金属半导体和半导体异质结
2异质结-金属-半导体接触

3. 理想 p-n异质结(窄带隙的p型和宽带隙的n型)
理想p-n异质结能带图
(10)
4. 理想p-p异质结
理想p-p异质结能带图
(11)
补充说明:
1)关于两种材料的能带结构对应关系,以上讨论的四种情况, 都满足窄带隙材料的带隙全部包括在宽带隙材料中,此时,能 带图中通常给出一个尖峰。--被称为第一类异质结构,如下图:
2.2 异质结
在两种不同的半导体材料之间形成的结--外延技术
形成异质结的两种材料通常有不同的能隙宽度Eg和介电常数 。 异质结界面
EC EC Ef EV EV
导电类型相同同型异质结 导电类型不同异型异质结
主要器件: 发光二级管 激光器 光电探测器 太阳电池
主要内容: 基本器件模型 (能带结构 能带结构和电输运 和电输运) 器件制备、特点、超晶格结构
(28)
半导体表面费米能级模型:半导体 = 表面层 + 体内 表面看作一薄层, 在禁带中具有能量连续分布的局域态,由 于表面处电荷的填充,有自己的平衡费米能级EFS0
EF EFS0
若表面态密度,体内电子填充表面能级,且不显著改变 表面费米能级位置,体内EF下降与EFS平齐,造成能带弯曲, 形成空间电荷区。 表面态密度很大时, EFS~EFS0, 费米能级定扎 费米能级定扎。 。
(2)
一. 基本器件模型
理想突变异质结的能带模型 理想突变异质结 的能带模型 Anderson 异质结能带模型
假设两种材料晶格结构、晶格常数、热膨胀系数 相同,忽略悬键的产生和界面态。
能够初步解释部分异质结的输运过程
(3)
几个概念 功函数 qm 从费米能级 费米能级将一个电子移到刚巧在该种材料 将一个电子移到刚巧在该种材料 之外的一个位置(真空能级)所需的能量 从导带底 导带底将一个电子移到刚巧在该种材料之 将一个电子移到刚巧在该种材料之 外的一个位置(真空能级)所需的能量 导带边的能量差 EC 导带带阶 价带边的能量差 EV 价带带阶
半导体物理与器件基础知识

一、肖特基势垒二极管欧姆接触:通过金属-半导体的接触实现的连接。
接触电阻很低。
金属与半导体接触时,在未接触时,半导体的费米能级高于金属的费米能级,接触后,半导体的电子流向金属,使得金属的费米能级上升。
之间形成势垒为肖特基势垒。
在金属与半导体接触处,场强达到最大值,由于金属中场强为零,所以在金属——半导体结的金属区中存在表面负电荷。
影响肖特基势垒高度的非理想因素:肖特基效应的影响,即势垒的镜像力降低效应。
金属中的电子镜像到半导体中的空穴使得半导体的费米能级程下降曲线。
附图:电流——电压关系:金属半导体结中的电流运输机制不同于pn结的少数载流子的扩散运动决定电流,而是取决于多数载流子通过热电子发射跃迁过内建电势差形成。
附肖特基势垒二极管加反偏电压时的I-V曲线:反向电流随反偏电压增大而增大是由于势垒降低的影响。
肖特基势垒二极管与Pn结二极管的比较:1.反向饱和电流密度(同上),有效开启电压低于Pn结二极管的有效开启电压。
2.开关特性肖特基二极管更好。
应为肖特基二极管是一个多子导电器件,加正向偏压时不会产生扩散电容。
从正偏到反偏时也不存在像Pn结器件的少数载流子存储效应。
二、金属-半导体的欧姆接触附金属分别与N型p型半导体接触的能带示意图三、异质结:两种不同的半导体形成一个结小结:1.当在金属与半导体之间加一个正向电压时,半导体与金属之间的势垒高度降低,电子很容易从半导体流向金属,称为热电子发射。
2.肖特基二极管的反向饱和电流比pn结的大,因此达到相同电流时,肖特基二极管所需的反偏电压要低。
10双极型晶体管双极型晶体管有三个掺杂不同的扩散区和两个Pn结,两个结很近所以之间可以互相作用。
之所以成为双极型晶体管,是应为这种器件中包含电子和空穴两种极性不同的载流子运动。
一、工作原理附npn型和pnp型的结构图发射区掺杂浓度最高,集电区掺杂浓度最低附常规npn截面图造成实际结构复杂的原因是:1.各端点引线要做在表面上,为了降低半导体的电阻,必须要有重掺杂的N+型掩埋层。
金半接触与异质结

半导体器件物理
重掺杂
半导体器件物理
异质结
半导体器件物理
不同的半导体材料构成的界面
一、异质结及其能带
1、分类 p-n Ge-GaAs p-n Ge-Si 导 电 类 型 反型异质结 变 化 快 慢 突变型 缓变型
不同材料间的过渡发生 于几个原子的距离内
同型异质结
n-n Ge-Si n-n Ge-GaAs
• 半导体表面耗尽层电荷密度QSC
QSC 2q S N DVbi 2q S N D ( Bn Vn )
• 界面层电势降落
QM
i
m ( Bn )
半导体器件物理
• 势垒高度的一般表达式
Bn
S C1 ( m ) (1 C1 )( 0 ) C1C 2 q i
EF 0.2 0.4 0.6 0.8 1
耗尽层厚度 xd
Energy (eV)
-0.4 -0.2 -0.2 0.8 0.6 0.4 0.2 -0.4 -0.2 -0.2
Ec
m Distance (µm)
势垒变薄 隧穿加剧
EF 0.2 0.6 m Distance (µm) 0.4 0.8 1
Ec
qV
EF Ec
场致发射
重掺杂,简并
Ev
半导体器件物理
. 3 5
. 3 0
1 e + 5
Jtunelig (A/M 2)
隧穿势垒
. 2 5
1 e + 4
Jtunelig /J TE
. 2 0
. 1 5
1 e + 3 2 . 0 e + 8 4 . 0 e + 8 6 . 0 e + 8 8 . 0 e + 8 1 . 0 e + 9 S q r t ( N d )
半导体物理与器件习题

半导体物理与器件习题目录半导体物理与器件习题 (1)一、第一章固体晶格结构 (2)二、第二章量子力学初步 (2)三、第三章固体量子理论初步 (2)四、第四章平衡半导体 (3)五、第五章载流子输运现象 (5)六、第六章半导体中的非平衡过剩载流子 (5)七、第七章pn结 (6)八、第八章pn结二极管 (6)九、第九章金属半导体和半导体异质结 (7)十、第十章双极晶体管 (7)十一、第十一章金属-氧化物-半导体场效应晶体管基础 (8)十二、第十二章MOSFET概念的深入 (9)十三、第十三章结型场效应晶体管 (9)一、第一章固体晶格结构1.如图是金刚石结构晶胞,若a 是其晶格常数,则其原子密度是。
2.所有晶体都有的一类缺陷是:原子的热振动,另外晶体中常的缺陷有点缺陷、线缺陷。
3.半导体的电阻率为10-3~109Ωcm。
4.什么是晶体?晶体主要分几类?5.什么是掺杂?常用的掺杂方法有哪些?答:为了改变导电性而向半导体材料中加入杂质的技术称为掺杂。
常用的掺杂方法有扩散和离子注入。
6.什么是替位杂质?什么是填隙杂质?7.什么是晶格?什么是原胞、晶胞?二、第二章量子力学初步1.量子力学的三个基本原理是三个基本原理能量量子化原理、波粒二相性原理、不确定原理。
2.什么是概率密度函数?3.描述原子中的电子的四个量子数是:、、、。
三、第三章固体量子理论初步1.能带的基本概念◼能带(energy band)包括允带和禁带。
◼允带(allowed band):允许电子能量存在的能量范围。
◼禁带(forbidden band):不允许电子存在的能量范围。
◼允带又分为空带、满带、导带、价带。
◼空带(empty band):不被电子占据的允带。
◼满带(filled band):允带中的能量状态(能级)均被电子占据。
导带:有电子能够参与导电的能带,但半导体材料价电子形成的高能级能带通常称为导带。
价带:由价电子形成的能带,但半导体材料价电子形成的低能级能带通常称为价带。
半导体物理名词解释总结

半导体物理名词解释1.有效质量:a 它概括了半导体内部势场的作用,使得在解决导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用 b 可以由实验测定,因而可以很方便的解决电子的运动规律2.空穴:定义价带中空着的状态看成是带正电荷的粒子,称为空穴意义a 把价带中大量电子对电流的贡献仅用少量的空穴表达出来b金属中仅有电子一种载流子,而半导体中有电子和空穴两种载流子,正是这两种载流子的相互作用,使得半导体表现出许多奇异的特性,可用来制造形形色色的器件3.理想半导体(理想与非理想的区别):a 原子并不是静止在具有严格周期性的晶格的格点位置上,而是在其平衡位置附近振动b 半导体材料并不是纯净的,而是含有各种杂质即在晶格格点位置上存在着与组成半导体材料的元素不同其他化学元素的原子 c 实际的半导体晶格结构并不是完整无缺的,而存在着各种形式的缺陷4.杂质补偿:在半导体中,施主和受主杂质之间有相互抵消的作用通常称为杂质的补偿作用5.深能级杂质:非Ⅲ、Ⅴ族杂质在硅、锗的禁带中产生的施主能级距离导带较远,他们产生的受主能级距离价带也较远,通常称这种能级为深能级,相应的杂质为深能级杂质6.简并半导体:当E-E F》k o T不满足时,即f(E)《1,[1-f(E)]《1的条件不成立时,就必须考虑泡利不相容原理的作用,这时不能再应用玻耳兹曼分布函数,而必须用费米分布函数来分析导带中的电子及价带中的空穴的统计分布问题。
这种情况称为载流子的简并化,发生载流子简并化的半导体被称为简并半导体(当杂质浓度超过一定数量后,载流子开始简并化的现象称为重掺杂,这种半导体即称为简并半导体7.热载流子:在强电场情况下,载流子从电场中获得的能量很多,载流子的平均能量比热平衡状态时的大,因而载流子与晶格系统不再处于热平衡状态。
温度是平均动能的量度,既然载流子的能量大于晶格系统的能量,人们便引入载流子的有效温度T e来描写这种与晶格系统不处于热平衡状态时的载流子,并称这种状态载流子为热载流子8.砷化镓负阻效应:当电场达到一定値时,能谷1中的电子可从电场中获得足够的能量而开始转移到能谷2,发生能谷间的散射,电子的动量有较大的改变,伴随吸收或发射一个声子。
半导体异质结

半导体异质结
半导体异质结是半导体物理和材料学中最基础的概念之一,它指的是不同半导体材料之间的界面,物理上的结构是彼此分离的。
半导体异质结是由不同结构或物理本征的半导体分子构成的。
这样的结构可以产生半导体物质的能带变化,从而影响传输特性。
半导体异质结是由一方阳离子和另一方阴离子电荷配对构成的,这样就可以形成一个稳定的电势阻挡,使得流动的电子和空穴在其中穿梭,电流才能传递。
另一方面,由于空穴和电子的转移率不同,半导体异质结可以用来控制光电子器件的传输特性,例如在光子晶体中的发射率。
此外,半导体异质结还可以用于降低半导体器件,降低输出功耗,提高效率。
第9章 金属半导体和半导体异质结

q B q(m )
3
q(m )
EF
高等半导体物理与器件
当金属与金属半导体紧密接触时,两种半体导不同材料EV的费米能级在热平
衡时应相同,此外,真空能级也必须连续。这两项要求决定了
(a) 热平衡情形下,一独立金属靠近一独立 n 型半导体的能带图
1
两种器件的输运机制不同:肖特基二极管-多数载流子通过热电
子发射跃过内建电势差,pn结二极管-少数载流子扩散运动。
J sT
AT
2
exp
eBn
kT
Js
eDp pn0 Lp
eDnnp0 Ln
• 两者间有两点重要区别:第一是反向饱和电流密度的数量级。
①肖特基二极管的理想反向饱和电流值比pn结大好几个数量级。
• 肖特基二极管电流主要取决于多数载流子流动。
2
高等半导体物理与器件
(1)性质上的特征
真空能级
em
EF
e e B0
es
Ec EF
金属
Ev 半导体
(a)热平衡情形下,一独立金属靠近一独立 n 型半导体的能带图
➢ 真空能级作为参考能级。
➢ 功函数为费米能级和真空能级之差。金属功函数m,半导体
功函数s。此处,m>s。
匹配。
18
高等半导体物理与器件
(2)能带图
• 根据带隙能量的关系,异质结有3种可能:跨骑(图 (a))、交错(图(b))、错层(图(c))。
• 根据掺杂类型的不同,有4种基本类型的异质结:
– 反型异质结:掺杂类型变化,例nP结、Np结 – 同型异质结:掺杂类型相同,例nN结、pP结 – 其中,大写字母表示较宽带隙的材料
半导体器件物理学习指导:第二章 PN结

型区扩散。由电子和空穴扩散留下的未被补偿的施主和
受主离子建立了一个电场。这一电场是沿着抵消载流子扩 散趋势的方向
在热平衡时,载流子的漂移运动正好和载流子的扩散运动
相平衡,电子和空穴的扩散与漂移在N型和P型各边分别留
下未被补偿的施主离子和受主离子N d和
N
a
。结果建立了
两个电荷层即空间电荷区。
i
反偏产生电流在 P N 结反向偏压的情况下,空间电荷区 中 np ni2 。于是会载流子的产生,相应的电流即为空间电 荷区产生电流。
隧道电流:当P侧和N侧均为重掺杂的情况时,有些载流子可 能穿透(代替越过)势垒而产生电流,这种电流叫做隧道电流
产生隧道电流的条件: (1)费米能级位于导带或价带的内部; (2)空间电荷层的宽度很窄,因而有高的隧道穿透几率; (3)在相同的能量水平上在一侧的能带中有电子而在另
雪崩击穿:在N区(P区)的一个杂散空穴(电子)进入空 间电荷层,在它掠向P区(N区)的过程中,它从电场获得 动能。空穴(电子)带着高能和晶格碰撞,并从晶格中电 离出一个电子以产生一个电子空穴对。在第一次碰撞之后, 原始的和产生的载流子将继续它们的行程,并且可能发生 更多的碰撞,产生更多的载流子。结果,载流子的增加是 一个倍增过程,称为雪崩倍增或碰撞电离,由此造成的PN 结击穿叫做雪崩击穿。
Ae-wn Lp K2 = - 2sh wn - xn
Lp
(4)
Aewn Lp K1 = 2sh wn - xn
Lp
(5)
将(4)(5)代入(1):
sh wn - x
pn
-
pn0
=
pn0 (eV
VT
- 1) sh
Lp wn - xn
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
q2
q2
F4k0(2x)216k0x2
镜像电荷
精品课件
电子
电势表达式:
(' x )
x
Edx
'
x
4
s
e (2
x')2
dx
'
e 16 s x
半导体中存在内建电场
和内建电势,总电势
(
x)
e 16
sx
eN d s
(xnx
1 2
x2) B0
电势能为
- e (x)
e2 16
e2Nd x s 精品课件 s
真空能级E0:电子完全脱离材料本身的束缚所需的最小能量 功函数:从费米能级到真空能级的能量差 电子亲和势:真空能级到价带底的能量差
金属的功函数
m E0 EFM
[ 从 3 .66 eV ( Mg ) ~ 5 .15 eV ( Ni )]
半导体的亲和势
s
E0
E
(表面)
C
半导体的功函数 Ge , Si , GaAs : 4 . 13 , 4 . 01 , 4 . 07 eV
金 属 和
p
型 半 导 体 接 触 的 平 衡 态 能 带 图
整流接触
欧姆接触
精品课件
7.1 金属和半导体接触及其能带图
金属一边的势垒高度:
E( C 界面) EFM Wm
ns EFM EV (界面)
(EC
EV)(Ec
(界面) EF
)
M
Eg Wm
精品课件
7.1 金属和半导体接触及其能带图
5.去除不重要的
精品课件
Figure 9.1
m>s
两个方向都存在 电子流动的势垒
精品课件
金属中的电子向半导体中运动存在势垒B0 叫做肖特基势垒。
B0=m- 半导体导带中的电子向金属中移动存在势 垒Vbi ,Vbi就是半导体内的内建电势
V b i B 0 ( E C E F )F BB 0 n
为受主型表面态。
精品课件
• 表面态存在一个距离价带顶为0的中性能级: 电子正好填满0 以下的所有表面态时,表面呈 电中性; 0以下的表面态空着时,表面带正电, 呈施主型; 0之上的表面态被电子填充时,表 面带负电,呈现受主型。对于大多数半导体, 0约为禁带宽度的三分之一。
NA NV
0.41eV
WA
u
WG
形成欧姆接触
e,
精品课件
9.1.2 理想结的特性
• 半导体中空间电荷区的电荷、电场、电势的分布 假设半导体均匀掺杂Nd.
电荷分布: ( x ) eN d
泊松方程: dE ( x ) eN d
dx s
s
0 dE
x n eN d dx
E
x s
E
eN d s
精品课件
• 外加电压后,金属和半导体的费米能级不再相同, 二者之差等于外加电压引起的电势能之差。
• 金属一边的势垒不随外加电压而变,即:B0不变。 • 半导体一边,加正偏,势垒降低为Vbi-Va • 反偏势垒变高为:Vbi+VR
精品课件
正偏
反偏
精品课件
肖特基二极管:正偏金属的电势高于半导体
精品课件
(xn
x)
( x )
x eN d 0 s
(xn
x )dx
eN d s
(xnx
1 2
x2) B0
取金属的电势为0势能点
W
xn
[ 2 sV bi eN d
1
]2
类比p精+品n课单件 边突变结得出
结电容:
C 0 s [
e s Nd
1
]2
W 2(Vbi VR )
( 1 )2 2(Vbi VR )
M>s,整流接触
• 正偏,半导体势垒高度变低,电子从S注入M, 形成净电流I,I随VA的增加而增加。
• 反偏:势垒升高,阻止电子从S向金属流动, 金属中的一些电子能越过势垒向半导体中运动, 但这一反向电流很小。
• 结论: M>s时,理想的MS接触类似于pn结 二极管、 具有整流特性
精品课件
7.1 金属和半导体接触及其能带图
(xnx
1 2
x2)
eB0
Figure 9.4
精品课件
• 镜像力的势能将叠加到理想肖特基势垒上, 势能在x= xm处出现最大值,(镜像力和电 场力平衡的地方),说明镜像力使肖特基 势垒顶向内移动,并且引起势垒高度降低, 这就是肖特基势垒的镜像力降低现象,又 叫做肖特基效应。
精品课件
二、 界面态对势垒高度的影响
S s [精E品C课件 E F S ] FB
画能带图的步骤:
1. 画出包括表面在内的各部分的能带图
2. 使图沿垂直方向与公共的E0参考线对齐,并通过 公共界面把图连起来
3. 不改变半导体界面能带的位置,向上或向下移动
半导体体内部分的能带,直到EF在各处的值相等
4. 恰当地把界面处的Ec, Ei, Ev和体内Ec, Ev, Ei连接起 来
结论
Wm>Ws Wm<Ws
n形半导体 p形半导体 整流接触 欧姆接触 欧姆接触 整流接触
精品课件
例2:受主浓度为NA=1017cm-3的p型Ge, 室温下的 功函数是多少?若不考虑界面态的影响,它与Al接触
时形成整流接触还是欧姆接触?如果是整流接触,求
肖特基势垒的高度
解:Ge: 4.13eV
Ws Eg (EF EV )
Ws
Eg
k Tln
NV NA
WGe
4.130.670.026ln
5.71018 1017
4.69eV
精品课件
WAl 4.28eV,WAu 5.1eV WAl WGe,形成整流接触 ;
ns Eg Wm 0.674.134.28 0.52eV
VD
ns
(EV q
EF )
0.52kTln
• 前面讨论的理想MS接触,认为接触势垒仅由金属的 功函数决定的,实际上,半导体表面存在的表面态 对接触势垒有较大的影响。
• 表面态位于禁带中,对应的能级称为表面能级。表 面态分为施主型和受主型两类。
• 若能级被电子占据时呈电中性,施放电子后呈正电, 称为施主型表面态。
• 若能级空着时呈电中性,而接受电子后呈负电,称
C
e s Nd
由此曲线的截距可以得到 Vbi,由斜率可以得到Nd, 从而求得n和Bo
235页例2
精品课件
9.1.3影响肖特基势垒高度的非理想因素
一、镜像力对势垒高度的影响
在金属-真空系统中,一个在金属外面的电子,要在金属表 面感应出正电荷,同时电子要受到正电荷的吸引,若电子距 离金属表面的距离为x,则电子与感应正电荷之间的吸引力, 相当于位于(-x)处时的等量正电荷之间的吸引力。正电荷 叫镜像电荷,这个吸引力叫镜像引力
第九章 金属半导体和 半导体异质结
精品课件
第九章 金属半导体和半导体异质结
9.1 肖特基势垒二极管 9.2 金属半导体的欧姆接触 9.3 异质结
精品课件
9.1 肖特基势垒二极管
肖特基势垒二极管示意图
精品课件
9.1.1 性质上的特征
金属
N型半导体
金属和n型半导体接触前的平衡态能带图
精品课件
基本概念