studio 2010四、算法描述和程序代码#include <stdio.h>#include <stdlib.h>#include <conio.h>#include <iostream.h>#define MAX 100#define n 12#define k 5int c[n][n];void init(int cost[]) //初始化图{int i,j;for(i=0;i<13;i++){ for(j=0;j<13;j++){ c[i][j]=MAX;}}c[1][2]=9; c[1][3]=7; c[1][4]=3; c[1][5]=2; c[2][6]=4; c[2][7]=2; c[2][8]=1;c[3][6]=2; c[3][7]=7; c[4][8]=11; c[5][7]=11; c[5][8]=8; c[6][9]=6; c[6][10]=5;c[7][9]=4; c[7][10]=3; c[8][10]=5; c[8][11]=6; c[9][12]=4; c[10][12]=2;c[11][12]=5;}void fgraph(int cost[],int path[],int d[]) //使用向前递推算法求多段图的最短路径{ int r,j,temp,min;for(j=0;j<=n;j++)cost[j]=0;for(j=n-1;j>=1;j--){ temp=0;min=c[j][temp]+cost[temp]; //初始化最小值for(r=0;r<=n;r++){if(c[j][r]!=MAX){if((c[j][r]+cost[r])<min) //找到最小的r{ min=c[j][r]+cost[r];temp=r;} } }cost[j]=c[j][temp]+cost[temp];d[j]=temp; }path[1]=1; path[k]=n;for(j=2;j<k;j++)path[j]=d[path[j-1]];}void bgraph(int bcost[],int path1[],int d[])//使用向后递推算法求多段图的最短路径{ int r,j,temp,min;for(j=0;j<=n;j++)bcost[j]=0;for(j=2;j<=n;j++){ temp=12;min=c[temp][j]+bcost[temp];//初始化最小值for(r=0;r<=n;r++){if(c[r][j]!=MAX){if((c[r][j]+bcost[r])<min) //找到最小的r{min=c[r][j]+bcost[r];temp=r;} } }bcost[j]=c[temp][j]+bcost[temp];d[j]=temp;}path1[1]=1;path1[k]=n;for(int i=4;i>=2;i--){ path1[i]=d[path1[i+1]];} }void main(){int cur=-1;int cost[13],d[12],bcost[13];int path[k];int path1[k];cout<<"\t\t\t动态规划解多段图问题"<<endl;cout<<"\n\n";init(cost);fgraph(cost,path,d);cout<<"输出使用向前递推算法后的最短路径:\n\n";for(int i=1;i<=5;i++){ cout<<path[i]<<" ";}cout<<"\n";cout<<endl<<"最短路径为长度:"<<cost[1]<<endl;cout<<"\n";cout<<"\n输出使用向后递推算法后的最短路径:\n\n";bgraph(bcost,path1,d);for(i=1;i<=5;i++){ cout<<path1[i]<<" ";}cout<<"\n";cout<<endl<<"最短路径为长度:"<<bcost[12]<<endl;cout<<"\n";}五、实验结果截图六、实验总结七、。
动态规划算法详解及经典例题

动态规划算法详解及经典例题⼀、基本概念(1)⼀种使⽤多阶段决策过程最优的通⽤⽅法。
(2)动态规划过程是:每次决策依赖于当前状态,⼜随即引起状态的转移。
⼀个决策序列就是在变化的状态中产⽣出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。
假设问题是由交叠的⼦问题所构成,我们就能够⽤动态规划技术来解决它。
⼀般来说,这种⼦问题出⾃对给定问题求解的递推关系中,这个递推关系包括了同样问题的更⼩⼦问题的解。
动态规划法建议,与其对交叠⼦问题⼀次重新的求解,不如把每⼀个较⼩⼦问题仅仅求解⼀次并把结果记录在表中(动态规划也是空间换时间的)。
这样就能够从表中得到原始问题的解。
(3)动态规划经常常使⽤于解决最优化问题,这些问题多表现为多阶段决策。
关于多阶段决策:在实际中,⼈们经常遇到这样⼀类决策问题,即因为过程的特殊性,能够将决策的全过程根据时间或空间划分若⼲个联系的阶段。
⽽在各阶段中。
⼈们都须要作出⽅案的选择。
我们称之为决策。
⽽且当⼀个阶段的决策之后,经常影响到下⼀个阶段的决策,从⽽影响整个过程的活动。
这样,各个阶段所确定的决策就构成⼀个决策序列,常称之为策略。
因为各个阶段可供选择的决策往往不⽌⼀个。
因⽽就可能有很多决策以供选择,这些可供选择的策略构成⼀个集合,我们称之为同意策略集合(简称策略集合)。
每⼀个策略都对应地确定⼀种活动的效果。
我们假定这个效果能够⽤数量来衡量。
因为不同的策略经常导致不同的效果,因此,怎样在同意策略集合中选择⼀个策略,使其在预定的标准下达到最好的效果。
经常是⼈们所关⼼的问题。
我们称这种策略为最优策略,这类问题就称为多阶段决策问题。
(4)多阶段决策问题举例:机器负荷分配问题某种机器能够在⾼低两种不同的负荷下进⾏⽣产。
在⾼负荷下⽣产时。
产品的年产量g和投⼊⽣产的机器数量x的关系为g=g(x),这时的年完善率为a,即假设年初完善机器数为x,到年终时完善的机器数为a*x(0<a<1);在低负荷下⽣产时,产品的年产量h和投⼊⽣产的机器数量y 的关系为h=h(y)。
动态规划算法

动态规划算法
动态规划算法(Dynamic Programming)是一种解决多阶段最优化决策问题的算法。
它将问题分为若干个阶段,并按照顺序从第一阶段开始逐步求解,通过每一阶段的最优解得到下一阶段的最优解,直到求解出整个问题的最优解。
动态规划算法的核心思想是将问题划分为子问题,并保存已经解决过的子问题的解,以便在求解其他子问题时不需要重新计算,而是直接使用已有的计算结果。
即动态规划算法采用自底向上的递推方式进行求解,通过计算并保存子问题的最优解,最终得到整个问题的最优解。
动态规划算法的主要步骤如下:
1. 划分子问题:将原问题划分为若干个子问题,并找到问题之间的递推关系。
2. 初始化:根据问题的特点和递推关系,初始化子问题的初始解。
3. 递推求解:按照子问题的递推关系,从初始解逐步求解子问题的最优解,直到求解出整个问题的最优解。
4. 得到最优解:根据子问题的最优解,逐步推导出整个问题的最优解。
5. 保存中间结果:为了避免重复计算,动态规划算法通常会使
用一个数组或表格来保存已经求解过的子问题的解。
动态规划算法常用于解决最优化问题,例如背包问题、最长公共子序列问题、最短路径问题等。
它能够通过将问题划分为若干个子问题,并通过保存已经解决过的子问题的解,从而大大减少计算量,提高算法的效率。
总之,动态规划算法是一种解决多阶段最优化决策问题的算法,它通过将问题划分为子问题,并保存已经解决过的子问题的解,以便在求解其他子问题时不需要重新计算,从而得到整个问题的最优解。
动态规划算法能够提高算法的效率,是解决最优化问题的重要方法。
动态规划法的一般方法

动态规划法的⼀般⽅法在学习动态规划法之前,我们先来了解动态规划的⼏个概念1、阶段:把问题分成⼏个相互联系的有顺序的⼏个环节,这些环节即称为阶段。
2、状态:某⼀阶段的出发位置称为状态。
3、决策:从某阶段的⼀个状态演变到下⼀个阶段某状态的选择。
4、状态转移⽅程:前⼀阶段的终点就是后⼀阶段的起点,前⼀阶段的决策选择导出了后⼀阶段的状态,这种关系描述了由k阶段到k+1阶段状态的演变规律,称为状态转 移⽅程。
动态规划法的定义:在求解问题中,对于每⼀步决策,列出各种可能的局部解,再依据某种判定条件,舍弃那些肯定不能得到最优解的局部解,在每⼀步都经过筛选,以每⼀步都是最优解来保证全局是最优解,这种求解⽅法称为动态规划法。
⼀般来说,适合于⽤动态规划法求解的问题具有以下特点:1、可以划分成若⼲个阶段,问题的求解过程就是对若⼲个阶段的⼀系列决策过程。
2、每个阶段有若⼲个可能状态3、⼀个决策将你从⼀个阶段的⼀种状态带到下⼀个阶段的某种状态。
4、在任⼀个阶段,最佳的决策序列和该阶段以前的决策⽆关。
5、各阶段状态之间的转换有明确定义的费⽤,⽽且在选择最佳决策时有递推关系(即动态转移⽅程)。
动态规划设计都有着⼀定的模式,⼀般要经历以下⼏个步骤:1、划分阶段:按照问题的时间或空间特征,把问题分为若⼲个阶段。
2、确定状态:将问题发展到各个阶段时所处的各种客观情况⽤不同的状态表⽰出来。
3、确定决策并写出状态转移⽅程:因为决策和状态转移有着天然的联系,状态转移就是根据上⼀阶段的状态和决策来导出本阶段的状态,所以如果确定了决策,状态转移⽅程也就可以写出。
4、寻找边界条件:给出的状态转移⽅程是⼀个递推式,需要⼀个递推的终⽌条件或边界条件。
5、程序设计实现:动态规划的主要难点在于理论上的设计,⼀旦设计完成,实现部分就会⾮常简单。
根据以上的步骤设计,可以得到动态规划设计的⼀般模式:for k:=阶段最⼩值to 阶段最⼤值do {顺推每⼀个阶段}for I:=状态最⼩值to 状态最⼤值do {枚举阶段k的每⼀个状态}for j:=决策最⼩值to 决策最⼤值do {枚举阶段k中状态i可选择的每⼀种决策}f[ik]:=min(max){f[ik-1]+a[ik-1,jk-1]|ik-1通过决策jk-1可达ik}例如:多段图G=(V,E)是⼀个有向图。
(完整版)动态规划问题常见解法

(完整版)动态规划问题常见解法动态规划问题常见解法一、背包问题1. 0/1背包问题0/1背包问题是动态规划中的经典问题,解决的是在背包容量固定的情况下,如何选择物品放入背包,使得总价值最大化。
常见的解法有两种:记忆化搜索和动态规划。
记忆化搜索是一种自顶向下的解法,通过保存子问题的解来避免重复计算,提高效率。
动态规划是一种自底向上的解法,通过填表格的方式记录每个子问题的解,最终得到整个问题的最优解。
2. 完全背包问题完全背包问题是在背包容量固定的情况下,如何选择物品放入背包,使得总价值最大化,且每种物品可以选择任意个。
常见的解法有两种:记忆化搜索和动态规划。
记忆化搜索和动态规划的思路和0/1背包问题相似,只是在状态转移方程上有所不同。
二、最长公共子序列问题最长公共子序列问题是指给定两个序列,求它们之间最长的公共子序列的长度。
常见的解法有两种:递归和动态规划。
递归的思路是通过分别考虑两个序列末尾元素是否相等来进一步缩小问题规模,直至问题规模减小到边界情况。
动态规划的思路是通过填表格的方式记录每个子问题的解,最终得到整个问题的最优解。
三、最短路径问题最短路径问题是指在加权有向图或无向图中,求解从一个顶点到另一个顶点的最短路径的问题。
常见的解法有两种:Dijkstra算法和Bellman-Ford算法。
Dijkstra算法是通过维护一个距离表,不断选择距离最短的顶点来更新距离表,直至找到目标顶点。
Bellman-Ford算法是通过进行多次松弛操作,逐步缩小问题规模,直至找到目标顶点或发现负权环。
总结:动态规划是一种解决最优化问题的常见方法,它通过分组子问题、定义状态、确定状态转移方程和填表格的方式,来得到整个问题的最优解。
在解决动态规划问题时,可以采用记忆化搜索或者动态规划的策略,具体选择哪种方法可以根据问题的特点和优化的需要来决定。
算法实验3-最大子段和问题实验报告

昆明理工大学信息工程与自动化学院学生实验报告( 2011 — 2012 学年 第 1 学期 )课程名称:算法设计与分析 开课实验室:信自楼机房444 2012 年12月 14日一、上机目的及内容1.上机内容给定有n 个整数(可能有负整数)组成的序列(a 1,a 2,…,a n ),求改序列形如∑=jk ka1的子段和的最大值,当所有整数均为负整数时,其最大子段和为0。
2.上机目的(1)复习数据结构课程的相关知识,实现课程间的平滑过渡; (2)掌握并应用算法的数学分析和后验分析方法;(3)理解这样一个观点:不同的算法能够解决相同的问题,这些算法的解题思路不同,复杂程度不同,解题效率也不同。
二、实验原理及基本技术路线图(方框原理图或程序流程图)(1)分别用蛮力法、分治法和动态规划法设计最大子段和问题的算法; 蛮力法设计原理:利用3个for 的嵌套(实现从第1个数开始计算子段长度为1,2,3…n 的子段和,同理计算出第2个数开始的长度为1,2,3…n-1的子段和,依次类推到第n 个数开始计算的长为1的子段和)和一个if (用来比较大小),将其所有子段的和计算出来并将最大子段和赋值给summax1。
用了3个for 嵌套所以时间复杂性为○(n 3);分治法设计原理:1)、划分:按照平衡子问题的原则,将序列(1a ,2a ,…,na )划分成长度相同的两个字序列(1a ,…,⎣⎦2/n a )和(⎣⎦12/+n a ,…,na )。
2)、求解子问题:对于划分阶段的情况分别的两段可用递归求解,如果最大子段和在两端之间需要分别计算s1=⎣⎦⎣⎦)2/1(max2/n i an ik k≤≤∑=,s2=⎣⎦⎣⎦)2/(max12/n j n ajn k k≤≤∑+=,则s1+s2为最大子段和。
若然只在左边或右边,那就好办了,前者视s1为summax2,后者视s2 o summax2。
3)、合并:比较在划分阶段的3种情况下的最大子段和,取三者之中的较大者为原问题的解。
太原理工大学算法与分析实验报告

课程名称:算法设计与分析
实验项目:分治法,贪心法,动态规划法,回溯法
2016年6月6日
实验1分治法合并排序
一、实验目的
1.掌握合并排序的基本思想
2.掌握合并排序的实现方法
3.学会分析算法的时间复杂度
4.学会用分治法解决实际问题
二、实验内容
随机产生一个整型数组,然后用合并排序将该数组做升序排列,要求输出排序前和排序后的数组。
for(r=0;r<=n;r++)
{
if(c[j][r]!=MAX)
{
if((c[j][r]+cost[r])<min) //找到最小的r
{
min=c[j][r]+cost[r];
temp=r;
}
}
}
cost[j]=c[j][temp]+cost[temp];
d[j]=temp;
}
path[1]=1;
实验3动态规划法求多段图问题
一、实验目的
1.掌握动态规划算法的基本思想
2.掌握多段图的动态规划算法
3.选择邻接表或邻接矩阵方式来存储图
4.分析算法求解的复杂度
二、实验内容
设G=(V,E)是一个带权有向图,其顶点的集合V被划分成k>2个不相交的子集Vi,1<i<=k,其中V1和Vk分别只有一个顶点s(源)和一个顶点t(汇)。图中所有边的始点和终点都在相邻的两个子集Vi和Vi+1中。求一条s到t的最短路线。参考课本P124图7-1中的多段图,试选择使用向前递推算法或向后递推算法求解多段图问题。
using namespace std;
int c[n][n];
多段图的最短路劲问题,动态规划法 分析最优性原理

多段图的最短路劲问题,动态规划法分析最优性原理我们都知道,无论是初中还是高中,数理化的学习过程中都是非常重要的。
其中,最短路劲问题,是数学考试当中常考的题型之一。
它的难度在初中数学中是比较大的。
很多同学在学习该题的时候也十分头疼,因为该问题通常采用动态规划法求解即可。
所谓动态规划法,其实就是由求解方程组而得到结论最优的方法。
那么今天我们就来学习一下如何进行简单易操作并将其运用于实际之中吧!一、解题思路通过观察题目,我们可以得到题目中由图 a,图 b组成的最短路劲问题的求解法:求 a={a, b, c},其中 a、 b、 c表示两段图之间的相交点。
求 a最短路劲,我们可以根据不同的情况选择不同的方法来求解。
当我们在做题过程中遇到困难时,可以通过求解最短路劲问题来了解分析它所需要处理的基本数学原理,从而达到解决此题的目的。
根据题目中提供的信息可知,多段图对于图 b而言,最短路劲要求它具有不同的解题思路。
二、求最优解的基本方法最优解的求解方法有两种:一者为连续变量的最大值问题,二者为连续不变量。
这种问题的解决方法一般为:以图中 A点的起始位置(也就是 A与 B)作为计算基点,依次以 A点、 B 点进行一次求解方程组,再将方程组进行解析,得到最优解;或者以相同的方法求出各点的余数,得出最优解。
求解过程中需要注意两个问题:第一个问题是求方程组时不一定要选择整数、整列代入、整阶运算;第二个问题只要找到方程中关键的最优解即可。
所以在求最优解时需要掌握正确的方法,同时也要注意以下几个方面:三、动态规划法分析分析:将图中已知状态矩阵代入所求题中,可得到:设图中状态矩阵 B和状态矩阵 A是多段图中唯一正确状态的解,因此 B和 C是正确的解;设状态矩阵 A是已知状态矩阵-状态式解,则 AC和 AC是正确的解;由于状态矩阵 B和状态矩阵 A是正确方程组式外部分与状态矩阵 a、b、 c、 d四等分函数相关,因此 AC和 AC就是正确方程组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
{inti,j;
for(i=0;i<n;i++)
for(j=0;j<n;j++)
scanf("%d",&cost[i][j]);//获取成本矩阵数据
}
voidprintgraph() //输出图的成本矩阵
{inti,j;
printf("成本矩阵:\n");
}
path[0]=0;//起点
path[k-1]=n-1;//最后的目标
for(i=1;i<=k-2;i++) (path[i])=d[path[i-1]];//将最短路径存入数组中
}
voidprintpath()
{intห้องสมุดไป่ตู้;
for(i=0;i<k;i++)
printf("%d ",path[i]);
实验项目算法实验动态规划实验
一、实验目的
1.掌握动态规划算法的基本思想
2.掌握多段图的动态规划算法
3.选择邻接表或邻接矩阵方式来存储图
4、分析算法求解的复杂度。
二、实验内容
4.掌握动态规划算法的基本思想
5.掌握多段图的动态规划算法
6.选择邻接表或邻接矩阵方式来存储图
4、分析算法求解的复杂度。
三、实验环境
}
intmain()
{
creatgraph();
printgraph();
FrontPath();
printf("输出使用向前递推算法所得的最短路径:\n");
printpath();
printf("\n输出使用向后递推算法所得的最短路径:\n");
printpath();
printf("\n");
return 0;
}
五、实验结果截图
六、实验总结
在做实验的过程中,要按部就班,首先明确实验目的,然后进行分析,写算法程序,最后调试运行,不能粗枝大叶,做的过程要细心谨慎,自己不会的通过向别人请教,总之上机实践的过程会学到很多。
程序设计语言:c++
编程工具:microsoftvisual studio 2010
四、算法描述和程序代码
#include "stdio.h"
#define n 7 //图的顶点数
#define k 4 //图的段数
#define MAX 23767
intcost[n][n]; //成本值数组
intpath[k]; //存储最短路径的数组
for(i=0;i<n;i++)
{ for(j=0;j<n;j++)
printf("%d ",cost[i][j]);
printf("\n");
}
}
//使用向前递推算法求多段图的最短路径
voidFrontPath()
{inti,j,length,temp,v[n],d[n];
for(i=0;i<n;i++) v[i]=0;
for(i=n-2;i>=0;i--)
{ for(length=MAX,j=i+1;j<=n-1;j++)
if(cost[i][j]>0 && (cost[i][j])+v[j]<length)
{length=cost[i][j]+v[j]; temp=j;}
v[i]=length;
d[i]=temp;