2020年九年级数学上期末一模试卷及答案

合集下载

上海市长宁区2020-2021学年九年级(上)期末数学试卷(中考一模) 含详解

上海市长宁区2020-2021学年九年级(上)期末数学试卷(中考一模) 含详解

2020-2021学年上海市长宁区九年级(上)期末数学试卷(一模)一、选择题(本大题共6题,每题4分,满分24分)[每题只有一个正确选项,在答题纸相应题号的选项上用2B铅笔正确填涂]1.已知在△ABC中,∠C=90°,∠B=50°,AB=10,那么BC的长为()A.10cos50°B.10sin50°C.10tan50°D.10cot50°2.下列命题中,说法正确的是()A.四条边对应成比例的两个四边形相似B.四个内角对应相等的两个四边形相似C.两边对应成比例且有一个角相等的两个三角形相似D.斜边与一条直角边对应成比例的两个直角三角形相似3.已知、是两个单位向量,向量=3,=﹣3,那么下列结论正确的是()A.=B.=﹣C.||=||D.||=﹣||4.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么a、c满足()A.a>0,c>0B.a>0,c<0C.a<0,c>0D.a<0,c<05.已知点P、点Q是线段AB的两个黄金分割点,且AB=10,那么PQ的长为()A.5(3﹣)B.10(﹣2)C.5(﹣1)D.5(+1)6.如图,已知在△ABC中,点D、点E是边BC上的两点,联结AD、AE,且AD=AE,如果△ABE∽△CBA,那么下列等式错误的是()A.AB2=BE•BC B.CD•AB=AD•ACC.AE2=CD•BE D.AB•AC=BE•CD二、填空题(本大题共12题,每题4分,满分48分)[在答题纸相应题号后的空格内直接填写答案]7.已知=,那么的值为.8.计算:(2﹣)+=.9.计算:cos45°+sin260°=.10.如果两个相似三角形对应边上的中线之比为5:4.那么这两个三角形的周长之比为.11.将抛物线y=2x2﹣1向下平移3个单位后,所得抛物线的表达式是.12.一辆汽车沿着坡度i=1:的斜坡向下行驶50米,那么它距离地面的垂直高度下降了米.13.已知抛物线y=x2﹣2x+c经过点A(﹣1,y1)和B(2,y2),比较y1与y2的大小:y1 y2(选择“>”或“<”或“=”填入空格).14.如图,已知AC∥EF∥BD.如果AE:EB=2:3,CF=6.那么CD的长等于.15.已知,二次函数f(x)=ax2+bx+c的部分对应值如下表,则f(﹣3)=.x﹣2﹣1012345y50﹣3﹣4﹣3051216.如图,点G为△ABC的重心.如果AG=CG,BG=2,AC=4,那么AB的长等于.17.如图,矩形ABCD沿对角线BD翻折后,点C落在点E处.联结CE交边AD于点F.如果DF=1,BC=4,那么AE的长等于.18.如果一条对角线把凸四边形分成两个相似的三角形,那么我们把这条对角线叫做这个凸四边形的相似对角线,在凸四边形ABCD中,AB=AC=,AD=CD=,点E、点F 分别是边AD,边BC上的中点.如果AC是凸四边形ABCD的相似对角线,那么EF的长等于.三、解答题(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上]19.(10分)已知二次函数y=﹣x2﹣x+.(1)用配方法把该二次函数的解析式化为y=a(x+m)2+k的形式;(2)写出该二次函数图象的开口方向、顶点坐标和对称轴,并说明函数值y随自变量x 的变化而变化的情况.20.(10分)如图,四边形ABCD是平行四边形,点E是边AD的中点AC、BE相交于点O.设=,=.(1)试用、表示;(2)在图中作出在、上的分向量,并直接用、表示.(不要求写作法,但要保留作图痕迹,并写明结论)21.(10分)如图,在△ABC中,点D在边AB上,点E、点F在边AC上,且DE∥BC,=.(1)求证:DF∥BE;(2)如果AF=2,EF=4,AB=6,求的值.22.(10分)某校为检测师生体温,在校门安装了某型号的测温门,如图为该“测温门”截面示意图.身高1.6米的小聪做了如下实验:当他在地面M处时“测温门”开始显示额头温度,此时在额头B处测得A的仰角为30°;当他在地面N处时,“测温门”停止显示额头温度,此时在额头C处测得A的仰角为53°.如果测得小聪的有效测温区间MN的长度是0.98米,求测温门顶部A处距地面的高度约为多少米?(注:额头到地面的距离以身高计,sin53°≈0.8,cos53°=0.6,cot53°≈0.75,≈1.73.)23.(12分)已知:如图,在Rt△ABC中,∠ACB=90°,CH⊥AB,垂足为点H.点D在边BC上,联结AD,交CH于点E,且CE=CD.(1)求证:△ACE∽△ABD;(2)求证:△ACD的面积是△ACE的面积与△ABD的面积的比例中项.24.(12分)已知在平面直角坐标系xOy中,抛物线y=ax2+bx+2经过点A(﹣3,﹣6)、B (6,0),与y轴交于点C.(1)求抛物线的表达式;(2)点D是抛物线上的点,且位于线段BC上方,联结CD.①如果点D的横坐标为2.求cot∠DCB的值;②如果∠DCB=2∠CBO,求点D的坐标.25.(14分)已知,在矩形ABCD中,点M是边AB上的一个点(与点A、B不重合),联结CM,作∠CMF=90°,且MF分别交边AD于点E、交边CD的延长线于点F.点G 为线段MF的中点,联结DG.(1)如图1,如果AD=AM=4,当点E与点G重合时,求△MFC的面积;(2)如图2,如果AM=2,BM=4.当点G在矩形ABCD内部时,设AD=x,DG2=y,求y关于x的函数解析式,并写出定义域;(3)如果AM=6,CD=8,∠F=∠EDG,求线段AD的长.(直接写出计算结果)2020-2021学年上海市长宁区九年级(上)期末数学试卷(一模)参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)[每题只有一个正确选项,在答题纸相应题号的选项上用2B铅笔正确填涂]1.已知在△ABC中,∠C=90°,∠B=50°,AB=10,那么BC的长为()A.10cos50°B.10sin50°C.10tan50°D.10cot50°【分析】根据直角三角形的边角关系可得结论.【解答】解:在Rt△ABC中,∵cos B=,∠B=50°,AB=10,∴BC=AB•cos B=10•cos50°,故选:A.2.下列命题中,说法正确的是()A.四条边对应成比例的两个四边形相似B.四个内角对应相等的两个四边形相似C.两边对应成比例且有一个角相等的两个三角形相似D.斜边与一条直角边对应成比例的两个直角三角形相似【分析】根据三角形相似和相似多边形的判定解答.【解答】解:A、四个角对应相等,四条边对应成比例的两个四边形相似,原命题是假命题;B、四个内角对应相等,四条边对应成比例的两个四边形相似,原命题是假命题;C、两边对应成比例且其夹角相等的两个三角形相似,原命题是假命题;D、斜边与一条直角边对应成比例的两个直角三角形相似,是真命题;故选:D.3.已知、是两个单位向量,向量=3,=﹣3,那么下列结论正确的是()A.=B.=﹣C.||=||D.||=﹣||【分析】根据题意可以得到:与方向相同,与方向相同.【解答】解:根据题意知,与方向相同,与方向相同.A、当向量与方向相反时,=,故本选项不符合题意.B、当、是两个单位向量方向相同时,=﹣,故本选项不符合题意.C、由向量=3,=﹣3知,||=||,故本选项符合题意.D、由向量=3,=﹣3知,||=||,故本选项不符合题意.故选:C.4.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么a、c满足()A.a>0,c>0B.a>0,c<0C.a<0,c>0D.a<0,c<0【分析】根据抛物线开口方向以及与y轴的交点情况即可进行判断.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线与y轴的交点在x轴的上方,∴c>0,故选项A、B、D错误,选项C正确.故选:C.5.已知点P、点Q是线段AB的两个黄金分割点,且AB=10,那么PQ的长为()A.5(3﹣)B.10(﹣2)C.5(﹣1)D.5(+1)【分析】先由黄金分割的比值求出BP=AQ=5(﹣1),再由PQ=AQ+BP﹣AB进行计算即可.【解答】解:如图,∵点P、Q是线段AB的黄金分割点,AB=10,∴BP=AQ=AB=5(﹣1),∴PQ=AQ+BP﹣AB=10(﹣1)﹣10=10(﹣2),故选:B.6.如图,已知在△ABC中,点D、点E是边BC上的两点,联结AD、AE,且AD=AE,如果△ABE∽△CBA,那么下列等式错误的是()A.AB2=BE•BC B.CD•AB=AD•ACC.AE2=CD•BE D.AB•AC=BE•CD【分析】根据相似三角形的性质,由△ABE∽△CBA得到AB:BC=BE:AB,则可对A 选项进行判断;由△ABE∽△CBA得到∠BAE=∠C,∠AEB=∠BAC,则证明△CAD∽△CBA,利用相似三角形的性质得CD:AC=AD:AB,则可对B选项进行判断;证明△CAD∽△ABE得到AD:BE=CD:AE,加上AD=AE,则可对C选项进行判断;利用△CBA∽△ABE得到AB•AC=AE•CB,由于AE2=CD•BE,AE≠CB,则可对D选项进行判断.【解答】解:∵△ABE∽△CBA,∴AB:BC=BE:AB,∴AB2=BE•BC,所以A选项的结论正确;∵△ABE∽△CBA,∴∠BAE=∠C,∠AEB=∠BAC,∵AD=AE,∴∠ADE=∠AED,∠ACD=∠BCA,∴∠ADE=∠BAC,∵∠ADC=∠BAC,∴△CAD∽△CBA,∴CD:AC=AD:AB,即CD•AB=AD•AC,所以B选项的结论正确;∵△ABE∽△CBA,△CAD∽△CBA,∴△CAD∽△ABE,∴AD:BE=CD:AE,即AD•AE=CD•BE,∵AD=AE,∴AE2=CD•BE,所以C选项的结论正确;∵△CBA∽△ABE,∴AC:AE=CB:AB,∴AB•AC=AE•CB,∵AE2=CD•BE,AE≠CB,∴AB•AC≠BE•CD,所以D选项的结论不正确.故选:D.二、填空题(本大题共12题,每题4分,满分48分)[在答题纸相应题号后的空格内直接填写答案]7.已知=,那么的值为﹣3.【分析】利用比例性质得到y=2x,把y=2x代入,然后进行分式的化简.【解答】解:∵=,∴y=2x,∴原式==﹣=﹣3.故答案为﹣3.8.计算:(2﹣)+=+.【分析】先利用乘法结合律去括号,然后计算加减法.【解答】解:原式=﹣+=+.故答案是:+.9.计算:cos45°+sin260°=.【分析】将cos45°=,sin60°=代入求解.【解答】解:原式=×+()2=1+=.故答案为:.10.如果两个相似三角形对应边上的中线之比为5:4.那么这两个三角形的周长之比为5:4.【分析】根据相似三角形的性质可直接得出结论.【解答】解:∵两个相似三角形的对应中线的比为5:4,∴其相似比为5:4,∴这两个相似三角形的周长的比为5:4,故答案为:5:4.11.将抛物线y=2x2﹣1向下平移3个单位后,所得抛物线的表达式是y=2x2﹣4.【分析】先确定抛物线y=2x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,﹣4),然后利用顶点式写出平移后的抛物线的表达式.【解答】解:抛物线y=2x2﹣1的顶点坐标为(0,﹣1),点(0,﹣1)向下平移3个单位后所得对应点的坐标为(0,﹣4),所以平移后的抛物线的表达式是y=2x2﹣4.故答案为y=2x2﹣4.12.一辆汽车沿着坡度i=1:的斜坡向下行驶50米,那么它距离地面的垂直高度下降了25米.【分析】设出垂直高度,表示出水平距离,利用勾股定理求解即可.【解答】解:∵坡度i=1:,∴设垂直高度下降了x米,则水平前进了x米.根据勾股定理可得:x2+(x)2=502.解得x=25(负值舍去),即它距离地面的垂直高度下降了25米.故答案为:25.13.已知抛物线y=x2﹣2x+c经过点A(﹣1,y1)和B(2,y2),比较y1与y2的大小:y1>y2(选择“>”或“<”或“=”填入空格).【分析】把点A、B的坐标分别代入已知抛物线解析式,并分别求得y1与y2的值,然后比较它们的大小.【解答】解:∵抛物线y=x2﹣2x+c经过点A(﹣1,y1)和B(2,y2),∴y1=(﹣1)2﹣2×(﹣1)+c=3+c,y2=22﹣2×2+c=c,∵y1﹣y2=3>0,∴y1>y2,故答案是:>.14.如图,已知AC∥EF∥BD.如果AE:EB=2:3,CF=6.那么CD的长等于15.【分析】根据平行线分线段成比例定理得到==,这样可求出FD的长,然后计算CF+FD即可.【解答】解:∵AC∥EF∥BD,∴==,∴FD=CF=×6=9,∴CD=CF+FD=6+9=15.故答案为15.15.已知,二次函数f(x)=ax2+bx+c的部分对应值如下表,则f(﹣3)=12.x﹣2﹣1012345y50﹣3﹣4﹣30512【分析】根据二次函数的对称性结合图表数据可知,x=﹣3时的函数值与x=5时的函数值相同.【解答】解:由图可知,f(﹣3)=f(5)=12.故答案为:12.16.如图,点G为△ABC的重心.如果AG=CG,BG=2,AC=4,那么AB的长等于.【分析】根据题意画出图形,延长BG交AC于点H,由等腰三角形的性质可得出BH⊥AC,由重心的性质可得GH的长,最后由勾股定理求出AB的长即可.【解答】解:如图所示:延长BG交AC于点H,∵G是△ABC的重心,AC=4,∴AH=CH=2,∵AG=CG,∴BH⊥AH,∴∠AHB=90°,∵BG=2,∴GH=1,由勾股定理得:AB===.故答案为:.17.如图,矩形ABCD沿对角线BD翻折后,点C落在点E处.联结CE交边AD于点F.如果DF=1,BC=4,那么AE的长等于.【分析】首先根据题意得到EG=CG,CE⊥BD,证明△CDF∽△BCD和△CDG∽△BDC,可计算CD和CG的长,再证明△EFD∽△AED,可得AE的长.【解答】解:由折叠得:CE⊥BD,CG=EG,∴∠DGF=90°,∴∠DFG+∠FDG=90°,∵四边形ABCD是矩形,∴∠ADC=∠BCD=90°,∴∠ADG+∠CDG=90°,∴∠CDG=∠DFG,∵∠CDF=∠BCD=90°,∴△CDF∽△BCD,∴,∵AB=4,DF=1,∴,∴CD=2,由勾股定理得:CF==,BD==2,同理得:△CDG∽△BDC,∴=,∴=,∴CG=,∴CE=2CG=,∴EF=CE﹣CF=﹣=,∵=,==,且∠EDF=∠AED,∴△EFD∽△AED,∴,即,∴AE=.故答案为:.18.如果一条对角线把凸四边形分成两个相似的三角形,那么我们把这条对角线叫做这个凸四边形的相似对角线,在凸四边形ABCD中,AB=AC=,AD=CD=,点E、点F 分别是边AD,边BC上的中点.如果AC是凸四边形ABCD的相似对角线,那么EF的长等于.【分析】利用相似三角形的性质求出BC长,再利用等腰三角形的性质和勾股定理计算出EF的长即可.【解答】解:如图所示:∵AB=AC,AD=CD,△ABC∽△DAC,∴AC2=BC•AD,∵AC=,AD=,∴CB=2,∵△ABC∽△DAC,∴∠ACB=∠CAD,∴CB∥AD,∵AB=AC,F为BC中点,∴AF⊥CB,BF=CF=1,∴∠AFC=90°,∵CB∥AD,∴∠F AE=∠AFC=90°,∵AC=,∴AF=,∵AD=,E为AD中点,∴AE=,∴EF===.故答案为:.三、解答题(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上]19.(10分)已知二次函数y=﹣x2﹣x+.(1)用配方法把该二次函数的解析式化为y=a(x+m)2+k的形式;(2)写出该二次函数图象的开口方向、顶点坐标和对称轴,并说明函数值y随自变量x 的变化而变化的情况.【分析】(1)直接利用配方法进而将二次函数的解析式化为y=a(x+m)2+k的形式;(2)根据二次函数的二次项系数判断该函数图象的开口方向,由二次函数的顶点式关系式找出其顶点坐标、对称轴,由二次函数的单调性来判断y随自变量x的变化而变化的情况.【解答】解:(1)y=﹣x2﹣x+.=﹣(x2+2x+1)++,=﹣(x+1)2+4;(2)∵a=﹣<0,∴二次函数图象的开口向下,顶点坐标为(﹣1,4),对称轴为直线x=﹣1,图象在直线x=﹣1左侧,y随x的增大而增大,在直线x=﹣1右侧,y随x的增大而减小.20.(10分)如图,四边形ABCD是平行四边形,点E是边AD的中点AC、BE相交于点O.设=,=.(1)试用、表示;(2)在图中作出在、上的分向量,并直接用、表示.(不要求写作法,但要保留作图痕迹,并写明结论)【分析】(1)首先证明BO=BE,求出即可解决问题.(2)证明OC=AC,求出即可解决问题.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=EC,∴==,∴BP=BE,∴==(+)=(﹣)=﹣.(2)∵AE∥BC,∴==,∴==(+)=(+)=+.如图,在、上的分向量分别为和.21.(10分)如图,在△ABC中,点D在边AB上,点E、点F在边AC上,且DE∥BC,=.(1)求证:DF∥BE;(2)如果AF=2,EF=4,AB=6,求的值.【分析】(1)先由平行线分线段成比例定理得=,再证=,即可得出结论;(2)先证=,再证△ADE∽△AEB,即可得出答案.【解答】(1)证明:∵DE∥BC,∴=,∵=,∴=,∴DF∥BE;(2)解:∵AF=2,EF=4,∴AE=AF+EF=6,==,∴=,∴AD=AB=2,BD=2AD=4,∴==,∵==,∴=,又∵∠A=∠A,∴△ADE∽△AEB,∴==.22.(10分)某校为检测师生体温,在校门安装了某型号的测温门,如图为该“测温门”截面示意图.身高1.6米的小聪做了如下实验:当他在地面M处时“测温门”开始显示额头温度,此时在额头B处测得A的仰角为30°;当他在地面N处时,“测温门”停止显示额头温度,此时在额头C处测得A的仰角为53°.如果测得小聪的有效测温区间MN的长度是0.98米,求测温门顶部A处距地面的高度约为多少米?(注:额头到地面的距离以身高计,sin53°≈0.8,cos53°=0.6,cot53°≈0.75,≈1.73.)【分析】延长BC交AD于点E,构造直角△ABE和矩形EDNB,设AE=x米.通过解直角三角形分别表示出BE、CE的长度,根据BC=BE﹣CE得到1.73x﹣0.75x=0.98,解得即可求得AE进而即可求得.【解答】解:延长BC交AD于点E,设AE=x米.∵,∴CE=≈0.75x,BE=≈1.73x,∴BC=BE﹣CE=1.73x﹣0.75x=0.98.解得x=1,∴AE=1,∴AD=AE+ED=1+1.6=2.6(米).答:测温门顶部A处距地面的高度约为2.6米.23.(12分)已知:如图,在Rt△ABC中,∠ACB=90°,CH⊥AB,垂足为点H.点D在边BC上,联结AD,交CH于点E,且CE=CD.(1)求证:△ACE∽△ABD;(2)求证:△ACD的面积是△ACE的面积与△ABD的面积的比例中项.【分析】(1)根据同角的余角相等得到∠ACH=∠CBH,根据等腰三角形的性质得到∠CED=∠CDE,进而得到∠AEC=∠ADB,根据相似三角形的判定定理证明结论;(2)过点B作BG∥AC交AD的延长线于点G,根据相似三角形的性质得到=,根据相似三角形的面积公式计算,证明结论.【解答】证明:(1)∵AC⊥BC,CH⊥AB,∴∠ACB=∠AHC=90°,∴∠ACH=∠CBH,∵CE=CD,∴∠CED=∠CDE,∴∠AEC=∠ADB,∴△ACE∽△ABD;(2)过点B作BG∥AC交AD的延长线于点G,∴∠CAD=∠G,∵△ACE∽△ABD,∴=,∠CAD=∠BAD,∴∠BAD=∠G,∴AB=BG,∵BG∥AC,∴△ADC∽△GDB,∴=,∴=,∴=,∴△ACD的面积是△ACE的面积与△ABD的面积的比例中项.24.(12分)已知在平面直角坐标系xOy中,抛物线y=ax2+bx+2经过点A(﹣3,﹣6)、B (6,0),与y轴交于点C.(1)求抛物线的表达式;(2)点D是抛物线上的点,且位于线段BC上方,联结CD.①如果点D的横坐标为2.求cot∠DCB的值;②如果∠DCB=2∠CBO,求点D的坐标.【分析】(1)将点A,B坐标代入抛物线解析式中,解方程组,即可得出结论;(2)①先求出点D坐标,进而求出BC,CD,DB,判断出△BDC是直角三角形,即可得出结论;②构造出等腰三角形,利用对称性求出点F的坐标,进而求出直线CF的解析式,进而联立抛物线解析式,解方程组,即可得出结论.【解答】解:(1)∵抛物线y=ax2+bx+2经过点A(﹣3,﹣6)、B(6,0),∴,∴,∴抛物线的表达式为y=﹣x2+x+2;(2)①如图1,由(1)知,抛物线的解析式为y=﹣x2+x+2,当x=0时,y=2,∴C(0,2),当x=2时,y=﹣×4+×2+2=4,∴D(2,4),∵B(6,0),∴CD2=(2﹣0)2+(4﹣2)2=8,BC2=(6﹣0)2+(0﹣2)2=40,DB2=(6﹣2)2+(0﹣4)2=32,∴CD2+BC2=DB2,∴△BCD是直角三角形,∠BDC=90°,在Rt△BDC中,CD=2,BD=4,∴cot∠DCB===;②如图2,过点C作CE∥x轴,则∠BCE=∠CBO,∵∠DCB=2∠CBO,∴∠DCE=∠BCE,过点B作BE⊥CE,并延长交CD的延长线于F,∵C(0,2),B(6,0),∴F(6,4),设直线CF的解析式为y=kx+2,∴6k+2=4,∴k=,∴直线CF的解析式为y=x+2①,∵抛物线的解析式为y=﹣x2+x+2②,联立①②,解得或,∴D(4,).25.(14分)已知,在矩形ABCD中,点M是边AB上的一个点(与点A、B不重合),联结CM,作∠CMF=90°,且MF分别交边AD于点E、交边CD的延长线于点F.点G 为线段MF的中点,联结DG.(1)如图1,如果AD=AM=4,当点E与点G重合时,求△MFC的面积;(2)如图2,如果AM=2,BM=4.当点G在矩形ABCD内部时,设AD=x,DG2=y,求y关于x的函数解析式,并写出定义域;(3)如果AM=6,CD=8,∠F=∠EDG,求线段AD的长.(直接写出计算结果)【分析】(1)由“AAS”可证△AGM≌△DGF,可得AM=DF=4,AG=GD=AD=2,由勾股定理可求GF的长,由锐角三角函数可求MC的长,即可求解;(2)过点M作MH⊥CD于H,过点G作GP⊥CD于P,通过证明△FHM∽△MHC,可得,可求FH=,PH=,DP=2﹣,GP=x,由勾股定理可求解;(3)分两种情况讨论,通过全等三角形的性质和相似三角形的性质可求解.【解答】解:(1)∵点G为线段MF的中点,∴GF=MG,又∵∠A=∠FDG=90°,∠AGM=∠FGD,∴△AGM≌△DGF(AAS),∴AM=DF=4,AG=GD=AD=2,∴GF===2,∴FM=2GF=4,∵tan F=,∴,∴MC=2,∴S△MFC=×FM×MC=×4×2=20;(2)过点M作MH⊥CD于H,过点G作GP⊥CD于P,∴GP∥MH,MH=AD=x,∴=,∴GP=MH=x,FP=FH=FH,∵∠CMF=90°=∠FHM=∠CHM,∴∠F+∠FCM=90°=∠F+∠FMH=∠FCM+∠CMH,∴∠F=∠CMH,∠FCM=∠CMH,∴△FHM∽△MHC,∴,∴MH2=FH•HC,∴FH=,∴PH=,∴DP=2﹣,GP=x,∵DG2=DP2+GP2,∴y=+4(2<x<4);(3)如图3,当点G在矩形的外部时,延长DG交AB于J,连接AG,AF,∵∠FMC=90°,∴∠AME+∠CMB=90°=∠CMB+∠BCM,∴∠AME=∠MCB,∵∠EDG=∠EFD=∠AME=∠MCB,AD=BC,∠DAJ=∠B=90°,∴△ADJ≌△BCM(ASA),∴AJ=BM=2,∴JM=4,∵AB∥CD,∴,∴MJ=FD=4,GJ=DG,∴AG=DG=GJ,∴∠GAD=∠GDA=∠GFD,又∵∠AEG=∠FED,∴∠AGE=∠FDE=90°,又∵FG=GM,∴AF=AM=6,∴AD===2,当点G在矩形的外部时,延长DG交BA的延长线于L,连接DM,同理可求AD=2,综上所述:AD=2或2.。

2020-2021学年第一学期期末教学质量检测人教版九年级数学试卷(含答案)

2020-2021学年第一学期期末教学质量检测人教版九年级数学试卷(含答案)

2020--2021学年度第一学期期末教学质量检测九年级数学试卷(考试时间:90分钟满分:120分)一.选择题(本大题共10个小题,每小题3分,共30分)1.下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.将抛物线y=﹣2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.y=B.y=C.y=D.y=3.已知m,n是方程x2+2x﹣5=0的两个实数根,则下列选项错误的是()A.B.C.D.4.某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为()A.18%B.20%C.36%D.40%5.如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,BC与⊙O交于点D,连结OD.若∠C=50°,则∠AOD的度数为()A.40°B.50°C.80°D.100°6.如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是()A.4B.6.25C.7.5D.97.从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为()A.B.C.D.8.若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数的图象上,则y1,y2,y3的大小关系是()A.y3<y2<y1B.y2<y1<y3C.y1<y3<y2D.y1<y2<y39.若二次函数的与的部分对应值如下表:x-2-10123y1472-1-2-1则当x=5时,y的值为()A.-1B.2C.7D.1410.已知,则函数和的图象大致是()A.B.C.D.二.填空题(本大题共7个小题,每小题4分,共28分)11.方程x2=3x根为.12.关于x的一元二次方程(x+3)2=m有实数根,则m的值可以为(写出一个即可).13.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为,由此可知铅球推出的距离是m.14.如图,将△ABC绕点C逆时针旋转得到△A′B′C,其中点A′与A是对应点,点B′与B是对应点,点A′落在直线BC上,连接AB′,若∠ACB=45°,AC=3,BC=2,则AB′的长为.15.一圆锥的底面半径为2,母线长3,则这个圆锥的侧面积为.16.如图,在平面直角坐标系中,点O为坐标原点,平行四边形OABC的顶点A在反比例函数上,顶点B在反比例函数上,点C在x轴的正半轴上,则平行四边形OABC的面积是.17.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b>0;②a﹣b+c=0;③当x<﹣1或x>3时,y>0.④一元二次方程ax2+bx+c+1=0(a≠0)有两个不相等的实数根;上述结论中正确的是.(填上所有正确结论的序号)第14题第16题第17题三.解答题(一)(本大题共3个小题,每小题6分,共18分)18.解方程:19.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.⑴画出△OAB绕原点O顺时针旋转90°后得到的OA1B1,并写出点A1的坐标;⑵在⑴的条件下,求线段OA在旋转过程中扫过的面积(结果保留π).19.如图,在⊙O中,半径OC垂直弦AB于D,点E在⊙O上,∠E=22.5°,AB=2.求半径OB的长.三.解答题(二)(本大题共3个小题,每小题8分,共24分)21.如图,反比例函数和一次函数y=kx﹣1的图象相交于A(m,2m),B两点.⑴求一次函数的表达式;⑵求出点B的坐标,并根据图象直接写出满足不等式<kx﹣1的x的取值范围.22.甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.⑴用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;⑵你认为这个游戏对双方公平吗?请说明理由.23.新冠疫情期间,某网店以100元/件的价格购进一批消毒用紫外线灯,该网店店主结合店铺数据发现,日销量(件)是售价(元/件)的一次函数,其售价和日销售量的四组对应值如表:售价(元/件)150160170180日销售量(件)200180160140另外,该网店每日的固定成本折算下来为2000元.注:日销售纯利润=日销售量×(售价-进价)-每日固定成本.(1)求关于的函数解析式(不要求写出自变量的取值范围);(2)日销售纯利润为(元),求出与的函数表达式;(3)当售价定为多少元时,日销售纯利润最大,最大纯利润是多少.三.解答题(三)(本大题共2个小题,每小题10分,共20分)24.如图,AB是⊙O的弦,过点O作OC⊥OA,OC交AB于P,CP=BC,点Q是上的一点.⑴求证:BC是⊙O的切线;⑵已知∠BAO=25°,求∠AQB的度数;⑶在⑵的条件下,若OA=18,求的长.25.已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB 上方抛物线上的一个动点,过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E.⑴求抛物线解析式;⑵当点P运动到什么位置时,DP的长最大?⑶是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.惠城区2020--2021学年度第一学期期末教学质量检测九年级数学试卷答案一.选择题(本大题共10个小题,每小题3分,共30分)1.D2.B3.D4.B5.C6.A7.B8.C9.C10.A二.填空题(本大题共7个小题,每小题4分,共28分)11.0,312.略(m即可)13.1014.15.6π16.417.②③④三.解答题(一)(本大题共3个小题,每小题6分,共18分)18.解:19.解:⑴如图所示,点A1的坐标是(1,﹣4);……2分⑵∵点A(4,1),∴OA=,∴线段OA在旋转过程中扫过的面积是:.……6分20.解:∵半径OC⊥弦AB于点D,∴=,……2分∴∠E=∠BOC=22.5°,∴∠BOD=45°,∴△ODB是等腰直角三角形,……4分∵AB=2,∴DB=OD=1,∴OB=……6分三.解答题(二)(本大题共3个小题,每小题8分,共24分)21.解:⑴∵A(m,2m)在反比例函数图象上,∴2m=,∴m=1,∴A(1,2).……2分又∵A(1,2)在一次函数y=kx﹣1的图象上,∴2=k﹣1,即k=3,∴一次函数的表达式为:y=3x﹣1.……4分⑵由解得或,∴B(﹣,﹣3)……6分∴由图象知满足不等式<kx﹣1的x的取值范围为﹣<x<0或x>1.……8分22.解:树状图如图所示,……3分⑴共有16种等可能的结果数;……5分⑵x+y为奇数的结果数为8,x+y为偶数的结果数为8,∴P(甲胜)=,P(乙胜)=,∴P(甲胜)=P(乙胜),∴这个游戏对双方公平.……8分23.解:(1)(3分)设一次函数的表达式为y=kx+b,将点(150,250),(160,180)代入上式得解得故y关于x的函数解析式为y=-2x+500.(2)(2分)由题意得:=y(x-100)-2000=(-2x+500)(x-100)-2000=-2x2+700x-52000(3)(3分),∵-2<0,∴有最大值,∴当175(元/件)时,的最大值为9250(元).三.解答题(三)(本大题共2个小题,每小题10分,共20分)24.⑴证明:连接OB,∵OA=OB,∴∠OAB=∠OBA,∵PC=CB,∴∠CPB=∠PBC,∵∠APO=∠CPB,∴∠APO=∠CBP,∵OC⊥OA,∴∠AOP=90°,∴∠OAP+∠APO=90°,∴∠CBP+∠ABO=90°,∴∠CBO=90°,∴BC是⊙O的切线;……4分⑵解:∵∠BAO=25°,∴∠ABO=25°,∠APO=65°,∴∠POB=∠APO﹣∠ABO=40°,∴∠AQB=(∠AOP+∠POB)=130°=65°……7分⑶解:由⑵得,∠AQB=65°,∴∠AOB=130°,∴的长=的长==.……10分25.解:⑴∵抛物线y=ax2+bx+3过点B(﹣3,0),C(1,0)∴解得:∴抛物线解析式为y=﹣x2﹣2x+3……2分⑵过点P作PH⊥x轴于点H,交AB于点F∵x=0时,y=﹣x2﹣2x+3=3∴A(0,3)∴直线AB解析式为y=x+3∵点P在线段AB上方抛物线上∴设P(t,﹣t2﹣2t+3)(﹣3<t<0)∴D(t,t+3)∴PD=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t=∵∴当时,DP的长最大此时,点P运动到坐标为(﹣,).……6分⑶存在点P使△PDE为等腰直角三角形设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3)∴PD=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∵抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4∴对称轴为直线x=﹣1∵PE∥x轴交抛物线于点E∴E、P关于对称轴对称∴﹣(﹣1)=(﹣1)﹣t∴=﹣2﹣t∴PE=|﹣|=|﹣2﹣2t|……8分∵△PDE为等腰直角三角形,∠DPE=90°∴PD=PE①当﹣3<t≤﹣1时,PE=﹣2﹣2t,如图(1)∴﹣t2﹣3t=﹣2﹣2t解得:t1=1(舍去),t2=﹣2∴P(﹣2,3)②当﹣1<t<0时,PE=2+2t,如图(2)∴﹣t2﹣3t=2+2t解得:t1=,t2=(舍去)∴P(,)综上所述,点P坐标为(﹣2,3)或(,)时,使△PDE为等腰直角三角形.……10分图(1)图(2)备用图。

2020年初三数学上期末一模试卷附答案

2020年初三数学上期末一模试卷附答案
将k=36代入原方程,
得:x2-12x+36=0
解得:x=6
3,6,6能够组成三角形,符合题意.
故k的值为36.
故选B.
考点:1.等腰三角形的性质;2.一元二次方程的解.
5.D
解析:D
【解析】
【分析】
连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.
【详解】∵a=1,b=1,c=﹣3,
∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,
∴方程x2+x﹣3=0有两个不相等的实数根,
故选A.
【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
(1)求这两个数的差为0的概率;
(2)游戏规则规定:当抽到的这两个数的差为非负数时,甲获胜;否则,乙获胜.这样的规则公平吗?如果不公平,请设计一个公平的规则,并说明理由.
22.如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).
(1)求抛物线的函数解析式;
10.C
解析:C
【解析】
【分析】
【详解】
解:∵ ,
∴a(a-b)=0,
∴a=0,b=a.
当a=0时,原式=0;
当b=a时,原式=
故选C
11.C
解析:C
【解析】
【分析】
根据对称轴的位置,分三种情况讨论求解即可.
【详解】
二次函数的对称轴为直线x=m,

2020年度中考初三数学一模试卷(含答案解析)

2020年度中考初三数学一模试卷(含答案解析)

2020年初三数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分) 1.-3的绝对值是 A .-13B .-3C .13D .32.函数中y =x2-x 自变量x 的取值范围是A .x ≥2B .x ≤2C .x ≠2D .x >23.在下列四个图形中,是中心对称图形的是A .B .C .D .4.下列运算正确的是 A .2a 2+a 2=3a 4B .(-2a 2)3=8a 6C .a 3÷a 2=aD .(a -b )2=a 2-b 25.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的 A .最高分B .方差C .中位数D .平均数6.下列图形中,主视图为①的是A .BC .D .7.已知a -b =2,则a 2-b 2-4b 的值为 A .2B .4C .6D .88.下列判断错误的是A .对角线互相垂直且相等的平行四边形是正方形B .对角线互相垂直平分的四边形是菱形C .对角线相等的四边形是矩形D .对角线互相平分的四边形是平行四边形9.如图,平面直角坐标系中,A (-8,0),B (-8,4),C (0,4),反比例函数y =k x的图象分别与线段AB ,BC 交于点D ,E ,连接DE .若点B 关于DE 的对称点恰好在OA 上,则k = A .-20B .-16C .-12D .-810.如图,等边三角形ABC 边长是定值,点O 是它的外心,过点O 任意作一条直线分别交AB ,BC 于点D ,E .将△BDE 沿直线DE 折叠,得到△B ′DE ,若B ′D ,B ′E 分别交AC 于点F ,G ,连接OF ,OG ,则下列判断错误的是 A .△ADF ≌△CGEB .△B ′FG 的周长是一个定值C .四边形FOEC 的面积是一个定值D .四边形OGB ′F 的面积是一个定值二、填空题(本大题共8小题,每小题2分,共16分) 11.16的平方根是 .12.某人近期加强了锻炼,用“微信运动”记录下了一天的行走步数为12400,将12400用科学记数法表示应为 . 13.若3m =5,3n =8,则32m +n= .14.用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,则这个圆锥的底面半径为 . 15.如图,四边形ABCD 内接于⊙O ,OC ∥AD ,∠DAB =60°,∠ADC =106°,则∠OCB = . 16.如图,△ABC 中,∠C =90°,AC =3,AB =5,D 为BC 边的中点,以AD 上一点O 为圆心的O 和AB ,BC 均相切,则⊙O 的半径为 .(第16题图)(第15题图)ABCDFGB′O(第10题图)(第9题图)(第6题图①)17.如图,二次函数y =(x +2)2+m 的图象与y 轴交于点C ,与x 轴的一个交点为A (-1,0),点B在抛物线上,且与点C 关于抛物线的对称轴对称.已知一次函数y =kx +b 的图象经过A ,B 两点,根据图象,则满足不等式(x +2)2+m ≤kx +b 的x 的取值范围是 .18.如图,正方形ABCD 和Rt △AEF ,AB =5,AE =AF =4,连接BF ,DE .若△AEF 绕点A 旋转,当∠ABF 最大时,S △ADE = .三、解答题(共84分) 19.(本题满分8分)(1)计算:(π-3)0+2sin45°-⎝ ⎛⎭⎪⎫18-1 (2)解不等式组:⎩⎨⎧1-2x <3x +13<220.(本题满分8分)解方程: (1)x 2-8x +1=0 (2)3x -2-1-x2-x=121.(本题满分8分)如图,□ABCD 中,E 为AD 的中点,直线BE ,CD 相交于点F .连接AF ,BD . (1)求证:AB =DF ;(2)若AB =BD ,求证:四边形ABDF 是菱形.ABCDEF(第18题图)(第17题图)22.(本题满分8分)某校为了深入学习社会主义核心价值观,对本校学生进行了一次相关知识的测试,随机抽取了部分学生的测试成绩进行统计(根据成绩分为A ,B ,C ,D ,E 五个组,x 表示测试成绩,A 组:90≤x ≤100;B 组:80≤x <90;C 组:70≤x <80;D 组:60≤x <70;E 组:x <60),通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)抽取的学生共有________人,请将两幅统计图补充完整; (2)抽取的测试成绩的中位数落在________组内;(3)本次测试成绩在80分以上(含80分)为优秀,若该校初三学生共有1200人,请估计该校初三测试成绩为优秀的学生有多少人?调查测试成绩扇形统计图ADFEBC23.(本题满分8分)有甲,乙两把不同的锁和A,B,C三把不同的钥匙.其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁.随机取出两把钥匙开这两把锁,求恰好能都打开的概率.(请用“画树状图”或“列表”等方法给出分析过程)24.(本题满分8分)如图,△ABC中,⊙O经过A,B两点,且交AC于点D,连接BD,∠DBC=∠BAC.(1)证明BC与⊙O相切;(2)若⊙O的半径为6,∠BAC=30°,求图中阴影部分的面积.25.(本题满分8分)某水果商店以12.5元/千克的价格购进一批水果进行销售,运输过程中质量损耗5%,运输费用是0.8元/千克(运输费用按照进货质量计算),假设不计其他费用.(1)商店要把水果售完至少定价为多少元才不会亏本?(2)在销售过程中,商店发现每天水果的销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示,那么当销售单价定为多少时,每天获得的利润w最大?最大利润是多少?(3)该商店决定每销售1千克水果就捐赠p元利润(p≥1)给希望工程,通过销售记录发现,销售价格大于每千克22元时,扣除捐赠后每天的利润随x增大而减小,直接写出p的取值范围.y/千克)26.(本题满分8分)如图,线段OB 放置在正方形网格中,现请你分别在图1,图2,图3添画(工具只能用直尺)射线OA ,使tan ∠AOB 的值分别为1,2,3.27.(本题满分10分)已知,二次函数y =ax 2+2ax -3a (a >0)图象的顶点为C ,与x 轴交于A ,B 两点(点A 在点B 的左侧),点C ,B 关于过点A 的直线l 对称,直线l 与y 轴交于D . (1)求A ,B 两点坐标及直线l 的解析式; (2)求二次函数解析式;(3)在第三象限抛物线上有一个动点E ,连接OE 交直线l 于点F ,求EFOF的最大值.BO图3B O图2B O图128.(本题满分10分)如图,矩形ABCD ,AB =2,BC =10,点E 为AD 上一点,且AE =AB ,点F 从点E 出发,向终点D 运动,速度为1 cm/s ,以BF 为斜边在BF 上方作等腰Rt △BFG ,以BG ,BF 为邻边作□BFHG ,连接AG .设点F 的运动时间为t 秒,(1)试说明:△ABG ∽△EBF ;(2)当点H 落在直线CD 上时,求t 的值;(3)点F 从E 运动到D 的过程中,直接写出HC 的最小值.图2AB CDE图1ABC DFEG H9.如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE的对称点恰好在OA上,则k=()A.﹣20 B.﹣16 C.﹣12 D.﹣8【分析】根据A(﹣8,0),B(﹣8,4),C(0,4),可得矩形的长和宽,易知点D的横坐标,E的纵坐标,由反比例函数的关系式,可用含有k的代数式表示出点D的纵坐标和点E的横坐标,由三角形相似和对称,可求出AF的长,然后把问题转化到三角形ADF中,由勾股定理建立方程求出k的值.【解答】解:过点E作EG⊥OA,垂足为G,设点B关于DE的对称点为F,连接DF、EF、BF,如图所示:则△BDE≌△FDE,∴BD=FD,BE=FE,∠DFE=∠DBE=90°易证△ADF∽△GFE∴,∴AF:EG=BD:BE,∵A(﹣8,0),B(﹣8,4),C(0,4),∴AB=OC=EG=4,OA=BC=8,∵D、E在反比例函数y=的图象上,∴E(,4)、D(﹣8,)∴OG=EC=,AD=﹣,∴BD=4+,BE=8+∴,∴AF=,在Rt△ADF中,由勾股定理:AD2+AF2=DF2即:(﹣)2+22=(4+)2解得:k=﹣12故选:C.10.如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是()A.△ADF≌△CGEB.△B′FG的周长是一个定值C.四边形FOEC的面积是一个定值D.四边形OGB'F的面积是一个定值【分析】A、根据等边三角形ABC的内心的性质可知:AO平分∠BAC,根据角平分线的定理和逆定理得:FO平分∠DFG,由外角的性质可证明∠DOF=60°,同理可得∠EOG=60°,∠FOG=60°=∠DOF =∠EOG,可证明△DOF≌△GOF≌△GOE,△OAD≌△OCG,△OAF≌△OCE,可得AD=CG,AF=CE,从而得△ADF≌△CGE;B、根据△DOF≌△GOF≌△GOE,得DF=GF=GE,所以△ADF≌△B'GF≌△CGE,可得结论;C、根据S四边形FOEC=S△OCF+S△OCE,依次换成面积相等的三角形,可得结论为:S△AOC=(定值),可作判断;D、方法同C,将S四边形OGB'F=S△OAC﹣S△OFG,根据S△OFG=•FG•OH,FG变化,故△OFG的面积变化,从而四边形OGB'F的面积也变化,可作判断.【解答】解:A、连接OA、OC,∵点O是等边三角形ABC的内心,∴AO平分∠BAC,∴点O到AB、AC的距离相等,由折叠得:DO平分∠BDB',∴点O到AB、DB'的距离相等,∴点O到DB'、AC的距离相等,∴FO平分∠DFG,∠DFO=∠OFG=(∠FAD+∠ADF),由折叠得:∠BDE=∠ODF=(∠DAF+∠AFD),∴∠OFD+∠ODF=(∠FAD+∠ADF+∠DAF+∠AFD)=120°,∴∠DOF=60°,同理可得∠EOG=60°,∴∠FOG=60°=∠DOF=∠EOG,∴△DOF≌△GOF≌△GOE,∴OD=OG,OE=OF,∠OGF=∠ODF=∠ODB,∠OFG=∠OEG=∠OEB,∴△OAD≌△OCG,△OAF≌△OCE,∴AD=CG,AF=CE,∴△ADF≌△CGE,故选项A正确;B、∵△DOF≌△GOF≌△GOE,∴DF=GF=GE,∴△ADF≌△B'GF≌△CGE,∴B'G=AD,∴△B'FG的周长=FG+B'F+B'G=FG+AF+CG=AC(定值),故选项B正确;C、S四边形FOEC=S△OCF+S△OCE=S△OCF+S△OAF=S△AOC=(定值),故选项C正确;D、S四边形OGB'F=S△OFG+S△B'GF=S△OFD+S△ADF=S四边形OFAD=S△OAD+S△OAF=S△OCG+S△OAF=S△OAC ﹣S△OFG,过O作OH⊥AC于H,∴S△OFG=•FG•OH,由于OH是定值,FG变化,故△OFG的面积变化,从而四边形OGB'F的面积也变化,故选项D不一定正确;故选:D.16.如图,△ABC中,∠C=90°,AC=3,AB=5,D为BC边的中点,以AD上一点O为圆心的⊙O和AB、BC均相切,则⊙O的半径为.【分析】过点O作OE⊥AB于点E,OF⊥BC于点F.根据切线的性质,知OE、OF是⊙O的半径;然后由三角形的面积间的关系(S△ABO+S△BOD=S△ABD=S△ACD)列出关于圆的半径的等式,求得圆的半径即可.【解答】解:过点O作OE⊥AB于点E,OF⊥BC于点F.∵AB、BC是⊙O的切线,∴点E、F是切点,∴OE、OF是⊙O的半径;∴OE=OF;在△ABC中,∠C=90°,AC=3,AB=5,∴由勾股定理,得BC=4;又∵D是BC边的中点,∴S△ABD=S△ACD,又∵S△ABD=S△ABO+S△BOD,∴AB•OE+BD•OF=CD•AC,即5×OE+2×OE=2×3,解得OE=,∴⊙O的半径是.故答案为:.17.如图,二次函数y=(x+2)2+m的图象与y轴交于点C,与x轴的一个交点为A(﹣1,0),点B 在抛物线上,且与点C关于抛物线的对称轴对称.已知一次函数y=kx+b的图象经过A,B两点,根据图象,则满足不等式(x+2)2+m≤kx+b的x的取值范围是﹣4≤x≤﹣1 .【分析】将点A代入抛物线中可求m=﹣1,则可求抛物线的解析式为y=x2+4x+3,对称轴为x=﹣2,则满足(x+2)2+m≤kx+b的x的取值范围为﹣4≤x≤﹣1.【解答】解:抛物线y=(x+2)2+m经过点A(﹣1,0),∴m=﹣1,∴抛物线解析式为y=x2+4x+3,∴点C坐标(0,3),∴对称轴为x=﹣2,∵B与C关于对称轴对称,点B坐标(﹣4,3),∴满足(x+2)2+m≤kx+b的x的取值范围为﹣4≤x≤﹣1,故答案为﹣4≤x≤﹣1.18.如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕点A旋转,当∠ABF最大时,S△ADE= 6 .【分析】作DH⊥AE于H,如图,由于AF=4,则△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,当BF为此圆的切线时,∠ABF最大,即BF⊥AF,利用勾股定理计算出BF=3,接着证明△ADH≌△ABF得到DH=BF=3,然后根据三角形面积公式求解.【解答】解:作DH⊥AE于H,如图,∵AF=4,当△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,∴当BF为此圆的切线时,∠ABF最大,即BF⊥AF,在Rt△ABF中,BF==3,∵∠EAF=90°,∴∠BAF+∠BAH=90°,∵∠DAH+∠BAH=90°,∴∠DAH=∠BAF,在△ADH和△ABF中,∴△ADH≌△ABF(AAS),∴DH=BF=3,∴S△ADE=AE•DH=×3×4=6.故答案为6.22.某校为了深入学习社会主义核心价值观,对本校学生进行了一次相关知识的测试,随机抽取了部分学生的测试成绩进行统计(根据成绩分为A、B、C、D、E五个组,x表示测试成绩,A组:90≤x≤100;B组:80≤x<90;C组:70≤x<80;D组:60≤x<70;E组:x<60),通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)抽取的学生共有400 人,请将两幅统计图补充完整;(2)抽取的测试成绩的中位数落在B组内;(3)本次测试成绩在80分以上(含80分)为优秀,若该校初三学生共有1200人,请估计该校初三测试成绩为优秀的学生有多少人?【分析】(1)根据E组的人数和所占的百分比可以求得本次调查的人数,再根据条形统计图中的数据可以求得B组和C组所占的百分比.根据本次调查的总人数和B组所占的百分比可以求得B组的人数;(2)根据扇形统计图中的数据可以得到中位数落在哪一组;(3)根据统计图中的数据可以计算出该校初三测试成绩为优秀的学生有多少人.【解答】解:(1)本次抽取的学生共有:40÷10%=400(人),故答案为:400;A所占的百分比为:100÷400×100%=25%,C所占的百分比为:80÷400×100%=20%,B组的人数为:400×30%=120,补全的统计图如下图所示;(2)由扇形统计图可知,抽取的测试成绩的中位数落在B组内,故答案为:B;(3)1200×(25%+30%)=660(人),答:该校初三测试成绩为优秀的学生有660人.【点评】本题考查频数分布直方图、扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23.有甲、乙两把不同的锁和三把不同的钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁.随机取出两把钥匙开这两把锁,求恰好都能打开的概率(请用“画树状图”或“列表”等方法给出分析过程)【分析】首先根据题意列表,得所有等可能的结果,可求得打开一把锁的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图:可能出现的等可能性结果有6种,分别是(A,B),(A,C),(B,A),(B,C),(C,A),(C,B),只有1种情况(有先后顺序)恰好打开这两把锁P(恰好打开这两把锁)=.【点评】此题主要考查了利用树状图法求概率,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=是解题关键.24.如图,△ABC中,⊙O经过A、B两点,且交AC于点D,连接BD,∠DBC=∠BAC.(1)证明BC与⊙O相切;(2)若⊙O的半径为6,∠BAC=30°,求图中阴影部分的面积.【分析】(1)连接BO并延长交⊙O于点E,连接DE.由圆周角定理得出∠BDE=90°,再求出∠EBD+∠DBC=90°,根据切线的判定定理即可得出BC是⊙O的切线;(2)分别求出等边三角形DOB的面积和扇形DOB的面积,即可求出答案.【解答】证明:(1)连接BO并延长交⊙O于点E,连接DE.∵BE是⊙O的直径,∴∠BDE=90°,∴∠EBD+∠E=90°,∵∠DBC=∠DAB,∠DAB=∠E,∴∠EBD+∠DBC=90°,即OB⊥BC,又∵点B在⊙O上,∴BC是⊙O的切线;(2)连接OD,∵∠BOD=2∠A=60°,OB=OD,∴△BOD是边长为6的等边三角形,∴S△BOD=×62=9,∵S扇形DOB==6π,∴S阴影=S扇形DOB﹣S△BOD=6π﹣9.【点评】本题考查了切线的判定,圆周角定理,扇形面积,等边三角形的性质和判定的应用,关键是求出∠EBD+∠DBC=90°和分别求出扇形DOB和三角形DOB的面积.25.某水果商店以12.5元/千克的价格购进一批水果进行销售,运输过程中质量损耗5%,运输费用是0.8元/千克(运输费用按照进货质量计算),假设不计其他费用.(1)商店要把水果售完至少定价为多少元才不会亏本?(2)在销售过程中,商店发现每天水果的销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示,那么当销售单价定为多少时,每天获得的利润w最大?最大利润是多少?(3)该商店决定每销售1千克水果就捐赠p元利润(p≥1)给希望工程,通过销售记录发现,销售价格大于每千克22元时,扣除捐赠后每天的利润随x增大而减小,直接写出p的取值范围.【分析】本题是通过构建函数模型解答销售利润的问题.(1)设购进水果a千克,水果售价定为m元/千克,水果商才不会亏本,则有a•m(1﹣5%)≥(12.5+0.8)a,解得m即可(2)可先求出y与销售单价x之间的函数关系为:y=﹣5x+130,再根据销售利润=销售量×(售价﹣进价),列出销售利润w与销售价x之间的函数关系式,即可求最大利润(3)设扣除捐赠后利润为s,则s=﹣5x2+(5p+200)x﹣130(p+14),再根据对称轴的位置及增减性进行判断即可.【解答】解:(1)设购进水果a千克,水果售价定为m元/千克,水果商才不会亏本,则有a•m(1﹣5%)≥(12.5+0.8)a则a>0可解得:m≥14∴水果商要把水果售价至少定为14元/千克才不会亏本(2)由(1)可知,每千克水果的平均成本为14元得y与销售单价x之间的函数关系为:y=﹣5x+130由题意得:w=(x﹣14)y=(x﹣14)(﹣5x+130)=﹣5x2+200x﹣1820整理得w=﹣5(x﹣20)2+180∴当x=20时,w有最大值∴当销售单价定为20元时,每天获得的利润w最大,最大利润是180元.(3)设扣除捐赠后利润为s则s=(x﹣14﹣p)(﹣5x+130)=﹣5x2+(5p+200)x﹣130(p+14)∵抛物线的开口向下∴对称轴为直线x==∵销售价格大于每千克22元时,扣除捐赠后每天的利润s随x的增大而减小∴≤22解得p≤4故1≤p≤4【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.26.如图,线段OB放置在正方形网格中,现请你分别在图1、图2、图3添画(工具只能用直尺)射线OA,使tan∠AOB的值分别为1、2、3.【分析】根据勾股定理以及正切值对应边关系得出答案即可.【解答】解:如图1所示:tan∠AOB===1,如图2所示:tan∠AOB===2,如图3所示:tan∠AOB===3,故tan∠AOB的值分别为1、2、3..【点评】此题主要考查了应用与设计作图以及锐角三角函数关系、勾股定理等知识,正确构造直角三角形是解题关键.27.已知,如图,二次函数y=ax2+2ax﹣3a(a>0)图象的顶点为C与x轴交于A、B两点(点A在点B左侧),点C、B关于过点A的直线l:y=kx﹣对称.(1)求A、B两点坐标及直线l的解析式;(2)求二次函数解析式;(3)如图2,过点B作直线BD∥AC交直线l于D点,M、N分别为直线AC和直线l上的两动点,连接CN,NM、MD,求D的坐标并直接写出CN+NM+MD的最小值.【分析】(1)令二次函数解析式y=0,解方程即求得点A、B坐标;把点A坐标代入直线l解析式即求得直线l.(2)把二次函数解析式配方得顶点C(﹣1,﹣4a),由B、C关于直线l对称可知AB=AC,用a表示AC的长即能列得关于的方程.求得a有两个互为相反数的解,由二次函数图象开口向上可知a>0,舍去负值.(3)①用待定系数法求直线AC解析式,由BD∥AC可知直线BD解析式的k与AC的k相同,再代入点B坐标即求得直线BD解析式.把直线l与直线BD解析式联立方程组,求得的解即为点D坐标.②由点B、C关于直线l对称,连接BN即有B、N、M在同一直线上时,CN+MN=BN+MN=BM最小;作点D关于直线AC的对称点Q,连接DQ交直线AC于点E,可证B、M、Q在同一直线上时,BM+MD=BM+MQ=BQ最小,CN+NM+MD最小值=BM+MD最小值=BQ.由直线AC垂直平分DQ且AC∥BD可得BD⊥DQ,即∠BDQ=90°.由B、D坐标易求BD的长;由B、C关于直线l 对称可得l平分∠BAC,作DF⊥x轴于F则有DF=DE,所以DQ=2DE=2DF=4;利用勾股定理即求得BQ的长.【解答】解:(1)当y=0时,ax2+2ax﹣3a=0解得:x1=﹣3,x2=1∴点A坐标为(﹣3,0),点B坐标为(1,0)∵直线l:y=kx﹣经过点A∴﹣3k﹣=0 解得:k=﹣∴直线l的解析式为y=﹣x﹣(2)∵y=ax2+2ax﹣3a=a(x+1)2﹣4a∴点C坐标为(﹣1,﹣4a)∵C、B关于直线l对称,A在直线l上∴AC=AB,即AC2=AB2∴(﹣1+3)2+(﹣4a)2=(1+3)2解得:a=±(舍去负值),即a=∴二次函数解析式为:y=x2+x﹣(3)∵A(﹣3,0),C(﹣1,﹣2),设直线AC解析式为y=kx+b∴解得:∴直线AC解析式为y=﹣x﹣3∵BD∥AC∴设直线BD解析式为y=﹣x+c把点B(1,0)代入得:﹣+c=0 解得:c=∴直线BD解析式为y=﹣x+∵解得:∴点D坐标为(3,﹣2)如图,连接BN,过点D作DF⊥x轴于点F,作D关于直线AC的对称点点Q,连接DQ交AC于点E,连接BQ,MQ.∵点B、C关于直线l对称,点N在直线l上∴BN=CN∴当B、N、M在同一直线上时,CN+MN=BN+MN=BM,即CN+MN的最小值为BM∵点D、Q关于直线AC对称,点M在直线AC上∴MQ=MD,DQ⊥AC,DE=QE∴当B、M、Q在同一直线上时,BM+MD=BM+MQ=BQ,即BM+MD的最小值为BQ∴此时,CN+NM+MD=BM+MD=BQ,即CN+NM+MD的最小值为BQ∵点B、C关于直线l对称∴AD平分∠BAC∵DF⊥AB,DE⊥AC∴DE=DF=|y D|=2∴DQ=2DE=4∵B(1,0),D(3,﹣2)∴BD2=(3﹣1)2+(﹣2)2=16∵BD∥AC∴∠BDQ=∠AEQ=90°∴BQ=∴CN+NM+MD的最小值为8.28.如图,矩形ABCD,AB=2,BC=10,点E为AD上一点,且AE=AB,点F从点E出发,向终点D 运动,速度为1cm/s,以BF为斜边在BF上方作等腰直角△BFG,以BG,BF为邻边作▱BFHG,连接AG.设点F的运动时间为t秒.(1)试说明:△ABG∽△EBF;(2)当点H落在直线CD上时,求t的值;(3)点F从E运动到D的过程中,直接写出HC的最小值.【分析】(1)根据两边成比例夹角相等即可证明两三角形相似;(2)如图构建如图平面直角坐标系,作HM⊥AD于M,GN⊥AD于N.设AM交BG于K.首先证明△GFN≌△FHM,想办法求出点H的坐标,构建方程即可解决问题;(3)由(2)可知H(2+t,4+t),令x=2+t,y=4+t,消去t得到y=x+.推出点H 在直线y=x+上运动,根据垂线段最短即可解决问题;【解答】(1)证明:如图1中,∵△ABE,△BGF都是等腰直角三角形,∴==,∵∠ABE=∠GBF=45°,∴∠ABG=∠EBF,∴△ABG∽△EBF.(2)解:如图构建如图平面直角坐标系,作HM⊥AD于M,GN⊥AD于N.设AM交BG于K.∵△GFH是等腰直角三角形,∴FG=FH,∠GNF=∠GFH=∠HMF=90°,∴∠GFN+∠HFM=90°,∠HFM+∠FHM=90°,∴∠GFN=∠FHM,∴△GFN≌△FHM,∴GN=FM,FN=HM,∵△ABG∽△EBF,∴==,∠AGB=∠EFB,∵∠AKG=∠BKF,∴∠GAN=∠KBF=45°,∵EF=t,∴AG=t,∴AN=GN=FM=t,∴AM=2+t,HM=FN=2+t,∴H(2+t,4+t),当点H在直线CD上时,2+t=10,解得t=.(3)由(2)可知H(2+t,4+t),令x=2+t,y=4+t,消去t得到y=x+.∴点H在直线y=x+上运动,如图,作CH垂直直线y=x+垂足为H.根据垂线段最短可知,此时CH的长最小,易知直线CH的解析式为y=﹣3x+30,由,解得,∴H(8,6),∵C(10,0),∴CH==2,∴HC最小值是2.。

2020年初三数学上期末一模试卷(含答案)

2020年初三数学上期末一模试卷(含答案)

2020年初三数学上期末一模试卷(含答案)一、选择题1.已知a ,b 是方程230x x +-=的两个实数根,则22019a b -+的值是( ) A .2023 B .2021 C .2020 D .20192.如图,AB 是圆O 的直径,CD 是圆O 的弦,若35C ∠=︒,则ABD ∠=( )A .55︒B .45︒C .35︒D .65︒ 3.关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根12,x x ,()1212122(2)2x x x x x x -+--+3=-,则k 的值( )A .0或2B .-2或2C .-2D .24.已知二次函数y =ax 2+bx +c (a >0)的图象经过(0,1),(4,0),当该二次函数的自变量分别取x 1,x 2(0<x 1<x 2<4)时,对应的函数值是y 1,y 2,且y 1=y 2,设该函数图象的对称轴是x =m ,则m 的取值范围是( )A .0<m <1B .1<m ≤2C .2<m <4D .0<m <45.现有一块长方形绿地,它的短边长为20 m ,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加300 m 2,设扩大后的正方形绿地边长为xm ,下面所列方程正确的是( )A .x(x-20)=300B .x(x+20)=300C .60(x+20)=300D .60(x-20)=300 6.等腰三角形一条边的边长为3,它的另两条边的边长是关于x 的一元二次方程x 2﹣12x+k=0的两个根,则k 的值是( )A .27B .36C .27或36D .187.五粮液集团2018年净利润为400亿元,计划2020年净利润为640亿元,设这两年的年净利润平均增长率为x ,则可列方程是( )A .400(1)640x +=B .2400(1)640x +=C .2400(1)400(1)640x x +++=D .2400400(1)400(1)640x x ++++=8.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x k =-++上的三点,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .231y y y >>D .312y y y >>9.在一个不透明纸箱中放有除了标注数字不同外,其他完全相同的3张卡片,上面分别标有数字1,2,3,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为( )A .59B .49C .56D .1310.如图,⊙O 是△ABC 的外接圆,∠B=60°,⊙O 的半径为4,则AC 的长等于( )A .43B .63C .23D .811.如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D =34°,则∠OAC 等于( )A .68°B .58°C .72°D .56°12.如图,矩形 ABCD 中,AB=8,BC=6,将矩形 ABCD 绕点 A 逆时针旋转得到矩形 AEFG ,AE ,FG 分别交射线CD 于点 PH ,连结 AH ,若 P 是 CH 的中点,则△APH 的周长为( )A .15B .18C .20D .24二、填空题13.设二次函数y =x 2﹣2x ﹣3与x 轴的交点为A ,B ,其顶点坐标为C ,则△ABC 的面积为_____.14.如图,将二次函数y =12(x -2)2+1的图像沿y 轴向上平移得到一条新的二次函数图像,其中A (1,m ),B (4,n )平移后对应点分别是A′、B′,若曲线AB 所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.15.若把一根长200cm的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.16.已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为_____.17.如图,AB是⊙O的直径,∠AOE=78°,点C、D是弧BE的三等分点,则∠COE=_____.18.若二次函数y=x2﹣3x+3﹣m的图象经过原点,则m=_____.19.如图,在Rt△ABC中,∠ACB=90°,CB=4,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将»BD绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为_____.20.廊桥是我国古老的文化遗产如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是______米精确到1米三、解答题21.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.(2)平移△ABC,使点A的对应点A2坐标为(-2,-6),请画出平移后对应的△A2B2C2的图形.(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.22.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.23.如图,已知二次函数y=-x2+bx+c的图象经过A(-2,-1),B(0,7)两点.(1)求该抛物线的解析式及对称轴;(2)当x为何值时,y>0?(3)在x轴上方作平行于x轴的直线l,与抛物线交于C,D两点(点C在对称轴的左侧),过点C,D作x轴的垂线,垂足分别为F,E.当矩形CDEF为正方形时,求C点的坐标.24.如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.(1)求证:CD是⊙O的切线;(2)若∠D=30°,BD=2,求图中阴影部分的面积.25.已知抛物线y =x 2-2x -8与x 轴的两个交点为A ,B (A 在B 的左侧),与y 轴交于点C .(1)直接写出点A ,B ,C 的坐标;(2)求△ABC 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据题意可知b=3-b 2,a+b=-1,ab =-3,所求式子化为a 2-b+2019=a 2-3+b 2+2019=(a+b )2-2ab+2016即可求解.【详解】a ,b 是方程230x x +-=的两个实数根,∴23b b =-,1a b +=-,-3ab =,∴222201932019a b a b -+=-++()2220161620162023a b ab =+-+=++=; 故选A .【点睛】本题考查一元二次方程的根与系数的关系;根据根与系数的关系将所求式子进行化简代入是解题的关键. 2.A解析:A【解析】【分析】根据同弧所对的圆周角相等可得35BAD C =∠=︒∠,再根据圆直径所对的圆周角是直角,可得90ADB ∠=︒,再根据三角形内角和定理即可求出ABD ∠的度数.【详解】∵35C ∠=︒∴35BAD C =∠=︒∠∵AB 是圆O 的直径∴90ADB ∠=︒∴18055ABD ADB BAD =︒--=︒∠∠∠故答案为:A .【点睛】本题考查了圆内接三角形的角度问题,掌握同弧所对的圆周角相等、圆直径所对的圆周角是直角、三角形内角和定理是解题的关键.3.D解析:D【解析】【分析】将()1212122(2)2=3x x x x x x -+--+-化简可得,()21212124423x x x x x x +-+=--, 利用韦达定理,()2142(2)3k k ----+=-,解得,k =±2,由题意可知△>0, 可得k =2符合题意.【详解】解:由韦达定理,得: 12x x +=k -1,122x x k +=-,由()1212122(2)23x x x x x x -+--+=-,得:()21212423x x x x --+=-,即()21212124423x x x x x x +-+=--,所以,()2142(2)3k k ----+=-,化简,得:24k =,解得:k =±2,因为关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根,所以,△=()214(2)k k ---+=227k k +-〉0,k =-2不符合,所以,k =2故选:D.【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握并灵活运用是解题的关键. 4.C解析:C【解析】【分析】根据二次函数图象上点的坐标特征即可求得.【详解】解:当a>0时,抛物线开口向上,则点(0,1)的对称点为(x0,1),∴x0>4,∴对称轴为x=m中2<m<4,故选C.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,画出草图更直观.5.A解析:A【解析】【分析】设扩大后的正方形绿地边长为xm,根据“扩大后的绿地面积比原来增加300m2”建立方程即可.【详解】设扩大后的正方形绿地边长为xm,根据题意得x(x-20)=300,故选A.【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是弄清题意,并找到等量关系.6.B解析:B【解析】试题分析:由于等腰三角形的一边长3为底或为腰不能确定,故应分两种情况进行讨论:(1)当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一个根,再根据三角形的三边关系判断是否符合题意即可;(2)当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可.试题解析:分两种情况:(1)当其他两条边中有一个为3时,将x=3代入原方程,得:32-12×3+k=0解得:k=27将k=27代入原方程,得:x 2-12x+27=0解得x=3或93,3,9不能组成三角形,不符合题意舍去;(2)当3为底时,则其他两边相等,即△=0,此时:144-4k=0解得:k=36将k=36代入原方程,得:x 2-12x+36=0解得:x=63,6,6能够组成三角形,符合题意.故k 的值为36.故选B .考点:1.等腰三角形的性质;2.一元二次方程的解.7.B解析:B【解析】【分析】根据平均年增长率即可解题.【详解】解:设这两年的年净利润平均增长率为x ,依题意得:()24001640x +=故选B.【点睛】本题考查了一元二次方程的实际应用,属于简单题,熟悉平均年增长率概念是解题关键. 8.A解析:A【解析】【分析】根据二次函数的性质得到抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:∵抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,而A (2,y 1)离直线x =﹣1的距离最远,C (﹣2,y 3)点离直线x =1最近,∴123y y y >>. 故选A .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.9.B解析:B【解析】【分析】先画出树状图得出所有等可能的情况的数量和所需要的情况的数量,再计算所需要情况的概率即得.【详解】解:由题意可画树状图如下:根据树状图可知:两次摸球共有9种等可能情况,其中两次摸出球所标数字之和为奇数的情况有4种,所以两次摸出球所标数字之和为奇数的概率为:49.【点睛】本题考查了概率的求法,能根据题意列出树状图或列表是解题关键.10.A解析:A【解析】【分析】【详解】解:连接OA,OC,过点O作OD⊥AC于点D,∵∠AOC=2∠B,且∠AOD=∠COD=12∠AOC,∴∠COD=∠B=60°;在Rt△COD中,OC=4,∠COD=60°,∴33,∴3.故选A.【点睛】本题考查三角形的外接圆;勾股定理;圆周角定理;垂径定理.11.D解析:D【解析】【分析】根据圆周角定理求出∠AOC,再根据等腰三角形的性质以及三角形的内角和定理即可解决问题.【详解】∵∠ADC=34°,∴∠AOC=2∠ADC=68°.∵OA=OC,∴∠OAC=∠OCA12(180°﹣68°)=56°.故选D.【点睛】本题考查了圆周角定理,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.C解析:C【解析】【分析】连结AC,先由△AGH≌△ADH得到∠GHA=∠AHD,进而得到∠AHD=∠HAP,所以△AHP是等腰三角形,所以PH=PA=PC,所以∠HAC是直角,再在Rt△ABC中由勾股定理求出AC的长,然后由△HAC∽△ADC,根据=求出AH的长,再根据△HAC∽△HDA求出DH的长,进而求得HP和AP的长,最后得到△APH的周长.【详解】∵P是CH的中点,PH=PC,∵AH=AH,AG=AD,且AGH与ADH都是直角,∴△AGH≌△ADH,∴∠GHA=∠AHD,又∵GHA=HAP,∴∠AHD=∠HAP,∴△AHP是等腰三角形,∴PH=PA=PC,∴∠HAC是直角,在Rt△ABC中,AC==10,∵△HAC∽△ADC,∴=,∴AH===7.5,又∵△HAC∽△HAD,=,∴DH=4.5,∴HP==6.25,AP=HP=6.25,∴△APH的周长=AP+PH+AH=6.25+6.25+7.5=20.【点睛】本题主要考查直角三角形的性质以及相似三角形的性质,解题的关键是清楚直角三角形斜边上的中线是斜边的一半以及会运用相似三角形线段成比例求出各边长的长.二、填空题13.8【解析】【分析】首先求出AB的坐标然后根据坐标求出ABCD的长再根据三角形面积公式计算即可【详解】解:∵y=x2﹣2x﹣3设y=0∴0=x2﹣2x﹣3解得:x1=3x2=﹣1即A点的坐标是(﹣10解析:8【解析】【分析】首先求出A、B的坐标,然后根据坐标求出AB、CD的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x﹣3,设y=0,∴0=x2﹣2x﹣3,解得:x1=3,x2=﹣1,即A点的坐标是(﹣1,0),B点的坐标是(3,0),∵y=x2﹣2x﹣3,=(x﹣1)2﹣4,∴顶点C的坐标是(1,﹣4),∴△ABC的面积=12×4×4=8,故答案为8.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中.14.y=05(x-2)+5【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1m)B (4n)∴m=(1﹣2)2+1=1n=(4﹣2)2+1=3∴A(11)B(43)过A作AC∥x轴交B′B的延长线于点解析:y=0.5(x-2)2+5【解析】解:∵函数y=12(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=12(1﹣2)2+1=112,n=12(4﹣2)2+1=3,∴A(1,112),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,112),∴AC=4﹣1=3.∵曲线段AB扫过的面积为12(图中的阴影部分),∴AC•AA′=3AA′=12,∴AA′=4,即将函数y=12(x﹣2)2+1的图象沿y轴向上平移4个单位长度得到一条新函数的图象,∴新图象的函数表达式是y =12(x ﹣2)2+5.故答案为y =0.5(x ﹣2)2+5.点睛:本题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA ′是解题的关键.15.1250cm2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分则两个正方形的边长分别是cmcm 再列出二次函数求其最小值即可【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分列二次解析:1250cm 2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是4x cm ,2004x -cm ,再列出二次函数,求其最小值即可. 【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分,列二次函数得:y =(4x )2+(2004x -)2=18(x ﹣100)2+1250, 由于18>0,故其最小值为1250cm 2, 故答案为:1250cm 2.【点睛】本题考查二次函数的最值问题,解题的关键是根据题意正确列出二次函数.16.2【解析】分析:设方程的另一个根为m 根据两根之和等于-即可得出关于m 的一元一次方程解之即可得出结论详解:设方程的另一个根为m 根据题意得:1+m=3解得:m=2故答案为2点睛:本题考查了根与系数的关系解析:2【解析】分析:设方程的另一个根为m,根据两根之和等于-ba,即可得出关于m的一元一次方程,解之即可得出结论.详解:设方程的另一个根为m,根据题意得:1+m=3,解得:m=2.故答案为2.点睛:本题考查了根与系数的关系,牢记两根之和等于-ba是解题的关键.17.68°【解析】【分析】根据∠AOE的度数求出劣弧的度数得到劣弧的度数根据圆心角弧弦的关系定理解答即可【详解】∵∠AOE=78°∴劣弧的度数为78°∵AB是⊙O的直径∴劣弧的度数为180°﹣78°=1解析:68°【解析】【分析】根据∠AOE的度数求出劣弧¶AE的度数,得到劣弧¶BE的度数,根据圆心角、弧、弦的关系定理解答即可.【详解】∵∠AOE=78°,∴劣弧¶AE的度数为78°.∵AB是⊙O的直径,∴劣弧¶BE的度数为180°﹣78°=102°.∵点C、D是弧BE的三等分点,∴∠COE23=⨯102°=68°.故答案为:68°.【点睛】本题考查了圆心角、弧、弦的关系定理,掌握在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等是解题的关键.18.【解析】【分析】此题可以将原点坐标(00)代入y=x2-3x+3-m求得m的值即可【详解】由于二次函数y=x2-3x+3-m的图象经过原点把(00)代入y=x2-3x+3-m得:3-m=0解得:m=解析:【解析】【分析】此题可以将原点坐标(0,0)代入y=x2-3x+3-m,求得m的值即可.【详解】由于二次函数y=x2-3x+3-m的图象经过原点,把(0,0)代入y=x2-3x+3-m,得:3-m=0,解得:m=3.故答案为3.【点睛】本题考查了二次函数图象上点的坐标特征,通过代入点的坐标即可求解.19.【解析】【分析】根据题意用的面积减去扇形的面积即为所求【详解】由题意可得AB=2BC∠ACB=90°弓形BD与弓形AD完全一样则∠A=30°∠B=∠BCD=60°∵CB=4∴AB=8AC=4∴阴影部解析:8833π-.【解析】【分析】根据题意,用ABCn的面积减去扇形CBD的面积,即为所求.【详解】由题意可得,AB=2BC,∠ACB=90°,弓形BD与弓形AD完全一样,则∠A=30°,∠B=∠BCD=60°,∵CB=4,∴AB=8,AC=43,∴阴影部分的面积为:24436042360π⨯⨯⨯-=8833π-,故答案为:8833π-.【点睛】本题考查不规则图形面积的求法,属中档题.20.85【解析】由于两盏EF距离水面都是8m因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值故有-140x2+10=8即x2=80x1=45x2=-45所以两盏警示灯之间的水平解析:【解析】由于两盏E、F距离水面都是8m,因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值.故有,即,,.所以两盏警示灯之间的水平距离为:三、解答题21.(1)作图见解析;(2)作图见解析;(3)(0,-2).【解析】试题分析:(1)利用旋转的性质得出对应点坐标进而得出答案;(2)利用平移规律得出对应点位置,进而得出答案;(3)利用旋转图形的性质,连接对应点,即可得出旋转中心的坐标.试题解析:(1)如图所示:△A1B1C即为所求;(2)如图所示:△A2B2C2即为所求;(3)旋转中心坐标(0,﹣2).【考点】作图-旋转变换;作图-平移变换.22.(1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1.【解析】试题分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC 的形状;(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.试题解析:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x 1=0,x 2=﹣1.考点:一元二次方程的应用.23.(1) y=-(x-1)2+8;对称轴为:直线x=1;(2) 当<x <时,y >0;(3) C 点坐标为:(-1,4).【解析】【分析】(1)根据待定系数法求二次函数解析式,再用配方法或公式法求出对称轴即可; (2)求出二次函数与x 轴交点坐标即可,再利用函数图象得出x 取值范围;(3)利用正方形的性质得出横纵坐标之间的关系即可得出答案.【详解】(1)∵二次函数y=-x 2+bx+c 的图象经过A (-2,-1),B (0,7)两点.∴1427b c c -=--+⎧⎨=⎩,解得:27b c =⎧⎨=⎩, ∴y=-x 2+2x+7,=-(x 2-2x )+7,=-[(x 2-2x+1)-1]+7,=-(x-1)2+8,∴对称轴为:直线x=1.(2)当y=0,0=-(x-1)2+8,∴x-1=±,x 1x 2,∴抛物线与x 轴交点坐标为:(,0),(,0),∴当<x <时,y >0;(3)当矩形CDEF 为正方形时,假设C 点坐标为(x ,-x 2+2x+7),∴D 点坐标为(-x 2+2x+7+x ,-x 2+2x+7),即:(-x 2+3x+7,-x 2+2x+7),∵对称轴为:直线x=1,D 到对称轴距离等于C 到对称轴距离相等,∴-x 2+3x+7-1=-x+1,解得:x 1=-1,x 2=5(不合题意舍去),x=-1时,-x 2+2x+7=4,∴C 点坐标为:(-1,4).【点睛】此题主要考查了待定系数法求二次函数解析式以及利用图象观察函数值和正方形性质等知识,根据题意得出C 、D 两点坐标之间的关系是解决问题的关键.24.(1)证明见解析;(2)阴影部分面积为43π-【解析】【分析】(1)连接OC,易证∠BCD=∠OCA,由于AB是直径,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切线;(2)设⊙O的半径为r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:AC=23,分别计算△OAC的面积以及扇形OAC的面积即可求出阴影部分面积.【详解】(1)如图,连接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴∠BCD=∠OCA,∵AB是直径,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC是半径,∴CD是⊙O的切线(2)设⊙O的半径为r,∴AB=2r,∵∠D=30°,∠OCD=90°,∴OD=2r,∠COB=60°∴r+2=2r,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=23,易求S△AOC=12×23×1=3S扇形OAC=12044 3603ππ⨯=,∴阴影部分面积为43 3π-.【点睛】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等知识,熟练掌握和灵活运用相关知识是解题的关键.25.(1)A (-2,0),B (4,0),C (0,-8);(2)S △ABC =24【解析】【分析】(1)令y=0可求得相应方程的两根,从而求得A 、B 的坐标;令x=0,可求得C 点坐标. (2)根据A 、B 、C 三点坐标直接可求得△ABC 的面积.【详解】(1)在y =x 2-2x -8,令0x =,可得8y =-,即C 点坐标为(0,8)C -令0y =,得2280x x =-- 解得122,4x x =-=∵A 在B 的左侧∴(2,0),(4,0)A B -(2)∵(2,0),(4,0),(0,8)A B C --∴6,8AB OC ==S △ABC =12AB OC ⋅=1682⨯⨯=24 【点睛】本题考查了抛物线与坐标轴的交点问题,解题的关键在于求出交点坐标.。

2020-2021学年上海市黄浦区九年级数学试卷(一模)(附答案详解)

2020-2021学年上海市黄浦区九年级数学试卷(一模)(附答案详解)

2020-2021学年上海市黄浦区九年级(上)期末数学试卷(一模)一、选择题(本大题共6小题,共24.0分)1.已知△ABC与△DEF相似,又∠A=40°,∠B=60°,那么∠D不可能是()A. 40°B. 60°C. 80°D. 100°2.抛物线y=−x2+4x−3不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.对于锐角α,下列等式中成立的是()A. sinα=cosα⋅tanαB. cosα=tanα⋅cotαC. tanα=cotα⋅sinαD. cotα=sinα⋅cosα4.已知向量a⃗与非零向量e⃗方向相同,且其模为|e⃗|的2倍;向量b⃗ 与e⃗方向相反,且其模|e⃗|的3倍,则下列等式中成立的是()A. a⃗=23b⃗ B. a⃗=−23b⃗ C. a⃗=32b⃗ D. a⃗=−32b⃗5.小明准备画一个二次函数的图象,他首先列表(如下表),但在填写函数值时,不小心把其中一个蘸上了墨水(表中),那么这个被蘸上了墨水的函数值是()x…−10123…y…3430…A. −1B. 3C. 4D. 06.如图,在直角梯形ABCD中,AB//CD,∠BAD=90°,对角线的交点为点O.如果梯形ABCD的两底边长不变,而腰长发生变化,那么下列量中不变的是()A. 点O到边AB的距离B. 点O到边BC的距离C. 点O到边CD的距离D. 点O到边DA的距离二、填空题(本大题共12小题,共48.0分)7.已知三角形的三边长为a、b、c,满足a2=b3=c4,如果其周长为36,那么该三角形的最大边长为______ .8.已知线段MN的长为4,点P是线段MN的黄金分割点,那么较长线段MP的长是______ .9.已知一个直角三角形的两条直角边长分别为3和6,则该三角形的重心到其直角顶点的距离是______ .10.已知一个锐角的正切值比余切值大,且两者之和是31,则这个锐角的正切值为3______ .11.在△ABC中,AB=5,BC=8,∠B=60°,则△ABC的面积是______ .12.已知点P位于第二象限内,OP=5,且OP与x轴负半轴夹角的正切值为2,则点P的坐标是______ .13.如果视线与水平线之间的夹角为36°,那么该视线与铅垂线之间的夹角为______ 度.14.已知二次函数图象经过点(3,4)和(7,4),那么该二次函数图象的对称轴是直线______ .15.如图,一个管道的截面图,其内径(即内圆半径)为10分米,管壁厚为x分米,假设该管道的截面(阴影)面积为y平方分米,那么y关于x的函数解析式是______ .(不必写定义域)16.如图,点D、E、F分别位于△ABC的三边上,且DE//BC,EF//AB,如果△ADE的面积为2,△CEF的面积为8,那么四边形BFED的面积是______ .17.如果抛物线y=x2+(b+3)x+2c的顶点为(b,c),那么该抛物线的顶点坐标是______ .18. 已知一个矩形的两邻边长之比为1:2.5,一条平行于边的直线将该矩形分为两个小矩形,如果所得两小矩形相似,那么这两个小矩形的相似比为______ . 三、解答题(本大题共7小题,共78.0分) 19. 计算:3|tan30°−1|+2cot30∘−1−sin 260°cos 245∘.20. 将二次函数y =x 2+2x +3的图象向右平移3个单位,求所得图象的函数解析式;请结合以上两个函数图象,指出当自变量x 在什么取值范围内时,上述两个函数中恰好其中一个的函数图象是上升的,而另一个的函数图象是下降的.21. 如图,一个3×3的网格,其中点A 、B 、C 、D 、M 、N 、P 、Q 均为网格点.(1)在点M 、N 、P 、Q 中,哪个点和点A 、B 所构成的三角形与△ABC 相似?请说明理由;(2)AB ⃗⃗⃗⃗⃗ =a ⃗ ,BC ⃗⃗⃗⃗⃗ =b ⃗ ,写出向量AD ⃗⃗⃗⃗⃗⃗ 关于a ⃗ 、b ⃗ 的分解式.22.如图,是小明家房屋的纵截面图,其中线段AB为屋内地面,线段AE、BC为房屋两侧的墙,线段CD、DE为屋顶的斜坡.已知AB=6米,AE=BC=3.2米,斜坡CD、DE的坡比均为1:2.(1)求屋顶点D到地面AB的距离;(2)已知在墙AE距离地面1.1米处装有窗ST,如果阳光与地面的夹角∠MNP=β=53°,为了防止阳光通过窗ST照射到屋内,所以小明请门窗公司在墙AE端点E处安装一个旋转式遮阳棚(如图中线段EF),公司设计的遮阳棚可作90°旋转,即0°<∠FET=α≤90°,长度为1.4米,即EF=1.4米.试问:公司设计的遮阳棚是否能达到小明的要求?说说你的理由.(参考数据:√2≈1.41,√3≈1.73,√5≈2.24,√10≈3.16,sin53°=0.8,cos53°=0.6,tan53°=43).23.某班级的“数学学习小组心得分享课”上,小智跟同学们分享了关于梯形的两个正确的研究结论:①如图1,在梯形ABCD中,AD//BC,过对角线交点的直线与两底分别交于点M、N,则AMDM =CNBN;②如图2,在梯形ABCD中,AD//BC,过两腰延长线交点P的直线与两底分别交于点K、L,则AKDK =BLCL.接着小明也跟同学们分享了关于梯形的一个推断:过梯形对角线交点且平行于底边的直线被梯形两腰所截,截得的线段被梯形对角线的交点平分.(1)经讨论,大家都认为小明所给出的推断是正确的.请你结合图示(见答题卷)写出已知、求证,并给出你的证明;(2)小组还出了一个作图题考同学们:只用直尺将图3中两条平行的线段AB、CD 同时平分.请保留作图过程痕迹,并说明你作图方法的正确性(可以直接运用小智和小明得到的正确结论).(注意:请务必在试卷的图示中完成作图草稿,在答题卷上直接用2B铅笔或水笔完成作图,不要涂改.)24.如图,平面直角坐标系内直线y=x+4与x轴、y轴分别交于点A、B,点C是线段OB的中点.(1)求直线AC的表达式;(2)若抛物线y=ax2+bx+c经过点C,且其顶点位于线段OA上(不含端点O、A).①用含b的代数式表示a,并写出1的取值范围;b②设该抛物线与直线y=x+4在第一象限内的交点为点D,试问:△DBC与△DAC能否相似?如果能,请求此时抛物线的表达式;如果不能,请说明理由.25.如图,四边形ABCD中,AB=AD=4,CB=CD=3,∠ABC=∠ADC=90°,点∠BCD,CM、CN与对角线BD分别交M、N是边AB、AD上的动点,且∠MCN=12于点P、Q.(1)求sin∠MCN的值;(2)当DN=DC时,求∠CNM的度数;(3)试问:在点M、N的运动过程中,线段比PQ的值是否发生变化?如不变,请求MN出这个值;如变化,请至少给出两个可能的值,并说明点N相应的位置.答案和解析1.【答案】D【解析】解:∵△ABC∽△DEF,∠A=40°,∠B=60°,∴∠A=∠D=40°或∠B=∠D=60°或∠C=∠D=180°−40°−60°=80°,故选:D.根据相似三角形的性质进行解答即可.本题考查的是相似三角形的性质,关键是相似三角形的对应角相等解答.2.【答案】B【解析】解:y=−x2+4x−3=−(x−2)2+1=−(x−1)(x−3),顶点坐标是(2,1),即函数图象的顶点在第一象限,抛物线与x轴的交点坐标是(1,0),(3,0),当x=0时,y=−3,即与y轴的交点坐标是(0,−3),所以抛物线y=−x2+4x−3的图象不经过第二象限,故选:B.根据函数的解析式求出函数图象的顶点坐标和与坐标轴的交点坐标,再逐个判断即可.本题考查了二次函数的图象和性质,二次函数图象上点的坐标特征,能熟记二次函数的性质是解此题的关键.3.【答案】A【解析】解:如图,在Rt△ABC中,设∠C=90°,∠A=α,∠A、∠B、∠C的对边分别为a、b、c,有sinα=ac ,cosα=bc,tanα=ab,cotα=ba,于是:A.cosα⋅tanα=bc ⋅ab=ac=sinα,因此选项A符合题意;B.tanα⋅cotα=ab ⋅ba=1≠cosα,因此选项B不符合题意;C.cotα⋅sinα=ba ⋅ac=bc=cosα,因此选项C 不符合题意;D.sinα⋅cosα=ac ⋅bc=abc2≠cotα,因此选项D不符合题意;故选:A.根据锐角三角函数的定义,分别验证每个选项的正误即可.本题考查锐角三角函数的定义,理解锐角三角函数的意义是解决问题的关键.4.【答案】Bb⃗ ,观察选项,只有选项B符【解析】解:根据题意知,a⃗=2e⃗,b⃗ =−3e⃗ .则a⃗=−23合题意.故选:B.根据平面向量的性质进行一一判断.此题考查了平面向量的知识.此题比较简单,注意掌握单位向量的知识.5.【答案】D【解析】解:∵x=0、x=2时的函数值都是3相等,=1.∴此函数图象的对称轴为直线x=0+22∴这个被蘸上了墨水的函数值是0,故选:D.由图表可知,x=0和2时的函数值相等,然后根据二次函数的对称性求解即可.本题主要考查了二次函数的应用,二次函数图象上点的坐标特征,熟练掌握二次函数的图象与性质是解题的关键.6.【答案】D【解析】解:如图,以AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系,∵梯形ABCD的两底边长不变,腰长发生变化,∴设AB=3,DC=2,AD=b,∴A(0,0),B(3,0),D(0,b),C(2,b),x,∴直线AC解析式为:y AC=b2直线BC 解析式为:y BD =−b3x +b , ∴{y =b2xy =−b3x +b,解得{ x =65y =35b,∴点O 到边DA 的距离为65, 所以点O 到边DA 的距离不变. 故选:D .以AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,根据梯形ABCD 的两底边长不变,腰长发生变化,可以设AB =3,DC =2,AD =b ,得A(0,0),B(3,0),D(0,b),C(2,b),可得直线AC 和BC 解析式,然后求出交点O 的坐标,进而可得结论. 本题考查了直角梯形,解决本题的关键是掌握直角梯形的性质.7.【答案】16【解析】解:设a2=b3=c4=k ,则a =2k ,b =3k ,c =4k , ∵三角形的周长为36,∴a +b +c =36,即2k +3k +4k =36,解得k =4, ∴a =8,b =12,c =16, 即该三角形的最大边长为16. 故答案为16.设a2=b3=c4=k ,则a =2k ,b =3k ,c =4k ,根据周长的定义得到2k +3k +4k =36,解得k =4,然后计算出a 、b 、c ,从而得到最大边长.本题考查了比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如 a :b =c :d(即ad =bc),我们就说这四条线段是成比例线段,简称比例线段.8.【答案】2√5−2【解析】解:∵线段MN 的长为4,点P 是线段MN 的黄金分割点,MP >NP , ∴MP =√5−12MN =√5−12×4=2√5−2,故答案为:2√5−2.根据黄金分割的概念得到MP =√5−12MN ,把MN =4代入计算即可.本题考查了黄金分割的概念:如果一个点把一条线段分成两条线段,并且较长线段是较短线段和整个线段的比例中项,那么就说这个点把这条线段黄金分割,这个点叫这条线段的黄金分割点;较长线段是整个线段的√5−12倍.9.【答案】2√5【解析】解:∵直角三角形的两条直角边长分别为3和6,∴斜边的长度为√32+62=3√5,∴该三角形的重心到其直角顶点的距离是23×3√5=2√5,故答案为:2√5.先根据勾股定理求出斜边的长度,再利用重心到顶点的距离与重心到对边中点的距离之比为2:1求解可得答案.本题主要考查三角形的重心和勾股定理,解题的关键是掌握重心到顶点的距离与重心到对边中点的距离之比为2:1及勾股定理. 10.【答案】3【解析】解:设这个锐角的正切值为t ,则这个锐角的余切值为1t ,根据题意得t +1t =313,整理得3t 2−10t +3=0,解得t 1=3,t 2=13,经检验t 1=3,t 2=13都为原方程的解,因为一个锐角的正切值比余切值大,所以t =3.即这个锐角的正切值为3.故答案为3.设这个锐角的正切值为t ,根据余切的定义得到这个锐角的余切值为1t ,则t +1t =313,解分式方程得到t 1=3,t 2=13,然后利用锐角的正切值比余切值大确定t 的值. 本题考查了锐角三角函数的定义:在Rt △ABC 中,∠C =90°.锐角A 的对边a 与邻边b 的比叫做∠A 的正切,记作tanA.锐角A 的邻边b 与对边b 的比叫做∠A 的余切,记作cot A .11.【答案】10√3【解析】解:过A作AH⊥BC于H,如图所示:在Rt△ABH中,∠AHB=90°,∠B=60°,AB=5,∴sinB=AHAB,∴AH=AB⋅sinB=5×sin60°=5×√32=5√32,∴S△ABC=12AH⋅BC=12×5√32×8=10√3,故答案为:10√3.首先作过AAH⊥BC,再利用∠B=60°,AB=5,求出AH=5√32,即可得出结果.本题考查了解直角三角形以及三角形面积熟练掌握锐角三角函数定义是解题的关键.12.【答案】(−5,10)【解析】解:过点P作PA⊥x轴于点A,如图所示.∵tanα=2,∴APAO=2,则AP=2AO.∵OP=5,∴由勾股定理知:OP=PA=√PA2+AO2=√4AO2+AO2=5,∴AO=5,∴PA=10,∴点P的坐标为(−5,10).故答案是:(−5,10).过点P作PA⊥x轴于点A,根据OP=5,tanα=2可求出OA、AP的数量关系,再根据勾股定理可求出PA,由此即可得出点P的坐标.本题主要考查了勾股定理和解直角三角形,通过解直角三角形得到AP=2AO是解题的关键.13.【答案】54【解析】解:如图所示:∵视线AB与水平线AD之间的夹角为36°,∴视线AB与铅垂线AC之间的夹角为90°−36°=54°,故答案为:54.根据题意画出图形进而求出即可.本题考查了解直角三角形的应用−仰角俯角问题,解决本题的关键是掌握仰角与俯角的定义.14.【答案】x=5【解析】解:∵二次函数图象经过点(3,4)和(7,4),=5,∴该二次函数的图象对称轴为直线:x=3+72故答案为:x=5.根据二次函数图象具有对称性,由二次函数的图象经过(0,3)、(4,3)两点,可以得到该二次函数的图象对称轴.本题考查二次函数的性质,解题的关键是明确二次函数的性质,二次函数的图象关于对称轴对称.15.【答案】y=πx2+20πx【解析】解:由题意,y=π⋅(10+x)2−π⋅102,∴y=πx2+20πx.故答案为:y=πx2+20πx.根据圆环面积等于大圆面积减去小圆面积,求解即可.本题考查圆的面积,函数关系式等知识,解题的关键是理解题意,灵活运用所学知识解决问题.16.【答案】8【解析】解:∵DE//BC,EF//AB,∴∠AED=∠C,∠ADE=∠B,∠EFC=∠B,∴∠ADE=∠EFC,∴△ADE∽△EFC.∴S△ADES△ABC =(AEAC)2,而S△ADE=2,S△CEF=8,∴AE:EC=1:2,设AE=k,则EC=2k,AC=3k.则AE:AC=k:3k=1:3,设S四边形BFED=S;∵DE//BC,∴△ADE∽△ABC,∴S△ADES△ABC =(AEAC)2=19,即22+8+S =19,解得:S=8,即四边形BFED的面积为8.故答案是:8.证明∠AED=∠C,∠ADE=∠EFC推知△ADE∽△EFC.首先运用相似三角形的性质求出AE:EC的值,进而求出AE:AC的值;设S四边形BFED=S;证明△ADE∽△ABC,列出方程22+8+S,求出S问题即可解决.考查了相似三角形的判定与性质,该题以三角形为载体,以相似三角形的判定及其性质的应用为核心构造而成;解题的关键是灵活运用有关定理来分析、判断、推理或解答.17.【答案】(−1,1)【解析】解:根据顶点公式:b=−b+32×1,解得:b=−1,c=4×2c−(b+3)24×1=8c−44,解得:c=1.所以抛物线的顶点坐标是(−1,1)故答案为:(−1,1).根据二次函数的顶点公式求出b、c的值即可.此题主要考查了根据二次函数的顶点公式求值,熟练记忆二次函数顶点公式是解题关键.18.【答案】2:1或1:2或1:1【解析】解:如图,设AB =a ,AD =2.5a ,AE =x ,则DE =2.5a −x .∵矩形ABFE ∽矩形EDCF ,∴AE EF =EF DE , ∴x a =a 2.5a−x, 整理得,x 2−2.5xa +a 2=0,解得x =2a 或0.5a ,∴矩形ABFE 与矩形EDCF 相似,相似比为2:1或1:2,当E.F 分别是AD ,BC 的中点时,两个矩形全等,也符合题意,相似比:1:1 故答案为:2:1或1:2或1:1.如图,设AB =a ,AD =2.5a ,AE =x ,则DE =2.5a −x.利用相似多边形的性质,构建方程求解,另外两个矩形全等也符合题意.本题考查相似多边形的性质,解题的关键是学会利用参数构建方程求解,属于中考常考题型.19.【答案】解:原式=3(1−√33)+√3−1(√32)2(√22)=3−√3+√3+1−32=52.【解析】直接利用特殊角的三角函数值结合二次根式的性质化简得出答案. 此题主要考查了实数运算以及特殊角的三角函数值,正确化简各数是解题关键. 20.【答案】解:∵y =x 2+2x +3=(x +1)2+2,∴将二次函数y =x 2+2x +3的图象向右平移3个单位,得到函数y =(x +1−3)2+2,即y =(x −2)2+2,∵二次函数y =(x +1)2+2的图象在x >−1时,y 随x 的增大而增大,二次函数y =(x −2)2+2的图象在x <时,y 随x 的增大而减小,∴当−1<x <2时,两个函数中恰好其中一个的函数图象是上升的,而另一个的函数图象是下降的.【解析】根据平移的规律得到平移后的解析式,然后根据二次函数的性质即可求得. 本题考查了二次函数图象与几何变换,熟练掌握二次函数的性质是解题的关键. 21.【答案】解:(1)△NAB∽△ACB .理由:∵AB =√2,BC =1,AC =√5,BN =2,AN =√10,∴NAAC =AB CB =BNBA =√2,∴△NAB∽△ACB .(2)如图,向量AD ⃗⃗⃗⃗⃗⃗ 关于a ⃗ 、b ⃗ 的分向量分别为AN ⃗⃗⃗⃗⃗⃗ ,AM ⃗⃗⃗⃗⃗⃗ ,则AN ⃗⃗⃗⃗⃗⃗ =−3a ⃗ ,AM =2b ⃗ .【解析】(1)利用勾股定理求出三角形的边长,再利用三边成比例两三角形相似证明即可.(2)利用三角形法则求解即可.本题考查相似三角形的判定和性质,平面向量等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【答案】解:(1)连接EC ,则四边形ABCE 是矩形,过点D 作DH ⊥AB ,垂足为H ,交EC 于点G ,∵斜坡CD 、DE 的坡比均为1:2,∴DG EG =12=DGCG ,又∵EG =CG =AH =BH =12AB =3,∴DG =1.5,∴DH =1.5+3.2=4.7(米),即屋顶点D 到地面AB 的距离为4.7米;(2)公司设计的遮阳棚能够达到小明的要求,理由如下:过点S 作MN 的平行线交AB 于R ,过E 作EQ ⊥SR ,垂足为Q ,则∠QES =∠SRA =∠MNP =∠β=53°,在Rt△QES中,ES=AE−AS=3.2−1.1=2.1,∠QES=53°,∴QE=ES⋅cos∠QES=2.1×cos53°=1.26(米),∵1.26<1.4,即QE<EF,∴公司设计的遮阳棚能够达到小明的要求,答:公司设计的遮阳棚能够达到小明的要求.【解析】(1)通过作辅助线,利用斜面的坡比为1:2,求出DH,进而求出DG即可;(2)过点S作MN的平行线交AB于R,过E作EQ⊥SR,在Rt△QES中,求出QE,比较QE与EF的大小即可得出答案.本题考查解直角三角形,理解坡比的意义、构造直角三角形是解决问题的关键.23.【答案】解:(1)已知:如图,四边形ABCD是梯形,AD//BC,AC与BD交于点O,EF经过点O,且EF//BC,求证:OE=OF.证明:∵EF//BC,∴△AEO∽△ABC,△DOF∽△DBC,∴OEBC =AOAC,OFBC=DODB,∵AD//BC,∴AOAC =DODB,∴EOBC =OFBC,∴EO=OF.(2)如图3中,点M,N即为所求作.【解析】(1)写出已知,求证,证明即可.(2)连接CA ,DB ,延长CA 交DB 延长线于点F ,连接AD ,BC 交于点F ,作直线EF 交AB 于点M ,交CD 于点N ,点M ,N 即为所求作.本题考查相似三角形的判定和性质,梯形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.24.【答案】解:(1)∵直线y =x +4与x 轴、y 轴分别交于点A 、B ,∴A(−4,0),B(0,4),∴OA =OB =4,∵BC =OC =2,∴C(0,2),设直线AC 的解析式为y =mx +n ,则有{n =2−4m +n =0, 解得{m =12n =2, ∴直线AC 的解析式为y =12x +2.(2)①由题意,{c =2b 2−4ac =0−4<−b 2a <0, ∴a =18b 2,1>1b >0.②能相似.如图,在Rt △AOC 中,∠AOC =90°,OA =4,OC =2,∴AC =√OA 2+OC 2=√42+22=2√5,∵△△DBC 与△DAC 相似,∠CDB =∠ADC ,∴当∠BCD =∠DAC 时,△DCB∽△DAC ,∴DCDA =CBAC=2√5=√55,∵点D在直线y=x+4上,∴可以假设D(t,t+4),∴√t2+(t+4−2)222=√55,解得t=1或−32(舍弃),经检验,t=1是方程的根,∴D(1,5),∵抛物线y=ax2+bx+2经过D(1,5),∴a+b+2=5,∴a+b=3,∵a=18b2,∴3−b=18b2,∴b2+8b−24=0,∴b=−4+2√10或−4−2√10(舍弃),∴a=7−2√10,∴抛物线的解析式为y=(7−2√10)x2+(−4+2√10)x+2.【解析】(1)求出A,C两点坐标,利用待定系数法解决问题即可.(2)①根据顶点的纵坐标为0,对称轴在线段OA上,构建方程与不等式即可解决问题.②能相似.利用相似三角形的性质构建方程,求出点D的坐标,再利用待定系数法解决问题即可.本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,相似三角形的判定和性质等知识,解题的关键是学会利用参数构建方程或不等式解决问题,属于中考压轴题.25.【答案】解:(1)如图,连接AC交BD于H.∵AB=AD,CB=CD,∴AC垂直平分线段BD,∴BH=DH,∵AB=4,BC=3,∠ABC=90°,∴AC=√AB2+BC2=√42+32=5,∴CB=CD,CH⊥BD,∴∠BCH=∠DCH,∴sin∠BCH=ABAC =45,∵∠MCN=12∠BCD=∠BCH,∴sin∠MCN=45.(2)如图,延长AD到E,使得DE=BM,连接CE.∵BM=DE,∠CBM=∠CDE=90°,BC=DC,∴△CBM≌△CDE(SAS),∴∠BCM=∠DCE,CM=CE,∴∠MCE=∠BCD,∵∠MCN=12∠BCD,∴∠MCN=∠ECN,∵CM=CE,CN=CN,∴△MCN≌△ECN(SAS),∴∠CNM=∠CNE,∵DN=DC,∠NDC=90°,∴∠CND=∠DCN=45°,∴∠CNM=45°.(3)PQMN =35,值不变.理由:∵∠CHD=∠ADC=90°,∴∠ACD+∠CDH=90°,∠ADH+∠CDH=90°,∴∠ACD=∠ADH,∵∠MCN=12∠BCD=∠ACD,∴∠MCN=∠ADH,∵∠PQC=∠NQD,∴∠CPQ=∠QND,∵∠CNE=∠CNM,∴∠CPQ=∠CNM,∵∠PCQ=∠NCM,∴△PCQ∽△CNM,∵△NCM≌△NCE,∴△PCQ∽△NCE,MN=NE,∵CH⊥PQ,CD⊥NE,∴PQNE =CHCD=sin∠CDH,∵∠CDH+∠ADH=90°,∠CAD+∠CDH=90°,∴∠CDH=∠CAD,∴sin∠CDH=sin∠CAD=35.∴PQMN =PQNE=35.【解析】(1)如图,连接AC交BD于H.利用勾股定理求出AC,证明∠MCN=∠ACB即可解决问题.(2)延长AD到E,使得DE=BM,连接CE.证明△MCN≌△ECN(SAS),可得∠CNM=∠CNE,即可解决问题.(3)PQMN =35,值不变.利用相似三角形的相似比等于对应高的比解决问题即可.本题属于四边形综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是理解题意,学会添加常用辅助线,构造构造全等三角形解决问题,属于中考压轴题.第21页,共21页。

_上海市徐汇区2020——2021学年九年级上学期期末数学试卷(一模) 解析版

_上海市徐汇区2020——2021学年九年级上学期期末数学试卷(一模)  解析版

2020-2021学年上海市徐汇区九年级(上)期末数学试卷(一模)一.选择题(本大题共6题,每题4分,满分24分)(下列各题的四个选项中,有且只有一个选项是正确的]1.将抛物线y=2(x+1)2先向右平移3个单位,再向下平移2个单位后.所得抛物线的表达式是()A.y=2(x﹣2)2﹣2B.y=2(x﹣2)2+2C.y=2(x+4)2﹣2D.y=2(x+4)2+22.在Rt△ABC中,∠A=90°,AB=6,BC=10,那么下列结论正确的是()A.tan C=B.cot C=C.sin C=D.cos C=3.已知抛物线y=﹣x2+4x+c经过点(4,3),那么下列各点中,该抛物线必经过的点是()A.(0,2)B.(0,3)C.(0,4)D.(0,5)4.已知海面上一艘货轮A在灯塔B的北偏东30°方向,海监船C在灯塔B的正东方向5海里处,此时海监船C发现货轮A在它的正北方向,那么海监船C与货轮A的距离是()A.10海里B.5海里C.5海里D.海里5.下列说法中,正确的是()A.两个矩形必相似B.两个含45°角的等腰三角形必相似C.两个菱形必相似D.两个含30°角的直角三角形必相似6.定义:[x]表示不超过实数x的最大整数.例如:[1.7]=1,[]=0,[﹣2]=﹣3.根据你学习函数的经验,下列关于函数y=[x]的判断中,正确的是()A.函数y=[x]的定义域是一切整数B.函数y=[x]的图象是经过原点的一条直线C.点(2,2)在函数y=[x]图象上D.函数y=[x]的函数值y随x的增大而增大二、填空题(本大题共12题,每题4分,满分48分)7.如果a:b=2:3,那么代数式的值是.8.如图,AB∥CD∥EF,如果AC=2,CE=3,BD=1.5,那么BF的长是.9.已知点P在线段AB上,如果AP2=AB•BP,AB=4,那么AP的长是.10.已知二次函数y=a(x+)2﹣1的图象在直线x=﹣的左侧部分是下降的,那么a的取值范围是.11.如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,如果△AED和四边形DECB的面积相等,BC=2,那么DE的长是.12.在坡度为i=1:3的山坡上种树,要求株距(相邻两棵树间的水平距离)是6米,那么斜坡上相邻两棵树间的坡面距离是米.13.已知甲、乙两楼相距30米,如果从甲楼底看乙楼顶,测得仰角为45°,从乙楼顶看甲楼顶,测得俯角为30°,那么甲楼高是米.14.如图,点P在线段BC上,AB⊥BC,DP⊥AP,CD⊥DP,如果BC=10,AB=2,tan C =,那么DP的长是.15.如图,已知△ABC是边长为2的等边三角形,正方形DEFG的顶点D、E分别在边AC、AB上,点F、G在边BC上,那么AD的长是.16.《周髀算经》中的“赵爽弦图”(如图),图中的四个直角三角形都全等,如果正方形ABCD 的面积是正方形EFGH面积的13倍,那么∠ABE的余切值是.17.如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,将△ADE沿直线DE翻折后与△FDE重合,DF、EF分别与边BC交于点M、N,如果DE=8,=,那么MN的长是.18.如图,在△ABC中,∠ABC=120°,AB=12,点D在边AC上,点E在边BC上,sin ∠ADE=,ED=5,如果△ECD的面积是6,那么BC的长是.三、(本大题共7感,第19--22题每题10分:第23、24题每题12分;第25题14分:满分78分)19.(10分)计算:sin45°cot45°﹣tan60°+|2cos45°﹣cot30°|.20.(10分)如图,在▱ABCD中,AE平分∠BAD,AE与BD交于点F,AB=1.2,BC=1.8.(1)求BF:DF的值;(2)设=,=.求向量(用向量、表示).21.(10分)已知抛物线y=x2+bx+c与y轴交于点C(0,2),它的顶点为M,对称轴是直线x=﹣1.(1)求此抛物线的表达式及点M的坐标;(2)将上述抛物线向下平移m(m>0)个单位,所得新抛物线经过原点O,设新抛物线的顶点为N,请判断△MON的形状,并说明理由.22.(10分)为加强对市内道路交通安全的监督,王警官利用无人机进行检测.某高架路有一段限速每小时60千米的道路AB(如图所示),当无人机在限速道路的正上方C处时,测得限速道路的起点A的俯角是37°,无人机继续向右水平飞行220米到达D处,此时又测得起点A的俯角是30°,同时测得限速道路终点B的俯角是45°(注:即四边形ABDC是梯形).(1)求限速道路AB的长(精确到1米);(2)如果李师傅在道路AB上行驶的时间是1分20秒,请判断他是否超速?并说明理由.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)23.(12分)如图,在△ACB中,点D、E分别在边BC、AC上,AD=AB,BE=CE,AD 与BE交于点F,且AF•DF=BF•EF.求证:(1)∠ADC=∠BEC;(2)AF•CD=EF•AC.24.(12分)已知二次函数y=ax2﹣2ax+a+4(a<0)的大致图象如图所示,这个函数图象的顶点为点D.(1)求该函数图象的开口方向、对称轴及点D的坐标;(2)设该函数图象与y轴正半轴交于点C,与x轴正半轴交于点B,图象的对称轴与x 轴交于点A,如果DC⊥BC,tan∠DBC=,求该二次函数的解析式;(3)在(2)的条件下,设点M在第一象限该函数的图象上,且点M的横坐标为t(t >1),如果△ACM的面积是,求点M的坐标.25.(14分)如图,在Rt△ABC中,∠ACB=90°,AC=12,BC=5,点D是边AC上的动点,以CD为边在△ABC外作正方形CDEF,分别联结AE、BE,BE与AC交于点G (1)当AE⊥BE时,求正方形CDEF的面积;(2)延长ED交AB于点H,如果△BEH和△ABG相似,求sin∠ABE的值;(3)当AG=AE时,求CD的长.2020-2021学年上海市徐汇区九年级(上)期末数学试卷(一模)参考答案与试题解析一.选择题(本大题共6题,每题4分,满分24分)(下列各题的四个选项中,有且只有一个选项是正确的]1.将抛物线y=2(x+1)2先向右平移3个单位,再向下平移2个单位后.所得抛物线的表达式是()A.y=2(x﹣2)2﹣2B.y=2(x﹣2)2+2C.y=2(x+4)2﹣2D.y=2(x+4)2+2【分析】先确定抛物线y=2(x+1)2的顶点坐标为(﹣1,0),再根据点平移的规律得到把点(﹣1,0)平移后得到对应点的坐标为(2,﹣2),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=2(x+1)2的顶点坐标为(﹣1,0),把点(﹣1,0)先向右平移3个单位,再向下平移2个单位后得到的点的坐标为(2,﹣2),所以平移后的抛物线的解析式为y=2(x﹣2)2﹣2.故选:A.2.在Rt△ABC中,∠A=90°,AB=6,BC=10,那么下列结论正确的是()A.tan C=B.cot C=C.sin C=D.cos C=【分析】画出相应的图形,根据勾股定理和锐角三角函数的意义求解后,再做出判断即可.【解答】解:如图,由勾股定理得,AC===8,∴tan C===,cot C===,sin C===,cos C===,因此选项D符合题意,故选:D.3.已知抛物线y=﹣x2+4x+c经过点(4,3),那么下列各点中,该抛物线必经过的点是()A.(0,2)B.(0,3)C.(0,4)D.(0,5)【分析】先根据待定系数法求得抛物线的解析式,然后计算出自变量为0所对应的函数值,再根据二次函数图象上点的坐标特征进行判断.【解答】解:∵抛物线y=﹣x2+4x+c经过点(4,3),∴﹣16+16+c=3,∴c=3,∴抛物线为y=﹣x2+4x+3,当x=0时,y=﹣x2+4x+3=3;所以点(0,3)在抛物线y=﹣x2+4x+3上.故选:B.4.已知海面上一艘货轮A在灯塔B的北偏东30°方向,海监船C在灯塔B的正东方向5海里处,此时海监船C发现货轮A在它的正北方向,那么海监船C与货轮A的距离是()A.10海里B.5海里C.5海里D.海里【分析】如图,在Rt△ABC中,∠ABC=90°﹣30°=60°,BC=5海里,根据三角函数的定义即可得到结论.【解答】解:如图,在Rt△ABC中,∠ABC=90°﹣30°=60°,BC=5海里,∴AC=BC•tan60°=5(海里),即海监船C与货轮A的距离是5海里,故选:B.5.下列说法中,正确的是()A.两个矩形必相似B.两个含45°角的等腰三角形必相似C.两个菱形必相似D.两个含30°角的直角三角形必相似【分析】直接利用相似图形的判定方法得出答案.【解答】解:A、两个矩形对应边不一定成比例,故此选项错误;B、两个含45°角的等腰三角形,45°不一定是对应角,故不一定相似,故此选项错误;C、两个菱形的对应角不一定相等,不一定相似,故此选项错误;D、两个含30°角的直角三角形必相似,故此选项正确.故选:D.6.定义:[x]表示不超过实数x的最大整数.例如:[1.7]=1,[]=0,[﹣2]=﹣3.根据你学习函数的经验,下列关于函数y=[x]的判断中,正确的是()A.函数y=[x]的定义域是一切整数B.函数y=[x]的图象是经过原点的一条直线C.点(2,2)在函数y=[x]图象上D.函数y=[x]的函数值y随x的增大而增大【分析】根据题意,可以判断各个选项中的说法是否正确,从而可以解答本题.【解答】解:由题意可得,函数y=[x]的定义域是一切实数,故选项A错误;函数y=[x]的图象是分段函数,故选项B错误;点(2,2)在函数y=[x]图象上,故选项C正确;函数y=[x]的函数值y随x的增大不一定增大,如x=1.2时,y=[1.2]=1,x=1.5时,y =[1.5]=1,即x=1.2和x=1.5时的函数值相等,故选项D错误;故选:C.二、填空题(本大题共12题,每题4分,满分48分)7.如果a:b=2:3,那么代数式的值是.【分析】根据已知条件得出=,再把要求的式子化成=﹣1,然后代值计算即可.【解答】解:∵a:b=2:3,∴=,∴=﹣1=﹣1=.故答案为:.8.如图,AB∥CD∥EF,如果AC=2,CE=3,BD=1.5,那么BF的长是.【分析】根据平行线分线段成比例定理解答即可.【解答】解:∵AB∥CD∥EF,AC=2,CE=3,BD=1.5,∴,即,解得:BF=,故答案为:.9.已知点P在线段AB上,如果AP2=AB•BP,AB=4,那么AP的长是2﹣2.【分析】先证出点P是线段AB的黄金分割点,再由黄金分割点的定义得到AP=AB,把AB=4代入计算即可.【解答】解:∵点P在线段AB上,AP2=AB•BP,∴点P是线段AB的黄金分割点,AP>BP,∴AP=AB=×4=2﹣2,故答案为:2﹣2.10.已知二次函数y=a(x+)2﹣1的图象在直线x=﹣的左侧部分是下降的,那么a的取值范围是a>0.【分析】根据题目中的函数解析式和二次函数的性质,可以得到a的取值范围,本题得以解决.【解答】解:∵二次函数y=a(x+)2﹣1,∴该函数的对称轴为直线x=﹣,∵二次函数y=a(x+)2﹣1的图象在直线x=﹣的左侧部分是下降的,∴a>0,故答案为:a>011.如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,如果△AED和四边形DECB的面积相等,BC=2,那么DE的长是2.【分析】先根据题意得到=,再证明△ADE∽△ABC,利用相似三角形的性质得=()2=,然后利用比例的性质可求出DE的长.【解答】解:∵△AED和四边形DECB的面积相等,∴=,∵DE∥BC,∴△ADE∽△ABC,∴=()2=,即=,∴DE=2.故答案为2.12.在坡度为i=1:3的山坡上种树,要求株距(相邻两棵树间的水平距离)是6米,那么斜坡上相邻两棵树间的坡面距离是2米.【分析】根据坡度的定义,利用勾股定理即可解决问题.【解答】解:如图,过B作BC⊥AD于C,∵山坡AB的坡度为i=1:3,株距(相邻两棵树间的水平距离)是6米,∴水平距离AC=6米,铅垂高度BC=2米,∴斜坡上相邻两树间的坡面距离AB==2(米),故答案为:2.13.已知甲、乙两楼相距30米,如果从甲楼底看乙楼顶,测得仰角为45°,从乙楼顶看甲楼顶,测得俯角为30°,那么甲楼高是(30﹣10)米.【分析】过C作CE⊥AB于E,先由矩形和含30°角的直角三角形的性质求出AE的长,再由等腰直角三角形的性质求出AB的长,即可得出结果.【解答】解:如图,甲楼为CD、乙楼为AB,BD=30米,∠ADB=45°,∠CAF=30°,过C作CE⊥AB于E,则四边形BDCE为矩形,CE∥AF,∴CE=BD=30米,CD=BE,∠ACE=∠CAF=30°,∴AE=CE=10(米),在Rt△ABD中,∠ADB=45°,∴△ABD为等腰直角三角形,∴BD=AB=30米,∴CD=BE=AB﹣AE=(30﹣10)米,即甲楼的高为(30﹣10)米,故答案为:(30﹣10).14.如图,点P在线段BC上,AB⊥BC,DP⊥AP,CD⊥DP,如果BC=10,AB=2,tan C=,那么DP的长是.【分析】由DP⊥AP,CD⊥DP,得AP∥CD,则∠C=∠APB,由tan∠APB=,求得BP=4,PC=6,在Rt△CDP中,tan C=,CD=,得出=,即可得出结果.【解答】解:∵DP⊥AP,CD⊥DP,∴AP∥CD,∴∠C=∠APB,∵AB⊥BC,∴tan∠APB=,∵tan C=,∴=,∴BP=4,∴PC=BC﹣BP=10﹣4=6,在Rt△CDP中,tan C=,CD==,∴=,解得:DP=或DP=﹣(不合题意舍去),故答案为:.15.如图,已知△ABC是边长为2的等边三角形,正方形DEFG的顶点D、E分别在边AC、AB上,点F、G在边BC上,那么AD的长是4﹣6.【分析】过A点作AM⊥BC于M,交DE于N,如图,根据等边三角形的性质得到∠C =∠CAB=60°,CM=BM=BC=1,利用含30度的直角三角形三边的关系得到AM =,设正方形DEFG的边长为x,则DG=DE=x,MN=DG=x,AN=﹣x,接着证明△ADE∽△ACB,利用相似三角形的性质得=,解得x=4﹣6,然后证明△ADE为等边三角形,从而得到AD=DE.【解答】解:过A点作AM⊥BC于M,交DE于N,如图,∵△ABC为等边三角形,∴∠C=∠CAB=60°,CM=BM=BC=1,∴AM=CM=,设正方形DEFG的边长为x,则DG=DE=x,易得四边形DGMN为矩形,∴MN=DG=x,∴AN=AM﹣MN=﹣x,∵DE∥BC,∴△ADE∽△ACB,∴=,即=,解得x=4﹣6,∵DE∥BC,∴∠ADE=∠C=60°,∴△ADE为等边三角形,∴AD=DE=4﹣6.故答案为4﹣6.16.《周髀算经》中的“赵爽弦图”(如图),图中的四个直角三角形都全等,如果正方形ABCD 的面积是正方形EFGH面积的13倍,那么∠ABE的余切值是.【分析】小正方形EFGH面积是a2,则大正方形ABCD的面积是13a2,则小正方形EFGH 边长是a,则大正方形ABCD的边长是a,设AE=BF=x,利用勾股定理求出x,最后利用熟记函数即可解答.【解答】解:设小正方形EFGH面积是a2,则大正方形ABCD的面积是13a2,∴小正方形EFGH边长是a,则大正方形ABCD的边长是a,∵图中的四个直角三角形是全等的,∴AE=BF,设AE=BF=x,在Rt△AEB中,AB2=AE2+BE2,即13a2=x2+(x+a)2解得:x1=2a,x2=﹣3a(舍去),∴AE=2a,BE=3a,∴∠ABE的余切值=,故答案为:.17.如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,将△ADE沿直线DE翻折后与△FDE重合,DF、EF分别与边BC交于点M、N,如果DE=8,=,那么MN的长是4.【分析】先根据折叠的性质得DA=DF,∠ADE=∠FDE,再根据平行线的性质和等量代换得到∠B=∠BMD,则DB=DM,接着利用比例的性质得到FM=DM,然后证明△FMN∽△FDE,从而利用相似比可计算出MN的长.【解答】解:∵△ADE沿直线DE翻折后与△FDE重合,∴DA=DF,∠ADE=∠FDE,∵DE∥BC,∴∠ADE=∠B,∠FDE=∠BMD,∴∠B=∠BMD,∴DB=DM,∵=,∴=2,∴=2,∴FM=DM,∵MN∥DE,∴△FMN∽△FDE,∴==,∴MN=DE=×8=4.故答案为4.18.如图,在△ABC中,∠ABC=120°,AB=12,点D在边AC上,点E在边BC上,sin ∠ADE=,ED=5,如果△ECD的面积是6,那么BC的长是9﹣6.【分析】如图,过点E作EF⊥BC于F,过点A作AH⊥CB交CB的延长线于H.解直角三角形求出BH,CH即可解决问题.【解答】解:如图,过点E作EF⊥BC于F,过点A作AH⊥CB交CB的延长线于H.∵∠ABC=120°,∴∠ABH=180°﹣∠ABC=60°,∵AB=12,∠H=90°,∴BH=AB•cos60°=6,AH=AB•sin60°=6,∵EF⊥DF,DE=5,∴sin∠ADE==,∴EF=4,∴DF===3,∵S△CDE=6,∴•CD•EF=6,∴CD=3,∴CF=CD+DF=6,∵tan C==,∴=,∴CH=9,∴BC=CH﹣BH=9﹣6.故答案为:9﹣6.三、(本大题共7感,第19--22题每题10分:第23、24题每题12分;第25题14分:满分78分)19.(10分)计算:sin45°cot45°﹣tan60°+|2cos45°﹣cot30°|.【分析】直接利用特殊角的三角函数值分别化简得出答案.【解答】解:原式=×1﹣+|2×﹣|=﹣+﹣=﹣.20.(10分)如图,在▱ABCD中,AE平分∠BAD,AE与BD交于点F,AB=1.2,BC=1.8.(1)求BF:DF的值;(2)设=,=.求向量(用向量、表示).【分析】(1)由平行四边形的性质得DC∥AB,从而△ABF∽△EDF,利用相似三角形的性质得比例式,从而解得BF:DF;(2)先求出BF=BD,再利用向量的加法可得答案.【解答】解:(1)∵AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BEA=∠DAE,∴∠BAE=∠BEA,∴AB=BE=1.2,∵BC∥AD,∴△BEF∽△DAF,∴,∴;(2)∵BF:DF=2:3,∴DF=BD,∵=﹣,∴=,∴=﹣.21.(10分)已知抛物线y=x2+bx+c与y轴交于点C(0,2),它的顶点为M,对称轴是直线x=﹣1.(1)求此抛物线的表达式及点M的坐标;(2)将上述抛物线向下平移m(m>0)个单位,所得新抛物线经过原点O,设新抛物线的顶点为N,请判断△MON的形状,并说明理由.【分析】(1)根据待定系数法即可求得抛物线的解析式,然后化成顶点式求得顶点M的坐标;(2)设新抛物线的解析式为y=(x+1)2+1﹣m,把(0,0)代入求得m的值,即可根据平移的原则得到顶点N的坐标,根据勾股定理求得OM2=ON2=2,MN2=4,即可得到结论.【解答】解:(1)∵抛物线y=x2+bx+c与y轴交于点C(0,2),对称轴是直线x=﹣1.∴,解得,∴抛物线的表达式为y=x2+2x+2,∵y=x2+2x+2=(x+1)2+1,∴顶点M(﹣1,1);(2)∵抛物线向下平移m(m>0)个单位,所得新抛物线经过原点O,∴设新抛物线的解析式为y=(x+1)2+1﹣m,把(0,0)代入得,0=1+1﹣m,∴m=2,∴顶点N为(﹣1,﹣1),∵M(﹣1,1),∴OM2=(﹣1)2+12=2,ON2=(﹣1)2+(﹣1)2=2,MN2=22=4,∴OM=ON,OM2=(﹣1)2+ON2=MN2,∴△MON是等腰直角三角形.22.(10分)为加强对市内道路交通安全的监督,王警官利用无人机进行检测.某高架路有一段限速每小时60千米的道路AB(如图所示),当无人机在限速道路的正上方C处时,测得限速道路的起点A的俯角是37°,无人机继续向右水平飞行220米到达D处,此时又测得起点A的俯角是30°,同时测得限速道路终点B的俯角是45°(注:即四边形ABDC是梯形).(1)求限速道路AB的长(精确到1米);(2)如果李师傅在道路AB上行驶的时间是1分20秒,请判断他是否超速?并说明理由.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)【分析】(1)由三角函数定义求出AE、AB,即可得出答案;(2)求出该汽车的速度,即可得出结论.【解答】解:(1)根据题意,得∠CAB=37°,CD=220米,∠DAB=30°,∠DBA=45°,如图,过点C和点D作CE和DF垂直于AB于点E和F,∵CD∥AB,∴四边形CDFE是矩形,∴CE=DF,CD=EF,∵∠DBA=45°,∴DF=BF,设DF=BF=CE=x米,在Rt△ADF中,∠DAF=30°,DF=x米,∴AF=DF=x(米),∴AE=AF﹣EF=(x﹣220)米,在Rt△AEC中,∠CAE=37°,∵CE=AE•tan37°,∴x=(x﹣220)×0.75,解得x=60(3+4)=(180+240)米,∴AE=x﹣220=(320+240)米,FB=x=(180+240)(米),∴AB=AE+EF+FB=320+240+220+180+240=780+420≈1507(米),答:限速道路AB的长约为1507米;(2)∵1分20秒=小时,∴该汽车的速度约为:1507÷≈67.8km/h>60km/h,∴该车超速.23.(12分)如图,在△ACB中,点D、E分别在边BC、AC上,AD=AB,BE=CE,AD 与BE交于点F,且AF•DF=BF•EF.求证:(1)∠ADC=∠BEC;(2)AF•CD=EF•AC.【分析】(1)利用AF•DF=BF•EF和∠AFE=∠BFD可判断△AFE∽△BFD,所以∠AEF =∠BDF,然后根据等角的补角相等得到结论;(2)由△AFE∽△BFD得到∠EAF=∠FBD,∠AEF=∠BDF,再证明∠EAF=∠C,∠ABC=∠AEF,于是可证明△AEF∽△CBA,利用相似比得到=,然后证明AD=AB=CD,从而得到结论.【解答】证明:(1)∵AF•DF=BF•EF,∴=,而∠AFE=∠BFD,∴△AFE∽△BFD,∴∠AEF=∠BDF,∵∠AEF+∠BEC=180°,∠BDF+∠ADC=180°,∴∠ADC=∠BEC;(2)∵△AFE∽△BFD,∴∠EAF=∠FBD,∠AEF=∠BDF,∵EB=EC,AB=AD,∴∠EBC=∠C,∠ADB=∠ABD,∴∠EAF=∠C,∠ABC=∠AEF,∴△AEF∽△CBA,∴=,∴EF•AC=AB•AF∵∠DAC=∠C,∴AD=CD,∴AB=AD=CD,∴EF•AC=CD•AF,即AF•CD=EF•AC.24.(12分)已知二次函数y=ax2﹣2ax+a+4(a<0)的大致图象如图所示,这个函数图象的顶点为点D.(1)求该函数图象的开口方向、对称轴及点D的坐标;(2)设该函数图象与y轴正半轴交于点C,与x轴正半轴交于点B,图象的对称轴与x 轴交于点A,如果DC⊥BC,tan∠DBC=,求该二次函数的解析式;(3)在(2)的条件下,设点M在第一象限该函数的图象上,且点M的横坐标为t(t >1),如果△ACM的面积是,求点M的坐标.【分析】(1)用配方法配成顶点式,即可得出结论;(2)先判断出△CDH∽△BCO,得出,求出OC=3,即可得出结论;(3)连接OM,利用三角形的面积的和差,建立方程求解,即可得出结论.【解答】解:(1)∵y=ax2﹣2ax+a+4=a(x2﹣2x+1)+4=a(x﹣1)2+4,∴抛物线的对称轴为直线x=1,顶点D(1,4),∵a<0,∴抛物线的开口向下;(2)由(1)知,抛物线的对称轴为x=1,∴A(1,0),对于y=ax2﹣2ax+a+4,令x=0,则y=a+4,∴C(0,a+4),如图1,过点D作DH⊥y轴于H,∴∠CDH+∠DCH=90°,∵DC⊥BC,∴∠BCD=90°,∴∠DCH+∠OCB=90°,∴∠CDH=∠BCO,∵∠BOC=∠CHD=90°,∴△CDH∽△BCO,∴,在Rt△BDC中,tan∠DBC=,∵D(1,4),∴DH=1,∴,∴CO=3,∴a+4=3,∴a=﹣1,∴二次函数的解析式为y=﹣x2+2x+3;(3)如图2,由(2)知,a=﹣1,∴C(0,3),∴OC=3,连接OM,设点M的横坐标为t(t>1),∴点M的纵坐标为﹣t2+2t+3,∵△ACM的面积是,∴S△ACM=S△OCM+S△OAM﹣S△AOC=×3t+×1×(﹣t2+2t+3)﹣×1×3=,∴t=,∴M(,).25.(14分)如图,在Rt△ABC中,∠ACB=90°,AC=12,BC=5,点D是边AC上的动点,以CD为边在△ABC外作正方形CDEF,分别联结AE、BE,BE与AC交于点G (1)当AE⊥BE时,求正方形CDEF的面积;(2)延长ED交AB于点H,如果△BEH和△ABG相似,求sin∠ABE的值;(3)当AG=AE时,求CD的长.【分析】(1)证明△ADE≌△BFE(ASA),推出AD=BF,构建方程求出CD即可.(2)过点A作AM⊥BE于M,想办法求出AB,AM即可解决问题.(3)如图3中,延长CA到N,使得AN=AG.设CD=DE=EF=CF=x,则AD=12﹣x,DN=BF=5+x,在Rt△ADE中,利用勾股定理求出x即可解决问题.【解答】解:(1)如图1中,∵四边形ABCD是正方形,∴CD=DE=EF=CF,∠CDE=∠DEF=∠F=90°,∵AE⊥BE,∴∠AEB=∠DEF=90°,∴∠AED=∠BEF,∵∠ADE=∠F=90°,DE=FE,∴△ADE≌△BFE(ASA),∴AD=BF,∴AD=5+CF=5+CD,∵AC=CD+AD=12,∴CD+5+CD=12,∴CD=,∴正方形CDEF的面积为.(2)如图2中,∵∠ABG=∠EBH,∴当∠BAG=∠BEH=∠CBG时,△ABG∽△EBH,∵∠BCG=∠ACB,∠CBG=∠BAG,∴△CBG∽△CAB,∴CB2=CG•CA,∴CG=,∴BG===,∴AG=AC﹣CG=,过点A作AM⊥BE于M,∵∠BCG=∠AMG=90°,∠CGB=∠AGM,∴∠GAM=∠CBG,∴cos∠GAM=cos∠CBG===,∴AM=,∵AB===13,∴sin∠ABM==.(3)如图3中,延长CA到N,使得AN=AG.∵AE=AG=AN,∴∠GEN=90°,由(1)可知,△NDE≌△BFR,∴ND=BF,设CD=DE=EF=CF=x,则AD=12﹣x,DN=BF=5+x,∴AN=AE=5+x﹣(12﹣x)=2x﹣7,在Rt△ADE中,∵AE2=AD2+DE2,∴x2+(12﹣x)2=(2x﹣7)2,∴x=1+或1﹣(舍弃),∴CD=1+.。

2020年初三数学上期末一模试题(带答案)

2020年初三数学上期末一模试题(带答案)

2020年初三数学上期末一模试题(带答案)一、选择题1.若二次函数y =ax 2+1的图象经过点(-2,0),则关于x 的方程a (x -2)2+1=0的实数根为( ) A .1x 0=,2x 4= B .1x 2=-,2x 6= C .13x 2=,25x 2= D .1x 4=-,2x 0=2.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,BC 与⊙O 交于点D ,连结OD .若50C ∠=︒,则∠AOD 的度数为( )A .40︒B .50︒C .80︒D .100︒3.如图,AB 是圆O 的直径,CD 是圆O 的弦,若35C ∠=︒,则ABD ∠=( )A .55︒B .45︒C .35︒D .65︒4.如图,Rt △ABC 中,∠ABC =90°,AB =8cm ,BC =6cm ,分别以A 、C 为圆心,以2AC的长为半径作圆,将Rt △ABC 截去两个扇形,则剩余(阴影)部分面积为( )A .(24−254π)cm 2 B .254πcm 2C .(24−54π)cm 2D .(24−256π)cm 2 5.如图,在△ABC 中,∠CAB=65°,在同一平面内,将△ABC 绕点A 旋转到△AB′C′的位置,使得CC′∥AB ,则∠BAB′的度数为( )A .25°B .30°C .50°D .55°6.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x k =-++上的三点,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .231y y y >>D .312y y y >>7.抛物线2y ax bx c =++经过点(1,0),且对称轴为直线1x =-,其部分图象如图所示.对于此抛物线有如下四个结论:①abc <0; ②20a b +=;③9a-3b+c=0;④若0m n >>,则1x m =-时的函数值小于1x n =-时的函数值.其中正确结论的序号是( )A .①③B .②④C .②③D .③④ 8.若抛物线y =kx 2﹣2x ﹣1与x 轴有两个不同的交点,则k 的取值范围为( )A .k >﹣1B .k ≥﹣1C .k >﹣1且k ≠0D .k ≥﹣1且k ≠09.若关于x 的一元二次方程()26230a x x --+=有实数根,则整数a 的最大值是( ) A .4B .5C .6D .710.已知二次函数y =ax 2+bx+c 中,y 与x 的部分对应值如下: x 1.1 1.2 1.3 1.4 1.5 1.6 y﹣1.59﹣1.16﹣0.71﹣0.240.250.76则一元二次方程ax 2+bx+c =0的一个解x 满足条件( ) A .1.2<x <1.3 B .1.3<x <1.4 C .1.4<x <1.5 D .1.5<x <1.6 11.正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是( ) A .36° B .54°C .72°D .108°12.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为点P ,若CD =AP =8,则⊙O 的直径为( )A .10B .8C .5D .3二、填空题13.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB =8,CD =2,则EC 的长为_______.14.抛物线y=2(x −3)2+4的顶点坐标是__________________.15.设a 、b 是方程220190x x +-=的两个实数根,则()()11a b --的值为_____. 16.如图,抛物线y =﹣2x 2+2与x 轴交于点A 、B ,其顶点为E .把这条抛物线在x 轴及其上方的部分记为C 1,将C 1向右平移得到C 2,C 2与x 轴交于点B 、D ,C 2的顶点为F ,连结EF .则图中阴影部分图形的面积为______.17.已知x=2是关于x 的一元二次方程kx 2+(k 2﹣2)x+2k+4=0的一个根,则k 的值为_____.18.袋中装有6个黑球和n 个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为34”,则这个袋中白球大约有_____个. 19.某地区2017年投入教育经费2 500万元,2019年计划投入教育经费3 025万元,则2017年至2019年,该地区投入教育经费的年平均增长率为_____.20.廊桥是我国古老的文化遗产如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是______米精确到1米三、解答题21.有四张完全相同的卡片,正面分别写有四个角度现将这四张卡片洗匀后,背面朝上;(1)若从中任意抽取一张,求抽到锐角卡片的概率;(2)若从中任意抽取两张,求抽到两张角度恰好互余卡片的概率;22.某童装店购进一批20元/件的童装,由销售经验知,每天的销售量y(件)与销售单价x(元)之间存在如图的一次函数关系.(1)求y与x之间的函数关系;(2)当销售单价定为多少时,每天可获得最大利润,最大利润是多少?23.如图,以矩形ABCD的边CD为直径作⊙O,点E是AB的中点,连接CE交⊙O于点F,连接AF并延长交BC于点H.(1)若连接AO,试判断四边形AECO的形状,并说明理由;(2)求证:AH是⊙O的切线;(3)若AB=6,CH=2,则AH的长为.24.汽车产业的发展,有效促进我国现代建设.某汽车销售公司2007年盈利3000万元,到2009年盈利4320万元,且从2007年到2009年,每年盈利的年增长率相同,该公司2008年盈利多少万元?25.已知抛物线y =x 2-2x -8与x 轴的两个交点为A ,B (A 在B 的左侧),与y 轴交于点C .(1)直接写出点A ,B ,C 的坐标; (2)求△ABC 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】二次函数y=ax 2+1的图象经过点(-2,0),得到4a+1=0,求得a=-,代入方程a (x-2)2+1=0即可得到结论.【详解】解:∵二次函数y=ax 2+1的图象经过点(-2,0), ∴4a+1=0, ∴a=-14, ∴方程a (x-2)2+1=0为:方程-(x-2)2+1=0,解得:x 1=0,x 2=4, 故选:A . 【点睛】本题考查了二次函数与x 轴的交点问题,二次函数图象上点的坐标特征,一元二次方程的解,正确的理解题意是解题的关键.2.C解析:C 【解析】 【分析】由AC 是⊙O 的切线可得∠CAB=90︒,又由50C ∠=︒,可得∠ABC=40︒;再由OD=OB ,则∠BDO=40︒最后由∠AOD=∠OBD+∠OBD 计算即可. 【详解】解:∵AC 是⊙O 的切线 ∴∠CAB=90︒, 又∵50C ∠=︒ ∴∠ABC=90︒-50︒=40︒ 又∵OD=OB∴∠BDO=∠ABC=40︒ 又∵∠AOD=∠OBD+∠OBD ∴∠AOD=40︒+40︒=80︒ 故答案为C. 【点睛】本题考查了圆的切线的性质、等腰三角形以及三角形外角的概念.其中解题关键是运用圆的切线垂直于半径的性质.3.A解析:A 【解析】 【分析】根据同弧所对的圆周角相等可得35BAD C =∠=︒∠,再根据圆直径所对的圆周角是直角,可得90ADB ∠=︒,再根据三角形内角和定理即可求出ABD ∠的度数. 【详解】 ∵35C ∠=︒∴35BAD C =∠=︒∠ ∵AB 是圆O 的直径 ∴90ADB ∠=︒∴18055ABD ADB BAD =︒--=︒∠∠∠ 故答案为:A . 【点睛】本题考查了圆内接三角形的角度问题,掌握同弧所对的圆周角相等、圆直径所对的圆周角是直角、三角形内角和定理是解题的关键.4.A解析:A 【解析】 【分析】利用勾股定理得出AC 的长,再利用图中阴影部分的面积=S △ABC −S 扇形面积求出即可. 【详解】解:在Rt △ABC 中,∠ABC =90°,AB =8cm ,BC =6cm ,∴10AC ===cm ,则2AC=5 cm ,∴S 阴影部分=S △ABC −S 扇形面积=2190525862423604ππ⨯⨯⨯-=-(cm 2), 故选:A . 【点睛】本题考查了扇形的面积公式,阴影部分的面积可以看作是Rt △ABC 的面积减去两个扇形的面积.求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.5.C解析:C 【解析】试题解析:∵CC′∥AB , ∴∠ACC′=∠CAB=65°,∵△ABC 绕点A 旋转得到△AB′C′, ∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°, ∴∠CAC′=∠BAB′=50°. 故选C .6.A解析:A 【解析】 【分析】根据二次函数的性质得到抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,然后根据三个点离对称轴的远近判断函数值的大小. 【详解】解:∵抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,而A (2,y 1)离直线x =﹣1的距离最远,C (﹣2,y 3)点离直线x =1最近,∴123y y y >>. 故选A . 【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.7.D解析:D 【解析】 【分析】①根据抛物线开口方向、对称轴、与y 轴的交点即可判断; ②根据抛物线的对称轴方程即可判断;③根据抛物线y =ax 2+bx +c 经过点(1,0),且对称轴为直线x =﹣1可得抛物线与x 轴的另一个交点坐标为(﹣3,0),即可判断;④根据m >n >0,得出m ﹣1和n ﹣1的大小及其与﹣1的关系,利用二次函数的性质即可判断.解:①观察图象可知: a <0,b <0,c >0,∴abc >0, 所以①错误;②∵对称轴为直线x =﹣1,即﹣2ba=﹣1,解得b =2a ,即2a ﹣b =0, 所以②错误;③∵抛物线y =ax 2+bx +c 经过点(1,0),且对称轴为直线x =﹣1, ∴抛物线与x 轴的另一个交点为(﹣3,0), 当a =﹣3时,y =0,即9a ﹣3b +c =0, 所以③正确; ∵m >n >0, ∴m ﹣1>n ﹣1>﹣1,由x >﹣1时,y 随x 的增大而减小知x =m ﹣1时的函数值小于x =n ﹣1时的函数值,故④正确; 故选:D . 【点睛】本题考查了二次函数图象与系数的关系,解决本题的关键是掌握二次函数的图象和性质及点的坐标特征.8.C解析:C 【解析】 【分析】根据抛物线y =kx 2﹣2x ﹣1与x 轴有两个不同的交点,得出b 2﹣4ac >0,进而求出k 的取值范围. 【详解】∵二次函数y =kx 2﹣2x ﹣1的图象与x 轴有两个交点, ∴b 2﹣4ac =(﹣2)2﹣4×k ×(﹣1)=4+4k >0, ∴k >﹣1,∵抛物线y =kx 2﹣2x ﹣1为二次函数, ∴k ≠0,则k 的取值范围为k >﹣1且k ≠0, 故选C. 【点睛】本题考查了二次函数y =ax 2+bx +c 的图象与x 轴交点的个数的判断,熟练掌握抛物线与x 轴交点的个数与b 2-4ac 的关系是解题的关键.注意二次项系数不等于0.9.B解析:B【分析】根据一元二次方程的定义和判别式的意义得到a-6≠0且△=(-2)2-4×(a-6)×3≥0,再求出两不等式的公共部分得到a≤193且a≠6,然后找出此范围内的最大整数即可.【详解】根据题意得a-6≠0且△=(-2)2-4×(a-6)×3≥0,解得a≤193且a≠6,所以整数a的最大值为5.故选B.【点睛】本题考查一元二次方程的定义和跟的判别式,一元二次方程的二次项系数不能为0;当一元二次方程有实数根时,△≥0.10.C解析:C【解析】【分析】仔细看表,可发现y的值-0.24和0.25最接近0,再看对应的x的值即可得.【详解】解:由表可以看出,当x取1.4与1.5之间的某个数时,y=0,即这个数是ax2+bx+c=0的一个根.ax2+bx+c=0的一个解x的取值范围为1.4<x<1.5.故选C.【点睛】本题考查了同学们的估算能力,对题目的正确估算是建立在对二次函数图象和一元二次方程关系正确理解的基础上的.11.C解析:C【解析】正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是3605=72度,故选C.12.A解析:A【解析】【分析】连接OC,先根据垂径定理求出PC的长,再根据勾股定理即可得出OC的长.【详解】∵CD⊥AB,CD=8,∴PC=12CD=12×8=4,在Rt△OCP中,设OC=x,则OA=x,∵PC=4,OP=AP-OA=8-x,∴OC2=PC2+OP2,即x2=42+(8-x)2,解得x=5,∴⊙O的直径为10.故选A.【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.二、填空题13.【解析】【分析】设⊙O半径为r根据勾股定理列方程求出半径r由勾股定理依次求BE和EC的长【详解】连接BE设⊙O半径为r则OA=OD=rOC=r-2∵OD⊥AB∴∠ACO=90°AC=BC=AB=4在解析:213【解析】【分析】设⊙O半径为r,根据勾股定理列方程求出半径r,由勾股定理依次求BE和EC的长.【详解】连接BE,设⊙O半径为r,则OA=OD=r,OC=r-2,∵OD⊥AB,∴∠ACO=90°,AC=BC=12AB=4,在Rt △ACO 中,由勾股定理得:r 2=42+(r-2)2,r=5,∴AE=2r=10,∵AE 为⊙O 的直径,∴∠ABE=90°,由勾股定理得:BE=6,在Rt △ECB 中,EC ==.故答案是:【点睛】考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.14.(34)【解析】【分析】根据二次函数配方的图像与性质即可以求出答案【详解】在二次函数的配方形式下x-3是抛物线的对称轴取x=3则y=4因此顶点坐标为(34)【点睛】本题主要考查二次函数的图像与性质解析:(3,4)【解析】【分析】根据二次函数配方的图像与性质,即可以求出答案.【详解】在二次函数的配方形式下,x-3是抛物线的对称轴,取x=3,则y=4,因此,顶点坐标为(3,4).【点睛】本题主要考查二次函数的图像与性质.15.-2017【解析】【分析】根据根与系数的关系可得出将其代入中即可得出结论【详解】∵是方程的两个实数根∴∴故答案为:-2017【点睛】本题考查了根与系数的关系牢记两根之和等于两根之积等于是解题的关键解析:-2017【解析】【分析】根据根与系数的关系可得出1a b +=-,2019ab =-,将其代入()()()111a b ab a b --=-++中即可得出结论.【详解】∵a 、b 是方程220190x x +-=的两个实数根,∴1a b +=-,2019ab =-,∴()()()111a b ab a b --=-++2019112017=-++=-.故答案为:-2017.【点睛】本题考查了根与系数的关系,牢记“两根之和等于ba,两根之积等于ca”是解题的关键.16.4【解析】【分析】由S阴影部分图形=S四边形BDFE=BD×OE即可求解【详解】令y=0则:x=±1令x=0则y=2则:OB=1BD=2OB=2S阴影部分图形=S四边形BDFE=BD×OE=2×2=解析:4【解析】【分析】由S阴影部分图形=S四边形BDFE=BD×OE,即可求解.【详解】令y=0,则:x=±1,令x=0,则y=2,则:OB=1,BD=2,OB=2,S阴影部分图形=S四边形BDFE=BD×OE=2×2=4.故:答案为4.【点睛】本题考查的是抛物线性质的综合运用,确定S阴影部分图形=S四边形BDFE是本题的关键.17.﹣3【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0再解关于k的方程然后根据一元二次方程的定义确定k的值即可【详解】把x=2代入kx2+(k2﹣2)x解析:﹣3【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解关于k 的方程,然后根据一元二次方程的定义确定k的值即可.【详解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,整理得k2+3k=0,解得k1=0,k2=﹣3,因为k≠0,所以k的值为﹣3.故答案为:﹣3.【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.18.2【解析】试题解析:∵袋中装有6个黑球和n个白球∴袋中一共有球(6+n)个∵从中任摸一个球恰好是黑球的概率为∴解得:n=2故答案为2解析:2【解析】试题解析:∵袋中装有6个黑球和n个白球,∴袋中一共有球(6+n)个,∵从中任摸一个球,恰好是黑球的概率为34,∴63 64n=+,解得:n=2.故答案为2.19.10【解析】【分析】设年平均增长率为x则经过两次变化后2019年的经费为2500(1+x)2;2019年投入教育经费3025万元建立方程2500(1+x)2=3025求解即可【详解】解:设年平均增长解析:10%【解析】【分析】设年平均增长率为x,则经过两次变化后2019年的经费为2500(1+x)2;2019年投入教育经费3025万元,建立方程2500(1+x)2=3025,求解即可.【详解】解:设年平均增长率为x,得2500(1+x)2=3025,解得x=0.1=10%,或x=-2.1(不合题意舍去).所以2017年到2019年该地区投入教育经费的年平均增长率为10%.【点睛】本题考查一元二次方程的应用--求平均变化率的方法,能够列出式子是解答本题的关键. 20.85【解析】由于两盏EF距离水面都是8m因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值故有-140x2+10=8即x2=80x1=45x2=-45所以两盏警示灯之间的水平解析:【解析】由于两盏E、F距离水面都是8m,因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值.故有,即,,.所以两盏警示灯之间的水平距离为:三、解答题21.(1)34;(2)16【解析】【分析】(1)利用四张卡片有三张锐角卡片即可得出答案;(2)利用列表法得出多少可能结果,找到两张角度恰好互余卡片的可能结果即可得出答案.【详解】解:(1)一共有四张卡片,其中写有锐角的卡片有三张,因此P(抽到写有锐角卡片)3 4 =(2)列表如下:所以(抽到两张角度恰好互余卡片)1 6 =【点睛】本题考查了概率的求法,根据题意得出总数与可能的结果数是解题的关键.22.(1)y=﹣10x+700;(2)销售单价为45元时,每天可获得最大利润,最大利润为6250元【解析】【分析】(1)由一次函数的图象可知过(30,400)和(40,300),利用待定系数法可求得y与x的关系式;(2)利用x可表示出p,再利用二次函数的性质可求得p的最大值.【详解】(1)设一次函数解析式为y=kx+b(k≠0),由图象可知一次函数的过(30,400)和(40,300),代入解析式可得30400 40300k bk b+=⎧⎨+=⎩,解得:10700kb=-⎧⎨=⎩,∴y与x的函数关系式为y=﹣10x+700;(2)设利润为p元,由(1)可知每天的销售量为y千克,∴p=y(x﹣20)=(﹣10x+700)(x﹣20)=﹣10x2+900x﹣14000=﹣10(x﹣45)2+6250.∵﹣10<0,∴p=﹣10(x﹣45)2+6250是开口向下的抛物线,∴当x=45时,p有最大值,最大值为6250元,即销售单价为45元时,每天可获得最大利润,最大利润为6250元.【点睛】本题考查了二次函数的应用,求得每天的销售量y与x的函数关系式是解答本题的关键,注意二次函数最值的求法.23.(1)详见解析;(2)详见解析;(3)13 2【解析】【分析】(1)根据矩形的性质得到AE∥OC,AE=OC即可证明;(2)根据平行四边形的性质得到∠AOD=∠OCF,∠AOF=∠OFC,再根据等腰三角形的性质得到∠OCF=∠OFC.故可得∠AOD=∠AOF,利用SAS证明△AOD≌△AOF,由ADO=90°得到AH⊥OF,即可证明;(3)根据切线长定理可得AD=AF,CH=FH=2,设AD=x,则AF=x,AH=x+2,BH=x-2,再利用在Rt△ABH中,AH2=AB2+BH2,代入即可求x,即可得到AH的长.【详解】(1)解:连接AO,四边形AECO是平行四边形.∵四边形ABCD是矩形,∴AB∥CD,AB=CD.∵E是AB的中点,∴AE=12 AB.∵CD是⊙O的直径,∴OC=12CD.∴AE∥OC,AE=OC.∴四边形AECO为平行四边形.(2)证明:由(1)得,四边形AECO为平行四边形,∴AO∥EC∴∠AOD=∠OCF,∠AOF=∠OFC.∵OF=OC∴∠OCF=∠OFC.∴∠AOD=∠AOF.∵在△AOD 和△AOF 中,AO =AO ,∠AOD =∠AOF ,OD =OF∴△AOD ≌△AOF .∴∠ADO =∠AFO .∵四边形ABCD 是矩形,∴∠ADO =90°.∴∠AFO =90°,即AH ⊥OF .∵点F 在⊙O 上,∴AH 是⊙O 的切线.(3)∵HC 、FH 为圆O 的切线,AD 、AF 是圆O 的切线∴AD=AF,CH=FH=2,设AD=x,则AF=x,AH=x+2,BH=x-2,在Rt △ABH 中,AH 2=AB 2+BH 2,即(x+2)2=62+(x-2)2,解得x=92∴AH=92+2=132. 【点睛】 此题主要考查直线与圆的关系,解题法的关键是熟知切线的判定定理与性质,及勾股定理的运用.24.2008年盈利3600万元.【解析】【分析】设该公司从2007年到2009年,每年盈利的年增长率是x ,根据题意列出方程进行求解即可求出年增长率;然后根据2007年的盈利,即可算出2008年的盈利.【详解】解:设每年盈利的年增长率为x ,由题意得:3000(1+x )2=4320,解得:10.2x =,2 2.2x =-(不合题意,舍去),∴年增长率20%,∴3000×(1+20%)=3600,答:该公司2008年盈利3600万元.【点睛】本题考查了一元二次方程的应用,解题的关键是求出从2007年到2009年,每年盈利的年增长率.25.(1)A (-2,0),B (4,0),C (0,-8);(2)S △ABC =24【解析】【分析】(1)令y=0可求得相应方程的两根,从而求得A 、B 的坐标;令x=0,可求得C 点坐标.(2)根据A 、B 、C 三点坐标直接可求得△ABC 的面积.【详解】(1)在y =x 2-2x -8,令0x =,可得8y =-, 即C 点坐标为(0,8)C -令0y =,得2280x x =-- 解得122,4x x =-= ∵A 在B 的左侧∴(2,0),(4,0)A B -(2)∵(2,0),(4,0),(0,8)A B C --∴6,8AB OC ==S △ABC =12AB OC ⋅=1682⨯⨯=24 【点睛】本题考查了抛物线与坐标轴的交点问题,解题的关键在于求出交点坐标.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.A
解析:A 【解析】 【分析】
列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概 率: 【详解】 列表如下:
23.如图,平面直角坐标系中,每个小正方形边长是 1.
(1)画出△ABC 关于原点中心对称的得到△A1B1C1; (2)画出△ABC 关于 C 点顺时针旋转 90°的△A2B2C2; (3)在(2)的条件下,求出 B 点旋转后所形成的弧线长. 24.如图,将△ABC 绕点 C 顺时针旋转得到△DEC,使点 A 的对应点 D 恰好落在边 AB 上,点 B 的对应点为 E,连接 BE. (Ⅰ)求证:∠A=∠EBC; (Ⅱ)若已知旋转角为 50°,∠ACE=130°,求∠CED 和∠BDE 的度数.
A. 3 10
B. 9 25
C. 9 20
12.已知二次函数 y=ax2+bx+c 中,y 与 x 的部分对应值如下:
D. 3 5
x
1.1 1.2 1.3 1.4 1.5 1.6
﹣﹣﹣﹣
y
0.25 0.76
1.59 1.16 0.71 0.24
则一元二次方程 ax2+bx+c=0 的一个解 x 满足条件( )
即﹣ b =﹣1,解得 b=2a,即 2a﹣b=0, 2a
所以②错误; ③∵抛物线 y=ax2+bx+c 经过点(1,0),且对称轴为直线 x=﹣1, ∴抛物线与 x 轴的另一个交点为(﹣3,0), 当 a=﹣3 时,y=0,即 9a﹣3b+c=0, 所以③正确; ∵m>n>0, ∴m﹣1>n﹣1>﹣1, 由 x>﹣1 时,y 随 x 的增大而减小知 x=m﹣1 时的函数值小于 x=n﹣1 时的函数值,故④ 正确; 故选:D. 【点睛】 本题考查了二次函数图象与系数的关系,解决本题的关键是掌握二次函数的图象和性质及 点的坐标特征.
4.已知 m 、 n 是方程 x2 2x 1 0 的两根,且 (7m2 14m a)(3n2 6n 7) 8 ,则
a 的值等于
A. 5
B. 5
C. 9
D. 9
5.二次函数 y 3x2 6x 变形为 y a x m2 n 的形式,正确的是( )
A. y 3 x 12 3
B. y x 12 3
D.61°
3.如图,在宽为 20 米、长为 32 米的矩形地面上修筑同样宽的道路(图中阴影部分),余
下部分种植草坪.要使草坪的面积为 540 平方米,设道路的宽 x 米.则可列方程为
()
A.32×20﹣32x﹣20x=540
B.(32﹣x)(20﹣x)=540
C.32x+20x=540
D.(32﹣x)(20﹣x)+x2=540
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D 解析:D 【解析】 【分析】 根据轴对称图形与中心对称图形的概念求解. 【详解】 A. 是轴对称图形,不是中心对称图形,故错误; B. 不是轴对称图形,是中心对称图形,故错误; C. 是轴对称图形,不是中心对称图形,故错误; D. 是轴对称图形,也是中心对称图形,故正确. 故答案选:D.
2020 年九年级数学上期末一模试卷及答案
一、选择题
1.下列图形中既是轴对称图形又是中心对称图形的是( )
A.正三角形
B.平行四边形
C.正五边形
D.正六边形
2.如图, ABC 是 O 的内接三角形, A 119,过点 C 的圆的切线交 BO 于点 P ,
则 P 的度数为( )
A.32°
B.31°
C.29°
7.B
解析:B 【解析】 【分析】 根据顶点式的坐标特点,直接写出对称轴即可. 【详解】 解∵:抛物线 y=-x2+2 是顶点式, ∴对称轴是直线 x=0,即为 y 轴. 故选:B. 【点睛】 此题考查了二次函数的性质,二次函数 y=a(x-h)2+k 的顶点坐标为(h,k),对称轴为 直线 x=h.
9.C
解析:C 【解析】 【分析】 【详解】 解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有 5 种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3 种情况,因此可知使
与图中阴影部分构成轴对称图形的概率为 3 5 3 5
故选 C
10.D
解析:D 【解析】 试题分析:根据轴对称图形和中心对称图形的概念,可知: A 既不是轴对称图形,也不是中心对称图形,故不正确; B 不是轴对称图形,但是中心对称图形,故不正确; C 是轴对称图形,但不是中心对称图形,故不正确; D 即是轴对称图形,也是中心对称图形,故正确. 故选 D. 考点:轴对称图形和中心对称图形识别
【详解】
根据题意连接 OC.因为 A 119
所以可得 BC 所对的大圆心角为 BOC 2119 238 因为 BD 为直径,所以可得 COD 238 180 58 由于 COP 为直角三角形 所以可得 P 90 58 32
故选 A. 【点睛】 本题主要考查圆心角的计算,关键在于圆心角等于同弧所对圆周角的 2 倍.
8.D
解析:D 【解析】 【分析】 ①根据抛物线开口方向、对称轴、与 y 轴的交点即可判断; ②根据抛物线的对称轴方程即可判断; ③根据抛物线 y=ax2+bx+c 经过点(1,0),且对称轴为直线 x=﹣1 可得抛物线与 x 轴的 另一个交点坐标为(﹣3,0),即可判断; ④根据 m>n>0,得出 m﹣1 和 n﹣1 的大小及其与﹣1 的关系,利用二次函数的性质即可 判断. 【详解】 解:①观察图象可知: a<0,b<0,c>0,∴abc>0, 所以①错误; ②∵对称轴为直线 x=﹣1,
()
A.①③
B.②④
C.②③
D.③④
9.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影
部分构成轴对称图形的概率是( )
A. 1 5
B. 2 5
C. 3 5
10.下列图标中,既是轴对称图形,又是中心对称图形的是(
D. 4 5

A.
B.
C.
D.
11.一个不透明的袋子里装着质地、大小都相同的 3 个红球和 2 个绿球,随机从中摸出一 球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是( )
∴ a 6 22 c 0或 a2 22 c 0
∴整理方程即得:16a c 0 ∴ c 16a 将 c 16a 代入 ax2 2ax a c 0 化简即得: x2 2x 15 0 解得: x1 3 , x2 5
故选:B. 【点睛】 本题考查了含参数的一元二次方程求解,解题关键是根据已知条件找出参数关系,并代入 要求的方程化简为不含参数的一元二次方程.
C. y 3 x 12 3
D. y 3 x 12 3
6.已知关于 x 的一元二次方程 a(x 2)2 c 0 的两根为 x1 2 , x2 6 ,则一元二次
方程 ax2 2ax a c 0 的根为( )
A.0,4
B.-3,5
C.-2,4
D.-3,1
7.抛物线 y x2 2 的对称轴为
15.抛物线 y=(x﹣1)2﹣2 与 y 轴的交点坐标是_____. 16.已知关于 x 方程 x2﹣3x+a=0 有一个根为 1,则方程的另一个根为_____. 17.心理学家发现:学生对概念的接受能力 y 与提出概念的时间 x(分)之间的关系式为 y=﹣0.1x2+2.6x+43(0≤x≤30),若要达到最强接受能力 59.9,则需________ 分钟. 18.点 A(x1,y1)、B(x2,y2)在二次函数 y=x2﹣4x﹣1 的图象上,若当 1<x1<2,3< x2<4 时,则 y1 与 y2 的大小关系是 y1_____y2.(用“>”、“<”、“=”填空) 19.三角形两边长分别是 4 和 2,第三边长是 2x2﹣9x+4=0 的一个根,则三角形的周长是 _____. 20.如图,如果一只蚂蚁从圆锥底面上的点 B 出发,沿表面爬到母线 AC 的中点 D 处,则 最短路线长为_____.
25.某数学兴趣小组在全校范围内随机抽取了 50 名同学进行“舌尖上的宜兴﹣我最喜爱的 宜兴小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.
请根据所给信息解答以下问题 (1)请补全条形统计图; (2)若全校有 1000 名同学,请估计全校同学中最喜爱“笋干”的同学有多少人? (3)在一个不透明的口袋中有 4 个元全相同的小球,把它们分别标号为四种小吃的序号 A,B,C,D,随机地把四个小球分成两组,每组两个球,请用列表或画树状图的方法,求 出 A,B 两球分在同一组的概率.
解析:A 【解析】 【分析】
根据配方法,先提取二次项的系数-3,得到 y 3 x2 2x ,再将括号里的配成完全平方
式即可得出结果. 【详解】
解: y 3x2 6x= 3 x2 2x 3 x2 2x 11 3 x 12 3 ,
故选:A. 【点睛】 本题主要考查的是配方法,正确的掌握配方的步骤是解题的关键.
A. x 2
B. x 0
C. y 2
D. y 0
8.抛物线 y ax2 bx c 经过点(1,0),且对称轴为直线 x 1 ,其部分图象如图所
示.对于此抛物线有如下四个结论:① abc <0; ② 2a b 0 ;③9a-3b+c=0;④若
m n 0 ,则 x m 1时的函数值小于 x n 1时的函数值.其中正确结论的序号是
6.B
解析:B 【解析】 【分析】
先将 x1 2 , x2 6 代入一元二次方程 a(x 2)2 c 0 得出 a 与 c 的关系,再将 c 用含 a 的式子表示并代入一元二次方程 ax2 2ax a c 0 求解即得.
【详解】
相关文档
最新文档