智能控制基础期末复习思考题参考答案

合集下载

智能控制复习题-参考答案

智能控制复习题-参考答案

(书本 P 13)上海第二工业大学《智能控制系统》练习卷一、填空题1、机器智能是把信息进行组织 、并 把它转换成知识 的过程。

2、智能控制方法比传统的控制方法更能适应对象的 时变性 、 非线性 和 不确定性 。

3、智能控制中的三元论指的是: 人工智能 、 自动控制 和 运筹学 。

4、从 工程控制角度看,智能控制三个基本要素是: 归纳 、 集注 、 组合操作 。

(这道题有点疑问,大家找找资料)5、生物神经元经抽象化后,得到的人工神经元模型,它有三个基本要素 连接权值 、 求和函数 和 激发函数 。

6、神 经网络的结构按照神经元连接方式可分成 层状 和 网状 。

7、定义一个语言变量需要定义 4 个方面的内容: 定义变量名称 、 定义变量的论域 、 定义变量的语言 、 定义每个模糊集合的隶属函数 。

8、� = 0.2 + 0.3 + 0.4 + 0.9,则 A0.2={x1, x2, x3, x4},A0.4={ x3, x4} ,A0.9={ x4 }�1�2�3 �49、假设论域为 5 个人的体重分别为 110kg 、95kg 、85kg 、78kg 、65kg ,他们 的体重对于“肥胖”的模糊概念的隶属度分别为 0.95、0.88、0.8、0.72、0. 5。

试用:(1) Zadeh 表示法表示模糊集“肥胖” 答:肥胖=0. 95 +0. 88 +0. 8 +0. 72 +0. 5 11095857865(2)序偶表示法表示模糊集“ 肥胖”答:肥胖={(110,0.95), (95,0.88)(85,0.8)(78,0.72)(65,0.5)} (或 肥胖={0.95, ,0.88,0.8,0.72,0.5})10、专家系统的核心部分是: 知识库子系统 、 推理子系统 。

11、在专家系统中,解释器是专家系统与用户间的人-机接口。

12、人工神经网络常见的激发函数或作用函数有:阈值型函数、饱和型函数、和双曲函数(此外还有S 型函数,高斯函数等)。

智能控制复习思考题

智能控制复习思考题

一.模糊控制部分1.智能控制与传统控制相比,有哪些主要的特点?答:1、学习功能:智能控制器能通过从外界环境所获得的信息进行学习,不断积累知识,使系统的控制性能得到改善2、适应功能:智能控制器具有从输入到输出的映射关系,可实现不依赖于模型的自适应控制,当系统某一部分出现故障时,也能进行控制。

3、自组织功能:智能控制器对复杂的分布式信息具有自组织和协调的功能,当出现多目标冲突时,它可以在任务要求的范围内自行决策,主动采取行动。

4、优化能力:智能控制能通过不管你优化控制参数和寻找控制器的最佳结构形式,获得整体最有的控制性能。

2.简述模糊集合的基本定义以及与隶属函数之间的相互关系。

答:定义:其中A 称为模糊集合,由0,1及 构成。

表示元素x 属于模糊集合A 的程度,取值范围为[0, 1],称 为x 属于模糊集合A 的隶属度。

论域U 中的模糊子集A ,是以隶属函数 为表征的集合A 。

称为模糊子集的隶属函数, 称为u 对A 的隶属度,它表示论域U 中的元素u 属于模糊子集A 的程度。

它在[0,1]闭区间内可连续取值,隶属度简记为A(u)。

相互关系:模糊集合是以隶属函数来描述的,隶属度的概念是模糊集合理论的基石。

⎪⎩⎪⎨⎧∉∈=A x A x A x x A 0)1,0(1)(的程度属于μ)(x A μ)(x A μ)(x A μA μ)(u A μA μ13.给定变量论域,请在其上设计几个模糊子集,并用隶属函数予以描述。

答:1、设论域 U = {张三,李四,王五},评语为“学习好”。

设三个人学习成绩总评分是张三得95分,李四得90分,王五得85分,三人都学习好,但又有差异。

2、4.在上述第3题的基础上,任意给定一个变量值,请求对应的模糊量表达式。

100/)(x x A =μ25.常用的模糊并和模糊交算子是怎样进行运算的?有什么特点?6.解释什么叫做模糊关系?37.试确定条件语句“若A 且B 则C ”所决定的模糊关系R 。

智能控制理论课后习题及复习

智能控制理论课后习题及复习

二、课后习题
������������������ (������������ ) ������ 根据������ ( ������⁄������������ ) = max(������ (������ ),������ (������ ))可计算得相及矩阵 G 的各项: ������ ������ ������ ������
1
2 ������ − 25 ������������ (x) = ������������(������) ={ {[1 + ( ) ] }2 25 < ������ ≪ 200 5
2 −1
0 ≪ ������ ≪ 25
(2)求“不年老也不年轻 V”的隶属度函数 ̅ ∩ ������ ̅ 不年老也不年轻,即V = ������ ̅: ������ 1 ������ − 50 ������������ ̅ (x) = 1 − ������������ (x) = { 1 − [1 + ( ) ] 5 ̅: ������ 0 ������������ ̅ (x) = 1 − ������������ (x) = { 所以: ������������ (x) = ������������ ̅ ∧ ������������ ̅ (x),������������ ̅ = min{������������ ̅ (x)} 1 − [1 + ( ������ − 25 ) ] 5
一、重点内容
1.隶属度函数的定义。 (教材 P16) 2.模糊集合的定义及表示法。 (教材 P17) 3.模糊集合的运算与基本性质。 (教材 P18,P19) 4.隶属度函数的重叠指数。 (教材 P22) 5.隶属度函数的选择方法。 (教材 P23) 6.隶属度函数的二元对比排序法。 (教材 P24) 7. 各种函数图形类型的隶属度函数适用于什么情况。 (教材 P25,P26) 8.模糊关系定义及表示法。 (教材 P27,P28) 9.模糊关系之直积、代数积。 (教材 P29,P30) 10.模糊关系的合成。 (教材 P31,P32) 11.模糊控制器的设计步骤(教材 P67)

智能控制技术复习题课后答案

智能控制技术复习题课后答案

智能控制技术复习题课后答案一、填空题1.智能控制是一门新兴的学科,它具有非常广泛的应用领域,例如、、和。

1、交叉学科在机器人控制中的应用在过程控制中的应用飞行器控制2.传统控制包括和。

2、经典反馈控制现代理论控制3.一个理想的智能控制系统应具备的基本功能是、、和。

3 、学习功能适应功能自组织功能优化能力4.智能控制中的三元论指的是:、和。

4、运筹学,人工智能,自动控制5.近年来,进化论、、和等各门学科的发展给智能控制注入了巨大的活力,并由此产生了各种智能控制方法。

5、神经网络模糊数学专家系统6.智能控制方法比传统的控制方法更能适应对象的、和。

6、时变性非线性不确定性7.傅京逊首次提出智能控制的概念,并归纳出的3种类型智能控制系统是、和。

7、人作为控制器的控制系统、人机结合作为控制器的控制系统、无人参与的自主控制系统8、智能控制主要解决传统控制难以解决的复杂系统的控制问题,其研究的对象具备的3个特点为、和。

8、不确定性、高度的非线性、复杂的任务要求9.智能控制系统的主要类型有、、、、和。

9、分级递阶控制系统,专家控制系统,神经控制系统,模糊控制系统,学习控制系统,集成或者(复合)混合控制系统10.智能控制的不确定性的模型包括两类:(1) ;(2) 。

10、(1)模型未知或知之甚少;(2)模型的结构和参数可能在很大范围内变化。

11.控制论的三要素是:信息、反馈和控制。

12.建立一个实用的专家系统的步骤包括三个方面的设计,它们分别是、和。

知识库的设计推理机的设计人机接口的设计13.专家系统的核心组成部分为和。

知识库、推理机14.专家系统中的知识库包括了3类知识,它们分别为、、和。

判断性规则控制性规则数据15.专家系统的推理机可采用的3种推理方式为推理、和推理。

15、正向推理、反向推理和双向推理16.根据专家控制器在控制系统中的功能,其可分为和。

16、直接型专家控制器、间接型专家控制器17.普通集合可用函数表示,模糊集合可用函数表示。

智能控制复习题-参考答案

智能控制复习题-参考答案

(书本 P 13)上海第二工业大学《智能控制系统》练习卷一、填空题1、机器智能是把信息进行组织 、并 把它转换成知识 的过程。

2、智能控制方法比传统的控制方法更能适应对象的 时变性 、 非线性 和 不确定性 。

3、智能控制中的三元论指的是: 人工智能 、 自动控制 和 运筹学 。

4、从 工程控制角度看,智能控制三个基本要素是: 归纳 、 集注 、 组合操作 。

(这道题有点疑问,大家找找资料)5、生物神经元经抽象化后,得到的人工神经元模型,它有三个基本要素 连接权值 、 求和函数 和 激发函数 。

6、神 经网络的结构按照神经元连接方式可分成 层状 和 网状 。

7、定义一个语言变量需要定义 4 个方面的内容: 定义变量名称 、 定义变量的论域 、 定义变量的语言 、 定义每个模糊集合的隶属函数 。

8、� = 0.2 + 0.3 + 0.4 + 0.9,则 A0.2={x1, x2, x3, x4},A0.4={ x3, x4} ,A0.9={ x4 }�1�2�3 �49、假设论域为 5 个人的体重分别为 110kg 、95kg 、85kg 、78kg 、65kg ,他们 的体重对于“肥胖”的模糊概念的隶属度分别为 0.95、0.88、0.8、0.72、0. 5。

试用:(1) Zadeh 表示法表示模糊集“肥胖” 答:肥胖=0. 95 +0. 88 +0. 8 +0. 72 +0. 5 11095857865(2)序偶表示法表示模糊集“ 肥胖”答:肥胖={(110,0.95), (95,0.88)(85,0.8)(78,0.72)(65,0.5)} (或 肥胖={0.95, ,0.88,0.8,0.72,0.5})10、专家系统的核心部分是: 知识库子系统 、 推理子系统 。

11、在专家系统中,解释器是专家系统与用户间的人-机接口。

12、人工神经网络常见的激发函数或作用函数有:阈值型函数、饱和型函数、和双曲函数(此外还有S 型函数,高斯函数等)。

智能控制习题答案解析

智能控制习题答案解析

3.,第一章 绪论1. 什么是智能、智能系统、智能控制?答:“智能”在美国 Heritage 词典定义为“获取和应用知识的能力”。

“智能系统”指具有一定智能行为的系统,是模拟和执行人类、动物或生物的某些功能的系统。

“智能控制”指在传统的控制理论中引入诸如逻辑、推理和启发式规则等因素,使之具有某种智能性;也是基于认知 工程系统和现代计算机的强大功能,对不确定环境中的复杂对象进行的拟人化管理。

2.智能控制系统有哪几种类型,各自的特点是什么?答:智能控制系统的类型:集散控制系统、模糊控制系统、多级递阶控制系统、专家控制系统、人工神经网络控制系 统、学习控制系统等。

各自的特点有:集散控制系统:以微处理器为基础,对生产过程进行集中监视、操作、管理和分散控制的集中分散控制系统。

该系统 将若干台微机分散应用于过程控制,全部信息通过通信网络由上位管理计算机监控,实现最优化控制,整个装置继承 了常规仪表分散控制和计算机集中控制的优点,克服了常规仪表功能单一,人机联系差以及单台微型计算机控制系统 危险性高度集中的缺点,既实现了在管理、操作和显示三方面集中,又实现了在功能、负荷和危险性三方面的分散。

人工神经网络:它是一种模动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。

这种网络依靠系统的 复杂程度,通过调整部大量节点之间相互连接的关系,从而达到处理信息的目的。

专家控制系统:是一个智能计算机程序系统,其部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的 知识和解决问题的经验方法来处理该领域的高水平难题。

可以说是一种模拟人类专家解决领域问题的计算机程序系统。

多级递阶控制系统是将组成大系统的各子系统及其控制器按递阶的方式分级排列而形成的层次结构系统。

这种结构的 特点是:1.上、下级是隶属关系,上级对下级有协调权,它的决策直接影响下级控制器的动作。

2.信息在上下级间垂直 方向传递,向下的信息有优先权。

智能控制复习思考题.doc

智能控制复习思考题.doc

智能控制基础期末复习思考题一重要概念解释I智能控制3模糊集合与模糊关系,模糊推理、模糊控制• 1)模糊集合:给定论域U上的一个模糊集A是指:对任何元素uwU都存在一个数与之对应,表示元素u属于集合A的程度,这个数称为元素u对集合人的隶属度,这个集合称为模糊集合。

•模糊关系:二元模糊关系:设A、B是两个非空集合,则直积= 处型中的—个模糊集合称为从A到B的一个模糊关系。

模糊关系尺可由其隶属度卩2小)完全描述,隶属度从(吶表明了元索a与元索b具有关系尺的程度。

•模糊推理:知道了语言控制规则中蕴含的模糊关系后,就可以根据模糊关系和输入情况,来确定输岀的情况,这就叫“模糊推理”。

•模糊控制4神经网络?答:人工神经网络(Artificial Neural Network )是模拟人脑思维方式的数学模型。

神经网络是在现代生物学研究人脑组织成果的慕础上提出的,用来模拟人类大脑神经网络的结构和行为,它从微观结构和功能上对人脑进行抽象和简化,神经网络反映了人脑功能的基本特征,如并行信息处理、学习、联想、模式分类、记忆等。

5神经网络控制6遗传算法一绪论部分1.智能控制与传统控制相比,有哪些主要的特点?二.模糊控制部分1、简述模糊集合的基本定义以及与隶属函数之间的相互关系。

定义:论域U中的模糊集合A,是以隶属函数心为表征的集合Ao心称为模糊集合A的隶属函数,“人(况)称为u对A的隶属度,它表示论域U中的元索u属于模糊集合A的程度,它在[0, I]闭区间内可连续取值。

关系:模糊集合是以隶属函数来描述的,隶属度的概念是模糊集合理论的基石。

2、常用隶属函数的种类及其表达式,及其图形表示。

3、给定变量论域,请在其上设计几个模糊子集,并用隶属函数予以描述,并绘图表示。

(比如年龄(0-100岁)中的年幼,年轻,中年,老年如何进行表示?(参考教材p.23)4、常用的模糊并和模糊交算子是怎样进行运算的?有什么特点?一般地:A\JB = = max(/z A(w),x/5(w)) = //A(w) v^B(u),取大原则An B = jU Ar]B(u) = min(jU A(u),ju B(w)) = ju A(u) A JU B(W),取小原则采用隶属函数的取大(MAX)和取小(MIN)进行模糊集合的并、交逻辑运算是FI前最常用的方法。

智能控制基础期末考试题答案

智能控制基础期末考试题答案

2010级智能控制基础期末复习思考题一重要概念解释1 智能控制所谓的智能控制,即设计一个控制器(或系统),使之具有学习、抽象、推理、决策等功能,并能根据环境信息的变化做出适应性反应,从而实现由人来完成的任务。

2 专家系统与专家控制专家系统是一类包含知识和推理的智能计算机程序,其内部包含某领域专家水平的知识和经验,具有解决专门问题的能力。

专家控制是智能控制的一个重要分支。

所谓专家控制,是将专家系统的理论和技术同控制理论、方法与技术相结合,在未知环境下,仿效专家的经验,实现对系统的控制。

它由知识库和推理机构构成主体框架,通过对控制领域知识的获取与组织,按某种策略及时的选用恰当的规则进行推理输出,实现对实际对象的控制 3 模糊集合与模糊关系,模糊推理模糊控制● 1)模糊集合:给定论域U 上的一个模糊集A 是指:对任何元素u U ∈ 都存在一个数()[]0,1A u μ∈与之对应,表示元素u 属于集合A 的程度,这个数称为元素u 对集合A 的隶属度,这个集合称为模糊集合。

● 模糊关系:二元模糊关系:设A 、B 是两个非空集合,则直积(){},|,A B a b a A b B ⨯=∈∈中的一个模糊集合 称为从A 到B 的一个模糊关系。

模糊关系R 可由其隶属度(),R a b μ完全描述,隶属度(),R a b μ 表明了元素a 与元素b 具有关系R 的程度。

● 模糊推理:知道了语言控制规则中蕴含的模糊关系后,就可以根据模糊关系和输入情况,来确定输出的情况,这就叫“模糊推理”。

4 神经网络?答:人工神经网络是模拟人脑思维方式的数学模型。

神经网络是在现代生物学研究人脑组织成果的基础上提出的,用来模拟人类大脑神经网络的结构和行为,对人脑进行抽象和简化,反映了人脑的基本特征,信息处理、学习、联想、模式分类、记忆等。

5 遗传算法答:遗传算法将“优胜劣汰,适者生存”的生物进化原理引入优化参数形成的编码串联群体中,按所选择的适配置函数并通过遗传的复制、交叉及变异对个体进行筛选,使适配值高的个体被保留下来,组成新的群体,新的群体既继承了上一代的信息,又优于上一代。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010级智能控制基础期末复习思考题一重要概念解释1 智能控制所谓的智能控制,即设计一个控制器(或系统),使之具有学习、抽象、推理、决策等功能,并能根据环境信息的变化做出适应性反应,从而实现由人来完成的任务。

2 专家系统与专家控制专家系统是一类包含知识和推理的智能计算机程序,其内部包含某领域专家水平的知识和经验,具有解决专门问题的能力。

专家控制是智能控制的一个重要分支。

所谓专家控制,是将专家系统的理论和技术同控制理论、方法与技术相结合,在未知环境下,仿效专家的经验,实现对系统的控制。

它由知识库和推理机构构成主体框架,通过对控制领域知识的获取与组织,按某种策略及时的选用恰当的规则进行推理输出,实现对实际对象的控制 3 模糊集合与模糊关系,模糊推理模糊控制● 1)模糊集合:给定论域U 上的一个模糊集A 是指:对任何元素u U ∈ 都存在一个数()[]0,1A u μ∈与之对应,表示元素u 属于集合A 的程度,这个数称为元素u 对集合A 的隶属度,这个集合称为模糊集合。

● 模糊关系:二元模糊关系:设A 、B 是两个非空集合,则直积(){},|,A B a b a A b B ⨯=∈∈中的一个模糊集合 称为从A 到B 的一个模糊关系。

模糊关系R 可由其隶属度(),R a b μ完全描述,隶属度(),R a b μ 表明了元素a 与元素b 具有关系R的程度。

● 模糊推理:知道了语言控制规则中蕴含的模糊关系后,就可以根据模糊关系和输入情况,来确定输出的情况,这就叫“模糊推理”。

4 神经网络?答:人工神经网络是模拟人脑思维方式的数学模型。

神经网络是在现代生物学研究人脑组织成果的基础上提出的,用来模拟人类大脑神经网络的结构和行为,对人脑进行抽象和简化,反映了人脑的基本特征,信息处理、学习、联想、模式分类、记忆等。

5 遗传算法答:遗传算法将“优胜劣汰,适者生存”的生物进化原理引入优化参数形成的编码串联群体中,按所选择的适配置函数并通过遗传的复制、交叉及变异对个体进行筛选,使适配值高的个体被保留下来,组成新的群体,新的群体既继承了上一代的信息,又优于上一代。

这样周而复始,群体中个体适应度不断提高,直到满足一定的条件。

一 专家控制部分1. 专家系统的组成及各部分特点?专家系统一般由知识库、数据库、推理机、解释器及知识获取五个部分组成,有不相同的表述形式。

*(1) 知识库。

用于存取和管理所获取的专家知识和经验,供推理机利用,具有存储、检索、编辑、增删和修改等功能。

(2) 数据库。

用来存放系统推理过程中用到的控制信息、中间假设和中间结果。

*(3) 推理机。

用于利用知识进行推理,求解专门问题,具有启发推理、算法推理;正向、反向或双向推理等功能。

(4) 解释器。

解释器用于作为专家系统与用户之间的“人-机”接口,其功能是向用户解释系统的行为。

(5) 知识获取。

知识工程师采用“专题面谈”、“记录分析”等方式获取知识,经过整理以后,再输入知识库。

2. 专家控制与专家系统的区别?3. 专家控制与模糊控制的共同点都是把人的经验整理成控制规则,二者有何区别?答:(1)专家控制规则中的概念是精确的,不具有模糊性,而模糊控制规则中的概念是模糊的;(2)由于模糊控制规则中概念是模糊的,因而可以借助于模糊逻辑推理实现控制。

二.模糊控制部分1.智能控制与传统控制相比,有哪些主要的特点?答:(1)学习功能:智能控制器能通过从外界环境所获得的信息进行学习,不断积累知识,使系统的控制性能得到改善。

(2)适应功能:智能控制器具有从输入到输出的映射关系,可实现不依赖于模型的自适应控制,当系统某一部分出现故障时,也能进行控制。

(3)自组织功能:智能控制器对复杂的分布式信息具有自组织和协调的功能,当出现多目标冲突时,它可以在任务要求的范围内自行决策,主动采取行动。

(4)优化能力:智能控制能够通过不断优化控制参数和寻找控制器的最佳结构形式,获得整体最优的控制性能。

2.简述模糊集合的基本定义以及与隶属函数之间的相互关系。

定义:论域U 中的模糊集合A ,是以隶属函数A μ为表征的集合A 。

A μ称为模糊集合A 的隶属函数,)(u A μ称为u 对A 的隶属度,它表示论域U 中的元素u 属于模糊集合A 的程度,它在[0,1]闭区间内可连续取值。

关系:模糊集合是以隶属函数来描述的,隶属度的概念是模糊集合理论的基石。

3 常用隶属函数的种类及其表达式,及其图形表示。

高斯型隶属函数: 广义钟型隶属函数:S 型隶属函数: 梯形隶属函数:三角形隶属函数: Z 型隶属函数:4.给定变量论域,请在其上设计几个模糊子集,并用隶属函数予以描述,并绘图表示。

(比如年龄(0-100岁)中的年幼,年轻,中年,老年如何进行表示?5.常用的模糊并和模糊交算子是怎样进行运算的?有什么特点?一般地:)()())(),(max()(u u u u u B A B A B A B A μμμμμ∨=== ,取大原则)()())(),(min()(u u u u u B A B A B A B A μμμμμ∧=== ,取小原则采用隶属函数的取大(MAX )和取小(MIN )进行模糊集合的并、交逻辑运算是目前最常用的方法。

6.解释常用的几种清晰化方法的几何含义。

(1)重心法;(2)最大隶属度法;(3)面积中心线法。

常用的反模糊化有三种:(1)最大隶属度法选取推理结果模糊集合中隶属度最大的元素作为输出值,即)(max 0z z z μ=,Z z ∈。

如果在输出论域V 中,其最大隶属度对应的输出值多于一个,则取所有具有最大隶属度输出的平均值,即:∑==Ni i z N z 101,))((max z z z Z z i μ∈= N 为具有相同最大隶属度输出的总数。

最大隶属度法不考虑输出隶属度函数的形状,只考虑最大隶属度处的输出值。

因此,难免会丢失许多信息。

它的突出优点是计算简单。

在一些控制要求不高的场合,可采用最大隶属度法。

(2) 重心法为了获得准确的控制量,就要求模糊方法能够很好的表达输出隶属度函数的计算结果。

重心法是取隶属度函数曲线与横坐标围成面积的重心为模糊推理的最终输出值,即⎰⎰⎰⎰==Z ZZ z Z z dz z C dz z zC dz z dz z z z )()()()(0μμ对于具有m 个输出量化级数的离散域情况∑∑===m k k zm k k zk z z z z 110)()(μμ与最大隶属度法相比较,重心法具有更平滑的输出推理控制。

一般的,对应于输入信号的小变化,输出也会发生相应变化。

(3)加权平均法工业控制中广泛使用的反模糊方法为加权平均法,输出值由下式决定∑∑===m i i m i i ikk z z 11其中系数i k 的选择根据实际情况而定。

不同的系数决定系统具有不同的响应特性。

当系数i k 取隶属度)(i V v μ时,就转化为重心法。

(4)面积中心线法。

取处在隶属度函数曲线与横坐标围成面积的等分线上的元素值作为输出值。

7 模糊推理的四种主要形式(出计算题):1) 如果x是A,则y是B,现假如x是A’, 则y’?(教材4.1.3 水箱水位控制)2) 如果x是A, 则y是B, 否则是C, 现x是A’, 求y’?3) 如果x是A且y是B,则z为C, 先x是A’且y是B’, 求z’?4) 教材p4.4 洗衣机模糊控制8 模糊推理程序,模糊控制MA TLAB程序,要能读懂,考试有程序题。

9 模糊自适应整定PID控制的原理是什么?PID参数模糊自整定是找出PID3个参数与E和EC之间的模糊关系,在运行中通过不断检测E和EC,根据模糊控制原理对3个参数进行再线修改,以满足不同的E和ec是对控制参数的不同要求,而使对象有良好的动、静态性能。

9 模糊控制的特点或优点是什么?(1)模糊控制是一种基于规则的控制,它直接采用语言型控制规则,出发点是现场操作人员的控制经验或相关专家的知识,在设计中不需要建立被控对象的精确的数学模型,因而使得控制机理和策略易于接受与理解,设计简单,便于应用。

(2)由工业过程的定性认识出发,比较容易建立语言控制规则,因而模糊控制对那些数学模型难以获取,动态特性不易掌握或变化非常显著的对象非常适用。

(3)基于模型的控制算法及系统设计方法,由于出发点和性能指标的不同,容易导致较大差异;但一个系统语言控制规则却具有相对的独立性,利用这些控制规律间的模糊连接,容易找到折中的选择,使控制效果优于常规控制器。

(4)模糊控制是基于启发性的知识及语言决策规则设计的,这有利于模拟人工控制的过程和方法,增强控制系统的适应能力,使之具有一定的智能水平。

(5)模糊控制系统的鲁棒性强,干扰和参数变化对控制效果的影响被大大减弱,尤其适合于非线性、时变及纯滞后系统的控制。

三.神经网络部分1.解释什么叫做神经网络?人工神经网络(Artificial Neural Network )是模拟人脑思维方式的数学模型。

神经网络是在现代生物学研究人脑组织成果的基础上提出的,用来模拟人类大脑神经网络的结构和行为,它从微观结构和功能上对人脑进行抽象和简化,神经网络反映了人脑功能的基本特征,如并行信息处理、学习、联想、模式分类、记忆等。

2.BP网络的结构是怎样的?具有什么主要特点?BP网络结构:含一个隐含层的BP网络结构如下图所示,图中i为输入层神经元,j为隐层神经元,k为输出层神经元BP 网络特点:(1)是一种多层网络,包括输入层、隐含层和输出层;(2)层与层之间采用全互连方式,同一层神经元之间不连接;(3)权值通过δ学习算法进行调节;(4)神经元激发函数为S 函数;(5)学习算法由正向传播和反向传播组成;(6)层与层的连接是单向的,信息的传播是双向的。

3. 写出单一神经元从输入到输出的表达式。

P124答:图中i u 为神经元的内部状态,i θ为阈值,i x 为输入信号,n j ,,1 =,ij w 为表示从单元j u 到单元i u 的连接权系数,i s 为外部输入信号。

上图的模型可描述为:∑-+=ji i j ij i s x w Net θ,)(i i Net f u =,)(i i u g y =通常情况下,取i i u u g =)(,即)(i i Net f y =。

4 神经网络控制的优点是什么?(1)可以充分逼近任意复杂的非线性关系;(2)所有定量或定性的信息都等势分布贮存于网络内的各神经元,故有很强的鲁棒性和容错性;(3)采用并行分布处理方法,使得快速进行大量运算成为可能;(4)可学习和自适应不知道或不确定的系统;(5)能够同时处理定量、定性知识。

5 试简述 BP 网络和径向基函数网络各自的特点。

BP 特点:1、BP 神经网络是一种多层网络,包括输入层、隐层和输出层;2、层与层之间采用全互连的方式,同一层神经元之间的不连接;3、权值通过δ学习规则进行调节;4、神经元激发函数为S 函数;5、学习算法由正向传播和反向传播组成;6、层与层的连接是单向的信息的传播是双向的。

相关文档
最新文档