运筹学—对策论
合集下载
运筹学-第15章--对策论

1 8 5 8 5 5*
2 2 3 2 1 1
3 4
9 0
5 2
6 3
5 5*
3
0
max 9 5* 8 5*
可知 ai* j* =5,i*=1,3,j*=2,4.故(α1,β2)(α1,β4)(α2,
β2)(α2,β4)为对策的纳管 什理均运衡,筹 V学G=5.
15
• 最优纯策略求解步骤:
• 1、行中取小,小中取大得最大化最小收益 值;
• 2、列中取大,大中取小得最小化最大支付 值;
• 3、比较两值是否相等。若相等便存在最优 纯策略。若不等,则不存在最优纯策略。
管理运筹学
16
§3 矩阵对策的混合策略
设矩阵对策 G = { S1, S2, A }。当
max
i
min
j
aij
min
j
max
i
aij
时,不存在最优纯策略。
例:设一个赢得矩阵如下:
一个局势,一个局势决定了各局中人的对策结果(量化) 称为该局势对策的益损值。
管理运筹学
3
§1 对策论的基本概念
出赛的次序是一个策略 “齐王赛马”齐王在各局势中的益损值表(单位:千金)
管理运筹学
4
§1 对策论的基本概念
其中:齐王的策略集: S1={ 1, 2, 3, 4, 5, 6 }, 田忌的策略集:S2={ 1, 2, 3, 4, 5, 6 }。
A=[aij]m×n i 行代表甲方策略 i=1, 2, …, m;j 列代表乙方策略 j=1, 2, …, n;aij 代表甲方取策略 i,乙方取策略 j,这一局势下甲方的 益损值。此时乙方的益损值为 -aij(零和性质)。
《管理运筹学-对策论》

博弈与均衡
04
对策分析方法
CHAPTER
VS
静态分析法是一种不考虑时间因素的分析方法,主要适用于解决一次性决策问题。
详细描述
静态分析法将问题视为一个静态系统,不考虑时间变化和过程发展,只关注决策变量的当前状态和最优解。这种方法适用于确定性和静态的环境,如线性规划、整数规划等。
总结词
静态分析法
总结词
《管理运筹学-对策论》
目录
对策论概述 对策模型 对策论的基本概念 对策分析方法 对策论的应用实例 对策论的未来发展
CONTENTS
01
对策论概述
CHAPTER
对策论,也称为博弈论,是研究决策主体在相互竞争、相互依存的环境中如何进行策略选择和行动的学科。
对策论强调理性、优化和均衡,通过数学模型和逻辑推理来描述和分析竞争行为,尤其关注在不确定性和信息不对称情况下的决策问题。
对策论的定义与特点
特点
定义
竞争策略分析
对策论可以用于分析企业或组织在市场竞争中的策略选择,例如定价策略、产品差异化、市场份额争夺等。
合作协议
在某些情况下,企业间可能通过对策论的方法找到合作的可能性,例如供应链协调、合作研发等。
人力资源决策
在招聘、晋升、激励设计等方面,对策论可以帮助理解个体和团队的行为反应,优化人力资源决策。
03
对策论的基本概念
CHAPTER
策略与行动
策略
在对策中,参与者为达到目标所采取的行动方案。策略是完整的、具体的行动计划,它规定了参与者在所有可能情况下应采取的行动。
行动
在对策中,参与者实际采取的行动。行动是实现策略的具体行为或决策。
在对策中,如果一个参与者的某个策略能够使其获得比其他参与者更好的结果,则称该策略为优势策略。优势策略是相对于其他参与者的策略而言的。
运筹学第9章 对策论

3. 赢得函数(支付函数)(payoff function)
一个对策中,每一个局中人所出策略形成的策略 组称为一个局势。 即设 s i 是第 i 个局中人的一个策略, 则n个局中人的策略形成的策略组 s ( s1 , s2 ,, sn )
s 就是一个局势。
在“齐王VS田忌赛马”中,
齐王有6个策略: 2 ( 上,下,中)、 1 (上,中,下)、 4 (中,下,上)、 5 ( 下,上,中)、
1 2
设局中人I采用纯策略 1和 2的概率 分别为 x1 和 x2 ,x1 x2 1, x1,2 0 设局中人II采用纯策略 1和 2的概率 分别为 y1 和 y2 ,y1 y2 1, y1,2 0
SI 1 , 2 设局中人I的策略集原来为: 那么在没找到纯策略的前提下,局中人I的策略集变为: 局中人I的策略 SI X ( x1, x2 )T x1 x2 1, x12 0 有无穷多个 S II 1 , 2 设局中人I的策略集原来为: 那么在没找到纯策略的前提下,局中人II的策略集变为:
当一个局势 s 出现后,每一局中人就会面对
一个赢得值或损失值,记作 Hi (s)。
Hi (s) 是定义在局势上的函数,
所以称为局中人 i 的赢得函数。
通常的分类方式有: (1) 根据局中人的个数,分为二人对策和多人对策; (2) 根据各局中人的赢得函数的代数和是否为零,分 为零和对策与非零和对策; (3) 根据各局中人间是否允许合作,分为合作对策和 非合作对策; (4) 根据局中人的策略集中的策略个数,分为有限对 策和无限对策等等。
max VG X 1 E ( X 1 , 1 ) E ( X 1 , 2 ) X 2 E ( X 2 , 1 ) E ( X 2 , 2 ) 5 x1 8 x2 VG E s . t . X 3 E ( X 3 , 1 ) E ( X 3 , 2 ) 9 x1 6 x2 VG x x 1 , x , x 0 1 2 1 2
《运筹学教学资料》ch14对策论

寡头垄断市场上的价格竞争案例中,存在几 家大型企业,它们通过价格策略来争夺市场 份额。如果企业都选择降价,将导致价格战; 如果都选择维持高价,将获得更多利润。但 企业往往会选择降价来争夺市场,最终导致 双方受损。
THANK YOU
感谢聆听
纯策略均衡
在纳什均衡中,每个参与者都采用单 一策略。如果所有参与者的纯策略组 合构成纳什均衡,则称为纯策略均衡。
混合与者以一定的概率分布随机选择不同的策略,使得对手无法通过预测获 得优势。在混合策略均衡中,每个参与者的预期收益达到相对稳定的状态。
混合策略纳什均衡
在经济学中,帕累托前沿表示在所有可能的资源配置中,能够使得所有
玩家的利益都得到最大化的配置集合。帕累托前沿用于衡量资源配置的
效率和公平性。
03
应用
纳什均衡和帕累托前沿是评价博弈结果和资源配置的重要工具,可以帮
助理解在竞争和合作中的最优选择和资源配置问题。
04
多人对策
合作博弈与非合作博弈
合作博弈
参与者通过合作达成协议,以最 大化共同利益。合作博弈强调联 盟和集体行动,通常使用夏普里 值来分配收益。
运筹学教学资料
目
CONTENCT
录
• 对策论简介 • 二人有限零和对策 • 二人有限非零和对策 • 多人对策 • 对策论案例分析
01
对策论简介
对策论的定义与特点
定义
对策论,也称为博弈论,是研究决策主体在相互竞争、对抗或合 作中的行为和决策的数学分支。
特点
对策论强调理性个体之间的策略互动,通过数学模型描述和预测 主体之间的行为和结果,为决策者提供最优策略和解决方案。
对策论的应用领域
01
02
运筹学_对策论

第17页
混合策略
• 混合扩充
矩阵对策扩充 N人有限对策
• 混合平衡解
矩阵对策 N人有限对策
• 均衡解的存在性
第18页
混 合 扩 充—矩阵对策
策略集
m
S * 1
{X
( x1 , x2 ,..., xm )
xi 1, xi 0, i 1,2,..., m}
i 1
nS* 2{Y( y1 ,y2 ,...,
yn )
y j 1, y j 0, j 1,2,..., n}
j 1
支付函数
mn
E( X ,Y )
aij xi y j
i1 j1
混合扩充: *
{
S1*
,
S
* 2
,
E
(
x
,
y),
x
S1* ,
y
S
* 2
}
第19页
混 合 扩 充—N人有限对策
N 人有限对策 I {1,2,..., N }, Si , i I , H i (s), i I
• 定理1 N人有限对策的混合扩充存在平衡局势. • 定理2 矩阵对策的混合扩充存在平衡局势.
第23页
矩阵对策的解法
• 问题的简化
优超 算例
• 线性规划方法
基本思想 算例
第24页
优超
给定矩阵对策 {S1 , S2 , A} , A 是 m n 的矩阵,如果
akj alj , j 1,2,..., n
则称局中人 1 的策略 k 优超于策略 l。如果
aik ail , i 1,2,..., m
则称局中人 2 的策略 k 优超于策略 l。
注:局中人 1 的策略 k 优超于策略 l 则说明对局中人 1
混合策略
• 混合扩充
矩阵对策扩充 N人有限对策
• 混合平衡解
矩阵对策 N人有限对策
• 均衡解的存在性
第18页
混 合 扩 充—矩阵对策
策略集
m
S * 1
{X
( x1 , x2 ,..., xm )
xi 1, xi 0, i 1,2,..., m}
i 1
nS* 2{Y( y1 ,y2 ,...,
yn )
y j 1, y j 0, j 1,2,..., n}
j 1
支付函数
mn
E( X ,Y )
aij xi y j
i1 j1
混合扩充: *
{
S1*
,
S
* 2
,
E
(
x
,
y),
x
S1* ,
y
S
* 2
}
第19页
混 合 扩 充—N人有限对策
N 人有限对策 I {1,2,..., N }, Si , i I , H i (s), i I
• 定理1 N人有限对策的混合扩充存在平衡局势. • 定理2 矩阵对策的混合扩充存在平衡局势.
第23页
矩阵对策的解法
• 问题的简化
优超 算例
• 线性规划方法
基本思想 算例
第24页
优超
给定矩阵对策 {S1 , S2 , A} , A 是 m n 的矩阵,如果
akj alj , j 1,2,..., n
则称局中人 1 的策略 k 优超于策略 l。如果
aik ail , i 1,2,..., m
则称局中人 2 的策略 k 优超于策略 l。
注:局中人 1 的策略 k 优超于策略 l 则说明对局中人 1
运筹学-第六讲对策论

S S1 S2 Sn
引言
对策论 game theory
对策的结构和分类
按对策方式非 合合 作作 对对 策策有 完限 全理 理性 性
对策分类按对策人数二人对策二 二人 人非 零零 和和 对对 策策
多人对策
按对策状态动 静态 态对 对策 策不 完 不 完完 全 完 全全 信 全 信信 息 信 息息 动 息 静动 态 静 态态 对 态 对对 策 对 策策 策
Nash对对策论的贡献有: (i) 合作对策中的讨价还价模型,称为Nash讨价还价解; (ii) 非合作对策的均衡分析。
(6) 目前,博弈论在定价、招投标、谈判、拍卖、委托—代理以及很多的经营 决策中得到应用,它已成为现代经济学的重要基础。现代对策论总体上是一门 新兴的发展中的学科。
对策论 game theory
数服从(0-1)分布.
【定义】 如果一个策略G={S1, …, Sn; h1, … , hn}中,参予者i 的策略集为
Si={Si1, … , Sik},如果由各个对策方的策略组成策略集合G*={S1*, S2*, …, Sn*},
其中
Si*
xi
E mi
| xi
0,i 1,2,, mi ,
纳什均衡
Nash Equilibrium
对于对策中的每一个局中人,真正成功的措施应该是针对于其他局中 人所采取的每次行动,相应地采取有利于自己地反应策略,于是每一 个局中人应采取的必定是他对其他局中人策略的预测的最佳反应。
纳什均衡
对策论 game theory
纳什均衡定义
用G 表示一个对策,若一个对策中有 n 个局中人,则每个局中人可选策略的 集合称为策略集,分别用 S1,S2,…,Sn 表示;Sij 表示局中人i 的第 j 个策 略,其中 j 可取有限个值(有限策略对策),也可取无限个值(无限策略对策); 对策方 i 的得益则用 hi 表示;hi 是各对策方策略的多元函数,n个局中人的
引言
对策论 game theory
对策的结构和分类
按对策方式非 合合 作作 对对 策策有 完限 全理 理性 性
对策分类按对策人数二人对策二 二人 人非 零零 和和 对对 策策
多人对策
按对策状态动 静态 态对 对策 策不 完 不 完完 全 完 全全 信 全 信信 息 信 息息 动 息 静动 态 静 态态 对 态 对对 策 对 策策 策
Nash对对策论的贡献有: (i) 合作对策中的讨价还价模型,称为Nash讨价还价解; (ii) 非合作对策的均衡分析。
(6) 目前,博弈论在定价、招投标、谈判、拍卖、委托—代理以及很多的经营 决策中得到应用,它已成为现代经济学的重要基础。现代对策论总体上是一门 新兴的发展中的学科。
对策论 game theory
数服从(0-1)分布.
【定义】 如果一个策略G={S1, …, Sn; h1, … , hn}中,参予者i 的策略集为
Si={Si1, … , Sik},如果由各个对策方的策略组成策略集合G*={S1*, S2*, …, Sn*},
其中
Si*
xi
E mi
| xi
0,i 1,2,, mi ,
纳什均衡
Nash Equilibrium
对于对策中的每一个局中人,真正成功的措施应该是针对于其他局中 人所采取的每次行动,相应地采取有利于自己地反应策略,于是每一 个局中人应采取的必定是他对其他局中人策略的预测的最佳反应。
纳什均衡
对策论 game theory
纳什均衡定义
用G 表示一个对策,若一个对策中有 n 个局中人,则每个局中人可选策略的 集合称为策略集,分别用 S1,S2,…,Sn 表示;Sij 表示局中人i 的第 j 个策 略,其中 j 可取有限个值(有限策略对策),也可取无限个值(无限策略对策); 对策方 i 的得益则用 hi 表示;hi 是各对策方策略的多元函数,n个局中人的
运筹学对策论

第六章 对
策
论
第一节 对策论的基本概念
第二节 矩阵对策 第三节 矩阵对策的解法
第一节 对策论的基本概念
一、简例
二、对策问题的数学模型 三、对策问题的分类 四、均衡的意义
一、简例
例1 战国时期,齐王与大夫田忌每年要赛马,双方约定:每方出上、中、 下三个等级的马各1匹,每匹马都参赛一次,共赛3次。每次赛后,负者要 付给胜者千金。当时的情况是,在各个等级的马中,齐王的马都稍强于田 忌的马。每次赛马,田忌经常要输三千金。有一次,田忌的谋士孙膑出了 个主意:让田忌用下等马对齐王的上等马,用中等马对齐王的下等马,用 上等马对齐王的中等马。这样,比赛结果田忌一负两胜,反而赢得了一千 金。由此可见,掌握准确的信息,制定正确的行动方案是制胜的关键。在 现实生活中,例如乒乓球团体赛,选手的排序不同,往往导致比赛的结果 不同。在各种冲突的现象中,参与者如何决策是关系重大的问题。
一、简例
例2 Von Neumann根据福尔摩斯探案中的情节,略加修改,把对策论的精 神融会其中,使大侦探与巨盗的斗争,更加引人入胜。大侦探福尔摩斯严 重妨碍了当时邪恶势力的头子莫里亚蒂。此人诡计多端,心黑手狠,多次 扬言要对福尔摩斯下毒手。风声传到福尔摩斯耳朵里,他感到,当时自己 势孤力单,“三十六计,走为上计”,决定暂时离开英国,福尔摩斯匆忙 上了从伦敦到多佛尔的火车。从车窗里,他突然发现莫里亚蒂也在站台上, 并且觉察到对手已发现他坐在火车里,火车正要开动,下车躲避已不可能。 福尔摩斯在火车里,紧张地盘算着对策。从伦敦到多佛尔,火车只停靠一 个中间站坎特伯雷,他是否要在那里下车,中途脱逃呢?另一方面,莫里 亚蒂分析问题的本领毫不逊色于福尔摩斯,他当然会考虑到福尔摩斯中途 是否会下车。两人各自应该采取怎样的对策才更有利于自己?这些问题都 是对策论所要研究的。
策
论
第一节 对策论的基本概念
第二节 矩阵对策 第三节 矩阵对策的解法
第一节 对策论的基本概念
一、简例
二、对策问题的数学模型 三、对策问题的分类 四、均衡的意义
一、简例
例1 战国时期,齐王与大夫田忌每年要赛马,双方约定:每方出上、中、 下三个等级的马各1匹,每匹马都参赛一次,共赛3次。每次赛后,负者要 付给胜者千金。当时的情况是,在各个等级的马中,齐王的马都稍强于田 忌的马。每次赛马,田忌经常要输三千金。有一次,田忌的谋士孙膑出了 个主意:让田忌用下等马对齐王的上等马,用中等马对齐王的下等马,用 上等马对齐王的中等马。这样,比赛结果田忌一负两胜,反而赢得了一千 金。由此可见,掌握准确的信息,制定正确的行动方案是制胜的关键。在 现实生活中,例如乒乓球团体赛,选手的排序不同,往往导致比赛的结果 不同。在各种冲突的现象中,参与者如何决策是关系重大的问题。
一、简例
例2 Von Neumann根据福尔摩斯探案中的情节,略加修改,把对策论的精 神融会其中,使大侦探与巨盗的斗争,更加引人入胜。大侦探福尔摩斯严 重妨碍了当时邪恶势力的头子莫里亚蒂。此人诡计多端,心黑手狠,多次 扬言要对福尔摩斯下毒手。风声传到福尔摩斯耳朵里,他感到,当时自己 势孤力单,“三十六计,走为上计”,决定暂时离开英国,福尔摩斯匆忙 上了从伦敦到多佛尔的火车。从车窗里,他突然发现莫里亚蒂也在站台上, 并且觉察到对手已发现他坐在火车里,火车正要开动,下车躲避已不可能。 福尔摩斯在火车里,紧张地盘算着对策。从伦敦到多佛尔,火车只停靠一 个中间站坎特伯雷,他是否要在那里下车,中途脱逃呢?另一方面,莫里 亚蒂分析问题的本领毫不逊色于福尔摩斯,他当然会考虑到福尔摩斯中途 是否会下车。两人各自应该采取怎样的对策才更有利于自己?这些问题都 是对策论所要研究的。
运筹学-对策论

3.矩阵对策的混合策略
例:设一个赢得矩阵如下:
5 A = 8 max 8 6 9 6 min
j
9
min 5 max
i
6 策略α2
8 策略β1
• 思路:对甲(乙)给出一个选取不同策 略的概率分布,以使甲(乙)在各种情 况下的平均赢得(损失)最多(最少)。 -----即混合策略
重要定理
定理 任一矩阵对策G {S1,S2;A}, 任一矩阵对策G={S1,S2;A},一定存在混 合策略意义下的解。 合策略意义下的解。 • 定理 设有两个矩阵对策 • G1= G2= G1={S1,S2;A1} G2={S1,S2;A2} • 其中A1=(aij),A2=(aij+L),L为任一常数。 A1= 其中A1 (aij),A2=(aij+L), 为任一常数。 则 • (1)G1 G2同解 G1与 同解; (1)G1与G2同解; • (2)VG2 VG2= (2)VG2=VG1+L
7.4 矩阵对策的解法
• (1) 2×2矩阵对策的线性方程组法 2× • 所谓2 所谓2×2矩阵对策是指局中人Ⅰ的赢得矩阵为2×2阶的,即 矩阵对策是指局中人Ⅰ的赢得矩阵为2 是指局中人 阶的, A = a11 a12 • a21 a22 • 如果此对策有纯策略意义下的解,则很容易求解; 如果此对策有纯策略意义下的解,则很容易求解;如果没有 纯策略意义下的解, 纯策略意义下的解,则为求出各局中人的最优混合策略可求解下 列方程组: 列方程组: • a11x1+a21x2= a11y1+a12y2= a11x1+a21x2=v a11y1+a12y2=v • a12x1+a22x2= a21y1+a22y2= a12x1+a22x2=v a21y1+a22y2=v • y1+y2= x1+x2= y1+y2=1 x1+x2=1 • 当没有纯策略意义下的解时,方程组一定有严格非负解 x*= 当没有纯策略意义下的解时, x1* x2* y*=(y1*,y2*), (x1*,x2*)和y*=(y1*,y2*), 即为各局中人的最优混合策 略。