系统辨识习题解答(最新)
系统识别试题

系统辨识练习题
一、简述下列各题
1. 什么是系统辨识?系统辨识的组成要素有哪些?系统辨识的基本步骤有哪些?把
系统辨识的基本环节用框图表示出来。
2. 阐述辨识的原理,并以单输入单输出系统为例,画出辨识原理图。
3. 什么是最小二乘参数辨识问题,简单阐述它的基本原理。
4. 基本最小二乘算法有何优缺点?克服基本最小二乘算法的缺陷的方法有哪些?
5. 递推辨识算法的基本格式是什么?构成递推辨识算法的基本条件是什么?
6. 阐述极大似然原理。
7. 现代辨识方法大体上可以分成哪几类? 8. 何谓白噪声?
9. 简述表示定理,并简单说明其意义。
10. 简述巴塞伐尔定理。
二、如下图所示,信号以1/2的概率在固定的时间间隔上改变极性,而且在持续时间区间内
信号幅度保持不变,求其自相关函数)(τx R 和谱密度函数)(ωx S 。
三、完成下面关于参数估计的统计性质的表格(在符合条件的栏内打√)
四、根据热力学原理,对于给定质量的气体,压力P 与体积V 之间的关系为βα
=PV
,其
中α和β为待定参数。
经实验获得如下一批数据,V 单位为立方英寸,P 的单位为巴每平方英寸
试用一次完成的最小二乘算法确定参数α和β(只要求写出计算过程,不要求计算结果)。
五、 写出加权最小二乘算法的递推公式,并解释如何进行递推计算(包括初始条件如何
确定)? 六、
考虑一个独立同分布的随机过程)}({t x ,在参数θ条件下随机变量x 的概率密度为
0,)|(2>=-θθθθx xe x P
求参数θ的极大似然估计。
系统辨识与全参数估计习题

系统辨识与参数估计课程习题一、 选择题:答案唯一,在( )填入正确答案的编号。
1. 对于批量最小二乘格式L L L E Y +θΦ=,其最小二乘无偏估计的必要条件是( )。
A. 输入序列}{k u 为“持续激励”信号B. L E 与TL L T L ΦΦΦ-1)(正交 C. L E 为非白噪声向量 D. 0}{=L E E2. 对象模型为Tk k k y e ϕθ=+时,采用递推最小二乘估计后的残差序列的计算式为( )。
A. 1ˆT k k k k y εϕθ-=-B. 1ˆT k k k k y εϕθ-=-C. ˆT k k k k y εϕθ=-D. 11ˆT k k k k y εϕθ--=-3. 在上题的条件下,递推最小二乘算法中的增益矩阵k K 可以写成( )。
A. 11k k P ϕ--B. 1k k P ϕ-C. 1k k P ϕ-D. k k P ϕ 4. 可以同时得到对象参数和干扰噪声模型参数的估计算法是( )。
A. 辅助变量法B. 广义最小二乘法C. 最小二乘限定记忆法D. 相关最小二乘两步法 5. 增广最小二乘估计的关键是( )。
A. 将控制项增广进k ϕ中,并用残差项取代进行估计B. 将输出项增广进k ϕ中,并用残差项取代进行估计C. 将噪声项增广进k ϕ中,并用残差项取代进行估计D. 将噪声项增广进k ϕ中,并用输出项取代进行估计答案:1. B 2. C 3. D 4. B 5. C ■ 二、 判断题:以○表示正确或×表示错误。
1.估计残差平方和最小是确定辨识过程对象结构的唯一标准。
( ) 2.最小二乘估计的批量算法和递推算法在数学上是等价的。
( ) 3.广义最小二乘法就是辅助变量法和增广最小二乘法交替试用。
( )4.在递推最小二乘算法中,若置0>==Tk P P P ,则该算法也能克服“数据饱和”现象,进而可适用于时变系统。
( )5.用神经网络对SISO 非线性系统辨识,采用的是输入层和输出层均为一个神经元的三层前馈神经元网络结构。
系统辨识试卷A参考答案

襄樊学院2008-2009学年度上学期《系统辨识》试题A卷参考答案及评分标准一、选择题:(从下列各题的备选答案中选出一个或几个正确答案,并将其代号写在题干后面的括号内。
答案选错或未选全者,该题不得分。
每空2分,共12分)1、(C)2、(D)3、(ACD)4、(D)5、(A)6、(ABC)二、填空题:(每空2分,共14分)1、计算。
2、阶次和时滞3、极大似然法和预报误差法4、渐消记忆的最小二乘递推算法和限定记忆的最小二乘递推算法三、判断题(下列命题你认为正确的在题后括号内打“√”;错误的打“×”并改正;每小题2分,共20分)(注:正确的题目括号内打“√”得2分,打“×”得0分;错误的题目括号内打“×”得1分,改正正确再得1分,错误的题目括号内打“√”得0分;)1、(√)2、(×)参数型→非参数型3、(√)4、(×)没有→有5、(√)6、(×)考虑→基本不考虑7、(√)8、(√)9、(×)完全相同→不完全相同 10、(×)不需要→需要四、简答题:(回答要点,并简明扼要作解释,每小题6分,共18分)1、答:相关分析法的主要优点是由于M序列信号近似于白噪声,噪声功率均匀分布于整个频带,从而对系统的扰动甚微,保证系统能正常工作(1.5分)。
此外。
因为相关函数的计算是一种统计平均的方法,具有信息滤波的功能,因此,在有噪声污染下,仍可提取有用信息,准确地求出系统的脉冲响应(1.5分)。
相关辨识技术在工程中的应用、可归结为下述几个方面:(1)系统动态特性的在线测试。
包括机、炉、电等一次设备,风机、水泵等辅机以及二次自动控制系统;(1分)(2)对控制系统进行在线调试,使调节系统参数优化;(1分)(3)自适应控制中的非参数型模型辨识等。
(1分)2、答:计算中用一个数值来表示对观测数据的相对的“信任程度”,这就是权。
(2分)对于时变参数系统,其当前的观测数据最能反映被识对象当前的动态特性,数据愈“老”,它偏离当前对象特性的可能性愈大。
系统辨识习题解答(最新)

系统辨识习题解答1-14、若一个过程的输入、输出关系可以用MA 模型描述,请将该过程的输入输出模型写成最小二乘格式。
提示:①提示:① MA MA 模型z k D z u k ()()()=-1②定义tt q )](,),1(),([)(,],,,[10n k u k u k u k d d d n --== h 解:因为MA 模型z k D z u k ()()()=-1,其中n n z d z d d z D ---+++= 1101)(,从而)()1()()(10n k u d k u d k u d k z n -++-+= 所以当定义t t q )](,),1(),([)(,],,,[10n k u k u k u k d d d n --== h ,则有最小二乘格式:)()()()()(0k e k h k e k h d k z ni i i +=+=å=q t,其中e(k)e(k)是误差项。
是误差项。
2-3、设)}({k e 是一个平稳的有色噪声序列,为了考虑这种噪声对辨识的影响,需要用一种模型来描述它。
请解释如何用白噪声和表示定理把)(k e 表示成AR 模型、MA 模型和ARMA 模型。
解:根据表示定理,在一定条件下,有色噪声e(k)可以看成是由白噪声v(k)驱动的线性环节的输出,该线性环节称为成形滤波器,其脉冲传递函数可写成)()()(111---=z C z D z H 即)()()()(11k v z D k e z C --=其中cc n n zc z c z C ---+++= 1111)(dd nn zd z d z D ---+++= 1111)(根据其结构,噪声模型可区分为以下三类:根据其结构,噪声模型可区分为以下三类:自回归模型(自回归模型(AR AR 模型): )()()(1k v k e z C =- 平均滑动模型(平均滑动模型(MA MA 模型): )()()(1k v z D k e -= 自回归平均滑去模型(自回归平均滑去模型(ARMA ARMA 模型): )()()()(11k v z D k e z C --=3-4、根据离散Wiener-Hopf 方程,证明å-=D -D +=10221P N j P P P Mz j g N t a k g N t a N k R )(ˆ)(ˆ)()(解:由于M 序列是循环周期为t N P D ,12-=PP N ,t D 为M 序列移位脉冲周期,自相关函数近似于d 函数,a 为M 序列的幅度。
系统辨识理论及应用(课后题答案第三章3.2、3.3)国防工业出版社

1、系统辨识——连续系统传递函数——脉冲传递函数function h=Continuous_system_transferFcn(N,G,dt)% N——系统阶数% G——采样数据(个数大于等于2N+1)% G为一维行向量% dt——采样间隔if nargin<3errordlg('not enough input varibles','error hint');elseg_NN=zeros(N,N);for i=1:Ng_NN(i,:)=G(i+1:i+1+N-1);endg_N=-G(1:N)';a=inv(g_NN)*g_N;%% x的求解syms xfor i=1:NX(i)=x^i;endf=X*a+1;x=double(solve(f));%%极点的求解p=log(x)/dt;c_NN=zeros(N,N);for i=1:Nc_NN(i,:)=x.^(i-1);endc_N=G(1:N)';%%增益求解k=inv(c_NN)*c_N;pkz=zeros(1,N);p=p';k=k';Continuous_TransferFcn=0;for i=1:NContinuous_TransferFcn=Continuous_TransferFcn+zpk(z(i),p(i),k(i)); endContinuous_TransferFcnendend例题 3.1(P32)>>G=[0 0.1924 0.2122 0.1762];>> N=2;>> dt=1;>> Continuous_system_transferFcn(N,G,dt) p =-0.4934-0.7085k =1.6280-1.6280Continuous_TransferFcn =0.35024 s---------------------(s+0.4934) (s+0.7085)Continuous-time zero/pole/gain model.习题3.2(P34)>> G=[0 0.196 0.443 0.624 0.748 0.831]; >> N=3;>> dt=0.2;>> Continuous_system_transferFcn(N,G,dt) p =-0.0633-1.7846-11.1860k =1.1249-1.33990.2150Continuous_TransferFcn =-0.08507 s (s-253.1)-------------------------------(s+0.06329) (s+1.785) (s+11.19) Continuous-time zero/pole/gain model.2 系统辨识——离散系统传递函数——脉冲传递函数function h=Discrete_system_transferFcn(N,G,dt)% N——系统阶数% G——采样数据(个数大于等于2N+1)% G为一维行向量% dt——采样间隔if nargin<3errordlg('not enough input varibles','error hint');elseg_NN=zeros(N,N);for i=1:Ng_NN(i,:)=G(i+1:i+1+N-1);endg_N=-G(N+2:2*N+1)';a1=inv(g_NN)*g_N;a=zeros(N,1);for j=1:Na(j,1)=a1(N+1-j,1);endB=zeros(N+1,N+1);B=diag(linspace(1,1,N+1));for i=1:N+1for j=1:N+1if (i==j)&(i<N+1)&(j<N+1)B(i+1:N+1,j)=a(1:N+1-i,1);endendendg__N=G(1:N+1)';b=B*g__N;abnum=b';den=[1 a'];Discrete_TransferFcn=tf(num,den,dt);Discrete_TransferFcnendend例题 3.2(P33)>> G=[0 7.157039 9.491077 8.563839 5.930506 2.845972 0.144611]; >> N=3;>> dt=0.05;>> Discrete_system_transferFcn(N,G,dt)a =-2.23001.7606-0.4950b =7.1570-6.4691-0.0009Discrete_TransferFcn =7.157 z^2 - 6.469 z - 0.0008933--------------------------------z^3 - 2.23 z^2 + 1.761 z - 0.495Sample time: 0.05 secondsDiscrete-time transfer function.习题3.3(P34)>> G=[10 6.989 4.711 3.136 2.137 1.559 1.252 1.096 0.938 0.860]; >> N=3;>> dt=0.1;>> Discrete_system_transferFcn(N,G,dt)a =-2.19191.7166-0.4794b =10.0000-14.92956.55810.0139Discrete_TransferFcn =10 z^3 - 14.93 z^2 + 6.558 z + 0.01389--------------------------------------z^3 - 2.192 z^2 + 1.717 z - 0.4794Sample time: 0.1 secondsDiscrete-time transfer function.。
系统辨识练习题

系统辨识练习题在进行系统辨识练习题之前,我们需要明确什么是系统辨识。
系统辨识是指通过对系统输入和输出数据的分析,建立描述系统行为的模型,并通过模型参数的估计来预测系统的性能。
在现实生活中,系统辨识具有广泛的应用,如控制系统设计、信号处理、机器学习等领域。
一、系统辨识基础知识1.1 系统模型与辨识系统模型表示了系统内部因果关系和输入输出关系,它是描述系统行为的数学方程。
系统辨识则是通过收集系统输入输出数据,根据这些数据建立模型,进而估计模型参数。
1.2 时域与频域方法在进行系统辨识时,可以采用时域方法或频域方法。
时域方法是指通过观察系统的时域响应,建立时间上的模型。
频域方法是指将系统输入输出的频谱进行分析,建立频域模型。
1.3 参数辨识与结构辨识参数辨识是指根据已知的系统输入输出数据,估计系统模型中的参数。
而结构辨识是指在已知系统输入输出数据的基础上,确定系统模型的结构或形式。
二、系统辨识方法2.1 线性系统辨识方法线性系统辨识是指对线性系统进行辨识,常用的方法包括最小二乘法、最大似然法、滑动模式控制等。
这些方法都基于线性系统的假设,且对噪声具有一定的假设条件。
2.2 非线性系统辨识方法非线性系统辨识是指对非线性系统进行辨识,因为非线性系统的行为较为复杂,因此常常需要更加复杂的模型和算法来进行辨识。
常见的方法包括神经网络、遗传算法等。
2.3 时间序列分析时间序列分析是指对系统输入输出数据在时间上的变化进行分析,用来建立系统的模型。
常用的方法包括自回归模型、移动平均模型等。
2.4 频域分析频域分析是指对系统输入输出数据的频谱进行分析,从而建立频域模型。
常用的方法包括傅里叶变换、功率谱估计等。
三、系统辨识实践练习在进行系统辨识实践练习时,首先需要明确辨识的目标和问题。
然后,收集系统的输入输出数据,并对数据进行预处理,如去噪、插值等。
接下来,选择合适的辨识方法,建立系统的数学模型,并进行参数估计。
最后,对辨识结果进行验证和评估。
系统辨识作业及答案

一. 问答题1. 介绍系统辨识的步骤。
答:(1)先验知识和建模目的的依据;(2)实验设计;(3)结构辨识;(4)参数估计;(5)模型适用性检验。
2. 考虑单输入单输出随机系统,状态空间模型[])()(11)()(11)(0201)1(k v k x k y k u k x k x +=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+ 转换成ARMA 模型。
答:ARMA 模型的特点是u(k)=0,[])()(11)()(0201)1(k v k x k y k x k x +=⎥⎦⎤⎢⎣⎡=+3. 设有一个五级移位寄存器,反馈取自第2级和第3级输出的模2加法和。
试说明:(1) 其输出序列是什么? (2) 是否是M 序列?(3) 它与反馈取自第4级与第3级输出模2加法和所得的序列有何不同? (4) 其逆M 序列是什么? 答:(1)设设输入序列1 1 1 1 1111018110107101006010015100114001113011112111111)()()()()()()()(()()()()()()()01110161110115110101410100)13(010011210011110011110011109()()()()()()()001112401110)23(111012211010211010020010011910011180011117()()()()()()()()10011320011131011103000111291101028101002701001261001125 其输出序列为:1 1 1 1 1 0 0 1 0 1⑵不是M 序列⑶第4级与第3级模2相加结果100108001007010006100015000114001113011112111111)()()()()()()()(()()()()()()()11110161110115110101410101)13(010111210110110110010110019()()()()()()()110012410010)23(001002201000211000120000111900111180111117()()()()()()()()01111321111031111013011010291010128010112710110260110025 不同点:第2级和第3级模二相加产生的序列,是从第4时刻开始,每隔7个时刻重复一次;第4级与第3级模2相加产生的,序列,是从第2时刻开始每隔15个时刻重复一次。
系统辩识作业题

系统辨识大作业
一.设SlSO系统差分方程为
y(k)=—α1y(k-1)-a2y(k-2)+bλu(k-1)+b2u(k-2)+ξ{k)
辨识参数向量为θ=[q a2b l b2]r,输入输出数据详见数据文件UyLtXt—uy3.txtoξ(k)为噪声方差各异的白噪声或有色噪声。
试求解:
1)用n元一次方程解析法,再求其平均值方法估计。
2)用最小二乘及递推最小二乘法估计。
;
3)用辅助变量法及其递推算法估计
4)用广义最小二乘法及其递推算法估计
5)用夏氏偏差修正法、夏氏改良法及其递推算法估计
6)用增广矩阵法估计
7)分析噪声父攵)特性;
二.用极大似然法估计6。
三.以上题的结果为例,进行:
1.分析比较各种方法估计的精度;
2.分析其计算量;
3.分析噪声方差的影响;
4.比较白噪声和有色噪声对辨识的影响。
四.系统模型阶次的辨识:
1.用三种方法确定系统的阶次并辨识;
2.分析噪声对定阶的影响;
3.比较所用三种方法的优劣及有效性;
五.给出由正弦输入求取系统开环频率响应特性曲线的辨识方法。
六.提出一种自己创造的辨识新方法,并用所给数据进行辨识验证。
注:闭卷考试时提交大作业报告。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
系统辨识习题解答1-14、若一个过程的输入、输出关系可以用MA 模型描述,请将该过程的输入输出模型写成最小二乘格式。
提示:① MA 模型z k D z u k ()()()=-1② 定义ττθ)](,),1(),([)(,],,,[10n k u k u k u k d d d n --== h 解:因为MA 模型z k D z u k ()()()=-1,其中n n z d z d d z D ---+++= 1101)(,从而 )()1()()(10n k u d k u d k u d k z n -++-+=所以当定义ττθ)](,),1(),([)(,],,,[10n k u k u k u k d d d n --== h ,则有最小二乘格式:)()()()()(0k e k h k e k h d k z ni i i +=+=∑=τ,其中e(k)是误差项。
2-3、设)}({k e 是一个平稳的有色噪声序列,为了考虑这种噪声对辨识的影响,需要用一种模型来描述它。
请解释如何用白噪声和表示定理把)(k e 表示成AR 模型、MA 模型和ARMA 模型。
解:根据表示定理,在一定条件下,有色噪声e(k)可以看成是由白噪声v(k)驱动的线性环节的输出,该线性环节称为成形滤波器,其脉冲传递函数可写成)()()(111---=z C z D z H 即 )()()()(11k v z D k e z C --= 其中 c c n n z c zc z C ---+++= 1111)(d d n n z d zd z D ---+++= 1111)(根据其结构,噪声模型可区分为以下三类:自回归模型(AR 模型): )()()(1k v k e z C =- 平均滑动模型(MA 模型): )()()(1k v z D k e -= 自回归平均滑去模型(ARMA 模型): )()()()(11k v z D k e z C --=3-4、根据离散Wiener-Hopf 方程,证明∑-=∆-∆+=10221P N j P P P Mz j g N t a k g N t a N k R )(ˆ)(ˆ)()( 解:由于M 序列是循环周期为t N P ∆,12-=P P N ,t ∆为M 序列移位脉冲周期,自相关函数近似于δ函数,a 为M 序列的幅度。
设数据的采样时间等于t ∆,则离散Wiener-Hopf 方程为:∑∞=∆-=0)()(ˆ)(j M Mz t j k R j gk R 当M 序列的循环周期t N P ∆大于过程的过渡过程时间时,即P N 充分大时,离散Wiener-Hopf 方程可写成:∑-=∆-=10P N j M Mz t j k R j g k R )()(ˆ)(由于M 序列的自相关函数为⎪⎩⎪⎨⎧≠-==,2,,0,,2,,0,)(22P P P P P M N N k N a N N k a k R ,代入上式得∑∑-=-=∧∧∧∆-∆+=∆+∆-∆=102210222)(ˆ)(ˆ)1()()()()(P p N j PP P N j p pMz j gN ta k gN t a N t k g N a t j g N a t k g a k R4- 证明:(1)1)]()()1()(1)[()1()()(--+-=k k k k k k k k Λh P h h P h P τ (2) 1)]()()()(1)[()()()1(--=-k k k k k k k k Λh P h h P h P τ, (3) 1)]()()1()(1)[()1()()()()(--+-=k k k k k k k k k k Λh P h h P h h P h τττ, (4) 1)]()()()(1)[()()()()1()( --=-k k k k k k k k k k Λh P h h P h h P h τττ, 解: (1) 由于11)]()()1()()[()1()()1()]()([)(--Λ+--=--=k k h k P k h k h k P k K k k h k K I k ττP P ,所以111)]()()1()(1)[()1(])]()()1()(1)[()()1()(1)[()1()()1()()]()()1()(1)[()()1()()1()()(---Λ-+-=Λ-+Λ---=-Λ-+Λ----=k k k k k k k k h k P k h k k h k P k h k h k P k h k P k h k k h k P k h k k h k P k h k P k k h P h h P h P τττττ(2)由于1)]()()1()(1)[()1()()(--+-=k k k k k k k k Λh P h h P h P τ,及)()()()1()(11k k k k k τh h P P Λ+-=--111111)]()()()(1)[()()]()()())1()()(1()()()())()1()((1[)]()()()(1)[()()]()()()()()()1()()()())()1()((1[)]()()()(1)[()()]()()()(1[)]()()()(1)][()()1()(1)[()()]()()1()(1)[()()()1(------Λ-=Λ----Λ--+Λ-=ΛΛ--Λ--+Λ-=Λ-⨯⨯Λ-Λ-+=Λ-+=-k k h k P k h k h k P k k h k P k P k P k P k h k k h k P k P k h k k h k P k h k h k P k k h k P k h k h k k P k h k k h k P k P k h k k h k P k h k h k P k k h k P k h k k h k P k h k k h k P k h k h k P k k k k k k k k ττττττττττττh P h h P h P(3)由于1)]()()1()(1)[()1()()(--+-=k k k k k k k k Λh P h h P h P τ,所以1)]()()1()(1)[()1()()()()(-Λ-+-=k k k k k k k h k k k h h P h h P h P τττ(4)由于1)]()()()(1)[()()()1(--=-k k k k k k k k Λh P h h P h P τ,所以1)]()()()(1)[()()()()1()( --=-k k k k k k k k k k Λh P h h P h h P h τττ4-18、考虑如下模型dd c c bb a a n n n n n n n n z d z d z D zc z c z C zb z b z B z a z a z A k v z C z D k u z B k z z A ----------------+++=+++=++=+++=+= 11111111111111111)(,1)()(,1)()()()()()()()(其中,u (k )和z (k )是模型的输入输出变量,v (k )是零均值白噪声。
定义参数向量[]θτ=a a b b c c d d n n n nabcd1111,,,,,,,,,,,请利用增广最小二乘思想,写出模型参数θ的递推辨识算法。
解:令⎪⎩⎪⎨⎧==--)()()()()()(11k u z C k u k z z C k z f f 及⎪⎩⎪⎨⎧=--------=ττθ],,,,,,,,[)](,),1(),(,),1(),(,),1([)(111d b a n n n f d b f f a f f f d d b b a a n k v k v n k u k u n k z k z k h则模型化成最小二乘格式:)()()(k v k h k z f f f +=θτ令)()(1)(1k v z C k e -=,及⎪⎩⎪⎨⎧=----=ττθ],,[)](,),1([)(1c n e ce c c n k e k e k h 则噪声模型也化成最小二乘格式:)()()(k v k h k e e e +=θτ数据向量h e (k)包含着不可测的噪声量,这可用相应的估计值代替:τ)](,),1([)(c e n k e k e k h ----=ΛΛ其中,⎪⎩⎪⎨⎧-=≤=ΛΛΛ)()()()(;0,0)(k k h k z k e k k e f θττ)](,),1(),(,),1(),(,),1([)(d b a n k e k e n k u k u n k z k z k h --------=ΛΛ则可写出利用增广最小二乘法得到的递推算法:[]⎪⎪⎩⎪⎪⎨⎧--=+--=--+-=-)1()]()([)(1)()1()()()1()()]1(ˆ)()()[()1(ˆ)(ˆ1k k k k k k k k k k k k k z k k k f f f ff f f f f f f f f f f f P h K P h P h h P K h K τττθθθI []⎪⎪⎩⎪⎪⎨⎧--=+--=--+-=-Λ)1()]()([)(1)()1()()()1()()]1(ˆ)()()[()1(ˆ)(ˆ1k k k k k k k k k k k k k e k k k e e e e ee e e e e e e e e e P h K P h P h h P K h K τττθθθI θ可表示成:[]ττττθθθ],[,,,,,,,,,,,1111e f nn n n cdbac cd d b b a a ==4-19、考虑如下模型nn n n n n z c z c z C z b z b z B z a z a z A k v z C k u z B k z z A ------------+++=++=+++=+= 1111111111111)()(,1)()()(1)()()()(其中,u (k )和z (k )分别为模型的输入和输出变量,它们是可测的;v (k )是零均值白噪声,它是不可测的。
试从Markov 估计概念出发,证明该模型的参数向量θτ=[,,,,]a a b b n n 11 的估计值 θ可以写成如下加权最小二乘算法的形式 ()θττ=-H H H z L L L L L L ΛΛ1,式中,H L 为数据矩阵,z L 为输出向量,加权矩阵取ΛL v=12στC C ,其中矩阵C 为C =--⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥11110112111110c c c c c c c c c n n n n解:令⎪⎩⎪⎨⎧==--)()()()()()(11k u z C k u k z z C k z f f及⎪⎩⎪⎨⎧=------=ττθ],,,,,[)](,),1(),(,),1([)(11n n f f f f f b b a a n k u k u n k z k z k h 则模型化成最小二乘格式:)()()(k v k h k z f f +=θτ 准则函数取2])()()[()(θθτ∑=-Λ=L1k f f k k z k J h ,其中)(k Λ为加权因子,对所有的k ,)(k Λ都必须大于零。