八年级数学全等三角形知识点

合集下载

新人教版八年级上册《全等三角形》知识点归纳总结

新人教版八年级上册《全等三角形》知识点归纳总结

全等三角形一、知识要点:〔一〕全等变换:只改变图形的位置,二不改变其形状大小的图形变换叫做全等变换。

全等变换包括以下三种:1、平移变换:把图形沿某条直线平行移动的变换叫做平移变换。

2、对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。

3、旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。

〔二〕全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动〔或称变换〕使之与另一个重合,这两个三角形称为全等三角形。

〔三〕全等三角形的性质: 全等三角形的对应角相等、对应边相等。

二、题型分析:题型一: 考察全等三角形的定义例题:以下说法正确的选项是〔 〕A 、全等三角形是指形状相同的两个三角形 C 、全等三角形的周长和面积分别相等 C 、全等三角形是指面积相等的两个三角形 D 、所有的等边三角形都是全等三角题型二:考察全等三角形之间的关系——传递性例题:如果△ABC 和△DEF 全等,△DEF 和△GHI 全等,那么△ABC 和△GHI ______全等, 如果△ABC 和△DEF 不全等,△DEF 和△GHI 全等,那么△ABC 和△GHI ______全等.〔填“一定〞或“不一定〞或“一定不〞〕题型三:根据三角形全等求角例1:△ABC 中,∠BAC ∶∠ACB ∶∠ABC =4∶3∶2,且△ABC ≌△DEF ,那么∠DEF =______. 例2:如图,△ABN ≌△ACM ,AB=AC ,BN=CM ,∠B=50°,∠ANC=120°,那么∠MAC 的度数等于〔 〕A 、120°B 、70°C 、60°D 、50°第二节 三角形全等的判定一、知识要点:〔一〕三角形全等的判定公理及推论有:1、“边角边〞简称“SAS 〞2、“角边角〞简称“ASA 〞3、“边边边〞简称“SSS 〞4、“角角边〞简称“AAS 〞5、斜边和直角边相等的两直角三角形〔HL 〕。

初二数学第十二章全等三角形详细知识点及题型总结

初二数学第十二章全等三角形详细知识点及题型总结

第十二章全等三角形第一讲全等三角形性质图形全等:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即...................................平移、翻折、旋转前后的图形全等。

“全等”用.....................≅表示,读作“全等于”..........全等三角形的定义:两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如∆和全等时,点A和点D,点B和点E,点C和点F是对应顶点,记作DEF ABC∆DEF∆。

ABC∆≅把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等。

........................例1.已知:如图,AB=AD,AC=AE,BC=DE,∠EAC=300,则∠DAB的大小为例2.如图,在平面上将△ABC绕B点旋转到△A’BC’的位置时,AA’∥BC,∠ABC=70°,则∠CBC’为________度.例3.如图,在△ABC中,∠A:∠B:∠C=3:5:10,又△MNC≌△ABC,则∠BCM:∠BCN等于()A.1:2 B.1:3 C.2:3 D.1:4课堂练习:∆的是( )1.根据下列条件,能画出唯一ABCA. AB=3,BC=4,CA=8B.AB=4,BC=3,∠A=300C. ∠C=600,∠B=450,AB=4D.∠C=900,AB=62.如图∠1=∠2=200,AD=AB,∠D=∠B,E在线段BC上,则∠AEC=()A.200B.700C.500D.8003.已知:如图,△ABC≌△DEF,AC∥DF,BC∥EF.则不正确的等式是()A.AC=DFB.AD=BEC.DF=EFD.BC=EF4.如图,△BCD≌△CBE,BC=6,CE=5,BE=4,则CD的长是()A.4 B.5 C.6 D.无法确定5.已知图中的两个三角形全等,则∠ 度数是()A.72°B.60°C.58°D.50°6.如图,将Rt△ABC(其中∠B=340,∠C=900)绕A点按顺时针方向旋转到△AB1 C1的位置,使得点C、A、B1在同一条直线上,那么旋转角最小等于()A.560B.680C.1240D.18007.如图,△ABE≌△ACD,∠B=50°,∠AEB=60°,则∠DAC的度数等于()A.120° B.70° C.60° D.50°8.若两个三角形的面积相等 , 则这两个三角形________全等.9.如图,△ABD≌△ACE,且∠BAD和∠CAE,∠ABD和∠ACE,∠ADB和∠AEC是对应角,则对应边_______.10.如图,△ABC≌△DBC,且∠A和∠D,∠ABC和∠DBC是对应角,其对应边:______,对应角:_________.11.如图,△ABO≌△CDO,OA=2,AB=4,BO=3,则DC= ,OC= ,OD= .12.如图,△ABC≌△DEF,A与D,B与E分别是对应顶点,∠B=320,∠A=680,AB=13cm,则∠F=______度,DE=______cm.13.已知△ABC≌△DEF,∠A=52°,∠B=67°BC=15cm则∠F=_____,FE=_____cm.14.如图,P是正△ABC内的一点,若将△PAB绕点A逆时针旋转到△P/AC,则∠PAP/的度数为________.15.将一张正方形纸片按如图的方式折叠,BC,BD为折痕,则∠CBD的大小为_________16.如图所示,,BC 的延长线交DA 于F ,交DE 于G ,,,,则的度数为17.观察图中每一个大三角形中白色三角形的排列规律,则第n 个大三角形中白色三角形有 个 .18.如图,把△ABC 绕点C 顺时针旋转350,得到△A /B /C, A /B /交AC 乎点D ,已知∠A /DC=90°,求∠A 的度数.19.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,(1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设AED ∠的度数为x ,∠ADE 的度数为y ,那么∠1,∠2的度数分别是多少?(用含有x 或y 的代数式表示)(3)∠A 与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.20.如图所示,已知△ABC ≌△FED ,且BC =ED ,那么AB 与EF 平行吗?为什么?ABC ADE △≌△105ACB AED ∠=∠=15CAD ∠=30B D ∠=∠=1∠课后练习:1.下列说法:①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等,其中正确的说法为( )A .①②③④B .①③④C .①②④D .②③④2.下列说法错误的有( )①只有两个三角形才能完全重合;②如果两个图形全等,它们的形状和大小一定都相同;③两个正方形一定是全等图形;④边数相同的图形一定能互相重合.A.4个B.3个C.2个D.1个3.已知△ABC 与△DEF 全等,∠A=∠D=90°,∠B=37°,则∠E 的度数是( )A.37°B.53°C.37°或63°D.37°或53°4.如果D 是中BC 边上一点,并且,则是( )A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形5.对于两个图形,给出下列结论:①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长和面积都相等;④两个图形的形状相同,大小也相等.其中能获得这两个图形全等的结论共有( )A.1个B.2个C.3个D.4个6.如图,△OAB 绕点O 逆时针旋转800到△OCD 的位置,已知∠AOB=450,则∠AOD ( )A.550B.450C.400D.3507.如图,△ABE ≌△ACD,AB=AC,BE=CD, ∠B=50°,∠AEC=120°,则∠DAC 的度数等于( )A.120°B.70°C.60°D.50°8.如图所示,在△ABC 中,D 、E 分别是边AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C 的度数为( )A. 15°B. 20°C. 25°D. 30°9.如图所示,AD 是△ABC 的中线,∠ADC =45°,把△ADC 沿AD 对折,使点C 落在点C ´的位置,则图中的一个等腰直角三角形是( ) A. △ADC B. △BDC ´ C. △ADC ´ D. 不存在6.如图,已知AB=AC ,AD=AE ,∠BAD=25°,则∠CAE=ABC △ADB ADC △≌△ABC△7.如图,△ABD≌△ACE,则AB的对应边是_______,∠BAD的对应角是______.8.已知:如图,△ABE≌△ACD,∠B=∠C,则∠AEB=_______,AE=______.9.如图:△ABC≌△DCB,AB和DC是对应边,∠A和∠D是对应角,则其它对应边是______________,对应角是____________________.10.已知:如图,△ABC≌△DEF,BC∥EF,∠A=∠D,BC=EF,则另外两组对应边是____,另外两组对应角是____.11.已知:如图,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB=________度.12.如图所示,△ABD≌△ACE,点B和点C是对应顶点,AB=8,BD=7,AD=6,则BE的长是___13.如图,已知△ABE≌△ACF,∠E=∠F=90°,∠CMD=70°,则∠2=______度.14.如图所示,已知△ABC≌△ADE,BC的延长线交DE于F,∠B=∠D=25°,∠ACB=∠AED=105°,∠DAC=10°,则∠DFB为15.如图,D,E分别为△ABC的AC,BC边的中点,将此三角形沿DE折叠,使点C落在AB边上的点P处.若∠CDE=480,则∠APD等于16.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=____17.如图,把大小为4×4的正方形方格图形分割成两个全等图形,例如图1.请在下图中,沿着虚线画出四种不同的分法,把4×4的正方形方格图形分割成两个全等图形.能力提高:1.长为L 的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x 的取值范围为( ) A.64l l x ≤< B.84l l x ≤< C.64l l x << D.84l l x << 2.已知△ABC ≌△A ′B ′C ′,△ABC 的三边为3、m 、n ,△A ′B ′C ′的三边为5、p 、q ,若△ABC 的各边都是整数,则m+n+p+q 的最大值为__________3.如图,△ABC ≌△ADE ,∠DAC=60°,∠BAE=100°,BC 、DE 相交于点F ,则∠DFB 的度数是4.下图是由全等的图形组成的,其中AB =3cm ,CD =2AB ,则AF =__________.AB C D E F5.如图,△ABE 和△ADC 是△ABC 分别沿着AB 、AC 边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠a 的度数为6.如图,矩形ABCD 沿AM 折叠,使D 点落在BC 上的N 点处,如果AD=7cm,DM=5cm, ∠DAM=39°,则AN= cm, NM= cm, ∠NAB= .7.如图所示,△ABC 绕顶点A 顺时针旋转,若∠B =40°,∠C =30°.(1)顺时针旋转多少度时,旋转后的△AB'C'的顶点C'与原三角形的顶点B 和A 在同一直线上?(原△ABC 是指开始位置)(2)再继续旋转多少度时,点C 、A 、C'在同一直线上?8.如图, 在ABCD中, 将△ABE沿BE翻折, 点A落在CD边上, 成为点F, 如果△DEF和△BCF的周长分别是8cm和22cm, 求FC的长度。

八年级数学上册《全等三角形》知识点梳理

八年级数学上册《全等三角形》知识点梳理

八年级数学上册《全等三角形》知识点梳理
八年级数学上册《全等三角形》知识点梳理
在学习新知识的同时,既要及时跟上老师步伐,也要及时复习巩固,知识点要及时总结,这是做其他练习必备的前提,下面为大家总结了全等三角形知识点梳理,仔细阅读哦。

一、知识网络
二、基础知识梳理
(一)、基本概念
1、“全等”的理解全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;
即能够完全重合的两个图形叫全等形。

同样我们把能够完全重合的两个三角形叫做全等三角形。

2、全等三角形的性质
(1)全等三角形对应边相等;(2)全等三角形对应角相等;
3、全等三角形的判定方法
(1)三边对应相等的两个三角形全等。

(2)两角和它们的夹边对应相等的两个三角形全等。

(3)两角和其中一角的对边对应相等的两个三角形全等。

(4)两边和它们的夹角对应相等的两个三角形全等。

(5)斜边和一条直角边对应相等的两个直角三角形全等。

4、角平分线的性质及判定
性质:角平分线上的点到这个角的两边的距离相等
判定:到一个角的两边距离相等的点在这个角平分线上
应的位置上。

切记不要弄错。

2、对全等三角形判定方法理解错误;
3、利用角平分线的性质证题时,要克服多数同学习惯于用全等证明的思维定势的消极影响。

四、典例赏析
你会做吗?
有了上文为大家总结的全等三角形知识点梳理,大家及时提前复习,在考试中一定能取得好成绩。

人教版八年级上册第十二章全等三角形知识点总结及复习

人教版八年级上册第十二章全等三角形知识点总结及复习

全等三角形知识点总结及复习一、知识网络⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理二、基础知识梳理 (一)、基本概念1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。

同样我们把能够完全重合的两个三角形叫做全等三角形。

全等三角形定义 :能够完全重合的两个三角形称为全等三角形。

(注:全等三角形是相似三角形中的特殊情况)当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

由此,可以得出:全等三角形的对应边相等,对应角相等。

(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角; (3)有公共边的,公共边一定是对应边; (4)有公共角的,角一定是对应角;(5)有对顶角的,对顶角一定是对应角; 2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等; 3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。

(2)两角和它们的夹边对应相等的两个三角形全等。

(3)两角和其中一角的对边对应相等的两个三角形全等。

(4)两边和它们的夹角对应相等的两个三角形全等。

(5)斜边和一条直角边对应相等的两个直角三角形全等。

4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上(二)灵活运用定理1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。

2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。

八年级(上册)数学《全等三角形》全等三角形的判定-知识点整理

八年级(上册)数学《全等三角形》全等三角形的判定-知识点整理

三角形三条中线的交于一点,这一点叫做“三角形的重心〞。

三角形的中线可以将三角形分为面积相等的两个小三角形。

3. 三角形的角平分线∠A的平分线与对边BC交于点D,那么线段AD叫做三角形的角平分线。

∠1=∠2=∠BAC.要区分三角形的“角平分线〞与“角的平分线〞,其区别是:三角形的角平分线是条线段;角的平分线是条射线。

三角形三条角平分线的交于一点,这一点叫做“三角形的内心〞。

要求会的题型:①三角形中两条高和其所对的底边中的三个长度,求其中未知的高或者底边的长度“等积法〞,将三角形的面积用两种方式表达,求出未知量。

三角形的稳定性1. 三角形具有稳定性2. 四边形及多边形不具有稳定性三角形的内角1. 三角形的内角和定理三角形的内角和为180°,与三角形的形状无关。

2. 直角三角形两个锐角的关系直角三角形的两个锐角互余〔相加为90°〕。

有两个角互余的三角形是直角三角形。

三角形的外角1. 三角形外角的意义三角形的一边与另一边的延长线组成的角叫做三角形的外角。

2. 三角形外角的性质三角形的一个外角等于与它不相邻的两个内角之和。

三角形的一个外角大于与它不相邻的任何一个内角。

多边形1. 多边形的概念在平面中,由一些线段首尾顺次相接组成的图形叫做多边形,多边形中相邻两边组成的角叫做它的内角。

多边形的边与它邻边的延长线组成的角叫做外角。

连接多边形不相邻的两个顶点的线段叫做多边形的对角线。

一个n边形从一个顶点出发的对角线的条数为〔n-3〕条,其所有的对角线条数为.3. 正多边形各角相等,各边相等的多边形叫做正多边形。

〔两个条件缺一不可,除了三角形以外,因为假设三角形的三内角相等,那么必有三边相等,反过来也成立〕要求会的题型:①告诉多边形的边数,求多边形过一个顶点的对角线条数或求多边形全部对角线的条数n边形从一个顶点出发的对角线的条数为〔n-3〕条,其所有的对角线条数为.将边数带入公式即可。

多边形的内角和1. n边形的内角和定理n边形的内角和为2. n边形的外角和定理多边形的外角和等于360°,与多边形的形状和边数无关。

八年级上册数学第二单元知识点:全等三角形

八年级上册数学第二单元知识点:全等三角形

八年级上册数学第二单元知识点:全等三角形
朱熹曾说过:不勤于始,将毁与中。

换句话就是:勤于始、精于始,才干成于始。

初中在孩子求学的生涯是一个重要的承上启下阶段。

详细内容请看八年级上册数学第二单元知识点。

1.全等三角形:两个三角形的外形、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。

2.全等三角形的性质:全等三角形的对应角相等、对应边相等。

3.三角形全等的判定公理及推论有:
(1)边角边简称SAS
(2)角边角简称ASA
(3)边边边简称SSS
(4)角角边简称AAS
(5)斜边和直角边相等的两直角三角形(HL)。

4.角平分线推论:角的外部到角的两边的距离相等的点在叫的平分线上。

5.证明两三角形全等或应用它证明线段或角的相等的基本方法步骤:①、确定条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含
的边角关系),②、回忆三角形判定,搞清我们还需求什么,③、正确地书写证明格式(顺序和对应关系从推导出要证明的效果).
在学习三角形的全等时,教员应该从实践生活中的图形动身,引出全等图形进而引出全等三角形。

经过直观的了解和比拟发现全等三角形的微妙之处。

在阅历三角形的角平分线、中线等探求中激起先生的集合思想,启示他们的灵感,使先生体会到集合的真正魅力。

希望为大家提供的八年级上册数学第二单元知识点的内容,可以对大家有用,更多相关内容,请及时关注!。

人教版八年级上册第十二章全等三角形知识点复习

人教版八年级上册第十二章全等三角形知识点复习

A. ①④
B.①②
C.②③
D.③④
2.如图,ABD ≌ CDB ,且 AB 和 CD 是对应边,下面四个结论中不正确的是( )
A. ABD和CDB 的面积相等
A
D
B. ABD和CDB 的周长相等 C. A + ABD = C + CBD
B
C
D.DAD//BC 且 AD=BC
3.如图, ABC ≌ BAD ,A 和 B 以及 C 和 D 分别是对应点,如果
4.全等三角形的判定(一):三边对应相等的两个三角形全等,简与成“边边边”或“SSS”.
AB = DE 如图,在 ABC 和 DEF 中 BC = EF
AC =
【典型例题】
例1.如图, ABC ≌ ADC ,点 B 与点 D 是对应点, BAC = 26 ,且 B = 20 , SABC = 1,求 CAD , D, ACD 的度数及 ACD 的面积.
数及 BC 的长.
E
F
A
BC
D
本文来源于网络,如果侵权行为,请联系删除!
精品文档,助力人生,欢迎关注小编!
11.如图,在 ABC与ABD 中,AC=BD,AD=BC,求证: ABC ≌ ABD
D A
C B
全等三角形(一)作业
1.如图, ABC ≌ CDA ,AC=7cm,AB=5cm.,则 AD 的长是( )
求证:(1) DE ⊥ AB ; (2)BD 平分 ABC (角平分线的相关证明及性质)
B
A E
D
C
【巩固练习】 1.下面给出四个结论:①若两个图形是全等图形,则它们形状一定相同;②若两个图形的
形状相同,则它们一定是全等图形;③若两个图形的面积相等,则它们一定是全等图形; ④若两个图形是全等图形,则它们的大小一定相同,其中正确的是( )

八年级数学上人教版《全等三角形》课堂笔记

八年级数学上人教版《全等三角形》课堂笔记

《全等三角形》课堂笔记
一、全等三角形的定义和性质
1.全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。

2.全等三角形的性质:全等三角形的对应边相等,对应角相等。

二、全等三角形的判定方法
1.SSS(边边边):三边对应相等的两个三角形全等。

2.SAS(边角边):两边对应相等,且它们的夹角相等的两个三角形全等。

3.ASA(角边角):两角对应相等,且它们的夹边相等的两个三角形全等。

4.AAS(角角边):两角对应相等,且一边与这两个角夹边相等的两个三
角形全等。

三、全等三角形的应用
1.证明线段或角相等;
2.证明角度或线段的数量关系;
3.证明线段或角的和差倍分关系;
4.证明直角三角形中的特殊性质。

四、注意事项
1.在使用全等三角形时,必须保证全等三角形的对应边、对应角都对应相等;
2.在使用全等三角形时,要注意全等三角形的传递性,即如果两个三角形全
等,那么它们的对应边、对应角也相等;
3.在使用全等三角形时,要注意全等三角形的旋转性,即如果一个三角形旋
转后与另一个三角形重合,那么这两个三角形全等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学《全等三角形》知识点
班级姓名
一、全等三角形的定义
1、能够完全重合的两个称为。

(注:全等三角形是中的特殊情况)
当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;
(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;
(3)有公共边的,公共边一定是对应边;
(4)有公共角的,角一定是对应角;
(5)有的,对顶角一定是对应角;
2、“全等”的理解全等的图形必须满足:
(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。

3、全等三角形的性质
(1)全等三角形对应边相等;(2)全等三角形对应角相等;
二、三角形全等的判定
1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”)
2、有两边及其夹角对应相等的两个三角形全等(SAS或“”)。

3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。

4、有两角及其一角的对边对应相等的两个三角形全等(AAS或“”)
5、全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)
所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的。

注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。

注意:①判定两个三角形全等必须有一组边对应相等;
A是英文“角”的缩写(angle),S是英文“边”的缩写(side)。

三、全等三角形的性质
1、全等三角形的对应角相等、对应边相等。

2、全等三角形的对应边上的高对应相等。

3、全等三角形的对应角平分线相等。

4、全等三角形的对应中线相等。

5、全等三角形面积相等。

6、全等三角形相等。

7、角平分线的性质及判定
性质:角平分线上的点到这个角的两边的距离相等
判定:到一个角的两边距离相等的点在这个角平分线上
8.线段的垂直平分线性质及判定
定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线
性质:线段垂直平分线上的点到这条线段两个端点的距离相等.
判定:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.
四、证题的思路:
⎪⎪⎪⎪⎪⎪⎪⎩
⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS 五、灵活运用定理
1、性质中三角形全等是条件,结论是对应角、对应边相等。

而全等的判定却刚好相反。

2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。

在写两个三角形全等时,一定把对应的顶点、角、边的顺序写一致,为找对应边,角提供方便。

3,当图中出现两个以上等边三角形时,应首先考虑用SAS 找全等三角形。

4、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。

5、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。

6、要善于灵活选择适当的方法判定两个三角形全等。

六、做题技巧
一般来说考试中线段和角相等需要证明全等。

因此我们可以来采取逆思维的方式。

来想要证全等,则需要什么条件
另一种则要根据题目中给出的已知条件,求出有关信息。

然后把所得的等式运用(AAS/ASA/SAS/SSS/HL )证明三角形全等
练习:
1 已知:如图,点C 是线段AB 的中点,CE=CD ,∠ACD=∠BCE 。

求证:AE=BD 。

E B C A D
2 已知:AB=AC ,EB=EC ,AE 的延长线交BC 于D ,证明:BD=CD
3、 如图,AB=AC ,AE=AD ,BD=CE ,求证:△AEB ≌ △ ADC 。

4、如图:AC 与BD 相交于O ,AC =BD ,AB =CD ,求证:∠C =∠B
5、已知:BECF 在同一直线上, AB ∥DE ,AC ∥DF ,并且BE=CF 。

求证:△ ABC ≌ △ DEF
6、如图, 已知:AB ⊥BC 于B , EF ⊥AC 于G , DF ⊥BC 于D , BC=DF .求证:AC=EF .
C A B
D
E O A
C D B F E D C B A F
G E D C
B A
7、如图:四边形ABCD 中,AD ∥BC ,AB=AD+BC ,E 是CD 的中点,求证:AE ⊥BE 。

8、如图,ABCD 是正方形,点G 是BC 上的任意一点,DE AG ⊥于E ,BF DE ∥,
交AG 于F .求证:AF BF EF =+.
9、、如图,已知AB=CD ,AD=CB ,E 、F 分别是AB ,CD 的中点,且DE=BF ,
求证:.(1)△ADE ≌△CBF (2)∠A=∠C
10、如图,ΔABC 的两条高AD 、BE 相交于H ,且AD=BD ,
求证:(1)∠DBH=∠DAC ; (2)ΔBDH ≌ΔADC 。

D C
B
A
E
F
G B E A D B C F E
A
B C
D E
H。

相关文档
最新文档