《运筹学教程》胡云权第五版运筹学6对策论矩阵对策 34页

合集下载

运筹学教程胡云权第五版孔静静运筹学博弈论专题知识讲座

运筹学教程胡云权第五版孔静静运筹学博弈论专题知识讲座
《运筹学》课程纲领
➢ 课程性质:措施技能类 专业必须课 ➢ 课时数:1-14周,3,42课时 ➢ 课程框架
约束条件、目的最大/小化、最优方案

线运 性送 规问 划题








与 网 络 分
决对 策策 论论

➢ 考核方案:作业(40%)+考试(60%)
《运筹学》教材内容
➢ 线性规划 第一章 1-5节 ➢ 运送问题 第三章 1-3节 ➢ 整数规划 第五章 1-5节 ➢ 动态规划 第七章 1-4节 ➢ 图与网络分析 第八章 1-3节 ➢ 对策论 第十二章 1-3节 ➢ 决策论 第十三章 1-3节
严格劣势策略
Strictly dominated strategy
课堂游戏——“同学困境”
α

β
同伴
α B-, B-
β A, C
C, A
B+,B+
现实囚徒困境
• 宿舍卫生 • 价格战争 • 过分捕捞 • 碳排放 • 军备竞赛
思索
破解措施
• 沟通
坦白
抵赖
• 协议、协议
坦白 -8, -8
0, -10
《运筹学》课程答疑
时间:周一 8:00——10:00 12:00——18:00
地点:建工楼512 邮箱: 电话
《运筹学》
对策论
• 孔静静 • 2023年3月2日
课堂游戏——“同学困境”
请各位在不被邻桌看到旳情况下,选择α或者β 随机两人一组,鉴定成绩 成绩给定旳原则
• 若你选择α ,同伴选择β ,则你得A,同伴得C; • 若都选择α,则都得B-; • 若你选择β,同伴选择α,则你得C,同伴得A; • 若都选择β,则都得B+。

《运筹学教程》胡云权-第五版-运筹学复习

《运筹学教程》胡云权-第五版-运筹学复习

x6
10
[2]
-5
1
0
-1
1
5
3M+2
3-4M
2M-5
0
-M
0
-z
-M
x4
2
0
[7/2 ]
1/2
1
1/2
-1/2
4/7
2
x1
5
1
-5/2
1/2
0
-1/2
1/2
-
0
7M/2+8
M/2-6
0
M/2+1
-3M/2-1
-z
3
x2
4/7
0
1
1/7
2/7
1/7
-1/7
2
x1
45/7
1
0
6/7
5/7
-1/7
1/7
✓ 右端项非负
解的重要概念
可行解(或可行点):满足所有约束条件的向量 x ( x1 , x 2 , x n )
可行域:所有的可行解的全体
D { x Ax b, x 0}
最优解:在可行域中目标函数值最大(或最小)的可行解,最优解的全体
称为最优解集合
O {x D c x c y, y D }
0
x3
0
x4
0
x5

9
4
3
4
5
[ 10 ]
1
0
0
0
1
0
0
0
1
90
40
30
7
12
0
0
0
1
90
bi
360

运筹学PPT完整版胡运权

运筹学PPT完整版胡运权

C
m n
基可行解:满足变量非负约束条件的基本解,简称基可
行解。
可行基:对应于基可行解的基称为可行基。
可 行 解
非可行解
基解
基可行解
线性规划问题的数学模型
例1.4 求线性规划问题的所有基矩阵。
Page 30
解: 约束方程的系数矩阵为2×5矩阵 r(A)=2,2阶子矩阵有10个,其中基矩阵只有9个,即
运筹学的历史
“运作研究(Operational Research)小组”:解决复 杂的战略和战术问题。例如:
1. 如何合理运用雷达有效地对付德军德空袭 2. 对商船如何进行编队护航,使船队遭受德国潜
艇攻击时损失最少; 3. 在各种情况下如何调整反潜深水炸弹的爆炸深
度,才能增加对德国潜艇的杀伤力等。
Page 4
线性规划问题的数学模型
约束方程的转换:由不等式转换为等式。
aij x j bi
aij x j xni bi
xni 0 称为松弛变量
aij x j bi
aij x j xni bi
xni 0 称为剩余变量
变量 x j 的变0换 可令 xj x,j 显x然j 0
Page 23
用 x3 x3 替换 x3 ,且 x3 , x3 0
线性规划问题的数学模型
Page 25
(2) 第一个约束条件是“≤”号,在“≤”左端加入松驰变量x4, x4≥0,化为等式;
(3) 第二个约束条件是“≥”号,在“≥”左端减去剩余变量x5, x5≥0;
(4) 第3个约束方程右端常数项为-5,方程两边同乘以(-1),将右 端常数项化为正数;
x
v a 2x2 x a dv 0 dx
2(a 2 x) x (2) (a 2 x)2 0

运筹学课件 第六章对策论基础

运筹学课件 第六章对策论基础
• 博弈论是研究博弈现象的规律的数学理论 和方法 • 博弈现象的要素
– 局中人(参与人) —二人或多人 – 行动与策略—有限或无限 – 信息—完全或不完全 – 支付函数—可正可负
一、基本概念与名词
• 局中人 • 策略与策略集 • 局势 • 赢得函数 • 零和对策 • 矩阵对策:二人有限零和对策
二、对策分类
矩阵混合对策问题的解
X (0,0,1 / 3,2 / 3,0) Y (1 / 2,1 / 2,0,0,0) V 5
T
T
相关定理
记T(G)为矩阵对策G的解集
定理1 设有两个矩阵对策 G1={S1,S2,A1}, G2={S1,S2,A2}, 其中A1=(aij), A2=(aij+L), L为一任意常数,则
– 支付函数—赢了得一千金,输了付一千金。
齐王赛马赢得函数
田 忌 (上中下) 1 (上下中) 2
齐 (中上下) 3 王 (中下上) 4 (下中上) 5 (下上中) 6
1 2 3 4 5 6
3 1 1 -1 1 1 1 3 -1 1 1 1 1 1 3 1 -1 1 1 1 1 3 1 -1 1 -1 1 1 3 1 -1 1 1 1 1 3
• 划去普遍较大的列,例如第3、4、5三列, 结果如上。
进一步化简
• 上述结果的第一行比第三行普遍更优,因 此再划去第三行,得 1 2
3 7 3 A 4 4 6
• 若混合策略均不为零,由上述定理知混合 对策问题数学模型的不等式应为等式。因 此有
第二步 用方程组求解
分析上述例子
• 因为 max min{aij } 2, min max{aij } 3 j j i i • 所以 max min{aij } min max{aij }

《运筹学教程》胡云权第五版运筹学-6对策论-矩阵对策

《运筹学教程》胡云权第五版运筹学-6对策论-矩阵对策

矩阵对策的基本原理
矩阵对策的基本原理是将决策问题抽象为一个决策矩阵,其中行表示决策方 案,列表示决策因素。通过对矩阵进行分析和计算,找到最优的决策方案。
矩阵对策的应用领域
矩阵对策可以应用于各种决策问题,包括但不限于供应链管理、投资组合优化、资源分配、人力资源管理等领 域。
矩阵对策的解决方法
矩阵对策可以通过数学方法和算法来求解,例如线性规划、整数规划、动态规划等。不同的决策问题可能需要 不同的解决方法。
案例分析:矩阵对策在实际问题中的应用
本节将通过案例分析展示矩阵对策在实际问题中的应用。我们将介绍一个具体的决策问题,并演示如何使用矩 阵对学习,你已经了解了矩阵对策的基本原理、应用领域和解决方法。希望本节内容对你在运筹学领域 的学习和应用有所帮助。
《运筹学教程》胡云权第 五版运筹学-6对策论-矩 阵对策
本节将介绍运筹学中的矩阵对策,包括其概述、基本原理、应用领域、解决 方法以及在实际问题中的应用。
运筹学简介
运筹学是一门研究在资源有限的情况下如何做出最佳决策的学科。它应用数学方法和模型来协助管理者进行决 策和优化。
矩阵对策概述
矩阵对策是一种运筹学方法,通过构建决策矩阵来帮助管理者进行决策。它 可以同时考虑多个决策因素和多种决策方案,从而找到最佳决策。

运筹学胡运权第五版课件

运筹学胡运权第五版课件
运筹学胡运权第五 版课件大纲
单击此处添加副标题
汇报人:
目录
添加目录项标题 运筹学基础知识 整数规划 图论与网络优化
课件概览 线性规划 动态规划
01
添加章节标题
02
课件概览
课件简介
课程名称:运筹学胡运权第五版课件 课程内容:包括线性规划、非线性规划、整数规划、动态规划、图与网络优化等 课程目标:帮助学生掌握运筹学的基本理论和方法提高分析和解决问题的能力 课程特点:理论与实践相结合注重案例分析和实际问题的解决
最小生成树问题:在无向图中寻找最小生 成树
最大流问题:在流网络中寻找最大流
最小费用流问题:在流网络中寻找最小费 用流
网络可靠性问题:评估网络可靠性提高网 络稳定性
网络优化算法:如Dijkstr算法、Floyd算 法、Kruskl算法等
网络优化算法
最短路径算 法:Dijkstr
算法、 Floyd算法

图论与网络优化应用案例
物流网络优化:通过图论方 法优化物流网络降低物流成 本
社交网络优化:通过图论方 法优化社交网络提高社交网
络的稳定性和可靠性
交通网络优化:通过图论方 法优化交通网络提高交通效 率
电力网络优化:通过图论方 法优化电力网络提高电力系
统的稳定性和可靠性
感谢观看
汇报人:
课件结构
• 运筹学概述 • 线性规划 • 非线性规划 • 动态规划 • 随机规划 • 决策分析 • 网络规划 • 排队论 • 库存论 • 博弈论 • 运筹学应用案例 • 运筹学发展前景 • 运筹学与其他学科的关系 • 运筹学学习方法与技巧
课件特点
内容全面:涵盖了运筹学的基本概念、理论和方法 结构清晰:按照章节进行划分便于理解和掌握 实例丰富:提供了大量的实例和案例便于理解和应用 习题丰富:提供了大量的习题和练习便于巩固和提高

《运筹学》胡运权清华版-12-02矩阵对策基本定理

《运筹学》胡运权清华版-12-02矩阵对策基本定理
《运筹学》胡运权清华版 -12-02矩阵对策基本定理
运筹学中,矩阵对策是重要的决策分析工具。通过这个矩阵对策基本定理, 我们能够更好地理解并应用它在实际问题中。
Байду номын сангаас
矩阵对策的背景和定义
矩阵对策是一种决策分析方法,通过建立决策者与对手之间的策略矩阵,来 寻求最佳决策方案。它在解决有限决策问题中具有广泛的应用。
矩阵对策在实际问题中有广泛的应用,如在市场竞争、资源分配、风险管理 等领域。通过矩阵对策的应用,我们能够做出更明智和有效的决策。
矩阵对策在经济领域的案例分 析
矩阵对策在经济领域有着丰富的案例分析。通过深入研究这些案例,我们可 以更好地理解和应用矩阵对策的方法和技巧。
矩阵对策的优势和局限性
矩阵对策具有许多优势,如能够考虑多个因素和决策变量,以及能够量化和 比较各种策略。然而,它也存在一些局限性,如对信息和参数的需求较高。
矩阵对策的基本定理
矩阵对策的基本定理可以帮助我们确定最佳对策和策略组合。通过对矩阵对 策进行精确分析,我们能够得到优化的决策结果。
矩阵对策的解决方法
矩阵对策有多种解决方法,如通过优化算法和约束条件来求解最优解。同时, 可以利用计算机模拟和博弈理论等工具来辅助分析和决策。
矩阵对策在实际问题中的应用
结论和总结
矩阵对策是一种强大的决策分析工具,能够帮助我们做出更明智和优化的决 策。通过学习和应用矩阵对策,我们能够提高决策的准确性和效果,从而更 好地解决现实生活和工作中的问题。

运筹学教程胡云权第五版决策分析

运筹学教程胡云权第五版决策分析

风险型决策分析
公司打算生产该护肤品5年。根据以往价格统计资料和市
场预测信息,该产品在今后5年内价格下跌的概率为0.1,保
持原价的概率为0.5,涨价的概率为0.4。通过估算,可得各
种方案在不同价格状态下的益损值如下表所示。
益损值表
单位(万元)
益损值
方案
状态(价格) 概率
跌价 0.1
原价 0.5
涨价 0.4
E(X)=∑ pixi
xi : 随机离散变量x的第i个取值, i=1,2,3…m;
pi : x=xi时的概率
E( A1) ? 0.3? 40 ? 0.6 ? 36 ? 0.1? (?16) ? 32 E( A2 ) ? 0.3? 36 ? 0.6 ? 30 ? 0.1? 15 ? 30.3 E( A3 ) ? 0.3? 30 ? 0.6 ? 25 ? 0.1? 20 ? 26.0
从它引出的分枝叫方 案分枝。分枝数量与
方案数量相同。
. 36 . -16
. 36
结果节点
不同行动方案在不同 自然状态下的结果注 明在结果节点的右端
. 30
. 15
. 30 . 25 . 20
风险型决策分析
(2)计算各行动方案的益损期望值,并将计算结果 标注在相应的状态节点上。
32
. 40
. 36
. -16
决策分析概述
决策环境
确定型决策 非确定型决策
风险型决策 不确定型决策
确定型决策
特征: (1)决策者的明确目标(收益大或损失小等); (2)确定的自然状态; (3)两个以上可供选择的行动方案; (4)不同行动方案在确定状态下的益损值可以计算出来。
【例】某公司管理层需要决策是否生产一种新产品。可以确 定的是,该产品上市后一定供不应求。经数据分析,该产 品的预期单价为 900元,单件可变成本 400元,生产所需固 定成本为50000元。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x* ( 3 , 8 )T 11 11
由图可见局中人II的混合策 略只有β2和β3组成。
I
II ① 数轴上坐标为0和1的两点分
11 别做两条垂线I-I和II-II。
7
② 画出局中人II的不同策略下 局中人I的赢得线段。
5
3
β1: v11 = 2x+7(1-x)
2
2
β2 : v12 = 3x+5(1-x)
0
1
β3 : v13 = 11x+2(1-x)
I
II
图解法
③由于局中人II理性,局中人 I从最少可能收入中选择最大 的一个,为局中人I的最优对 策。B2
矩阵对策的混合策略
1、混合策略
对于 G {S1, S2; A}
局中人Ⅰ有把握的赢得至少为 v1

max min
i
j
aij
局中人Ⅱ有把握的支付至多为 v2

min j
max i
aij
一般为 v1 v2 ,特别地当 v1 v2 时,则称对策 G 在
纯策略意义下的解,即VG v1 v2 。实际多 v1 v2 ,根


1 1 1 1 1 3
矩阵对策的纯策略
2、矩阵对策解的引例
例: 设 G {S1, S2; A} ,
其中 S1 {1,2,3,4} , S2 {1, 2, 3},
6
A


3
9
3
1 2 1 0
8 -8
4

2
10 -
6

10
S1* {(x1, x2 ) | x1, x2 0, x1 x2 1}, S2* {( y1, y2 ) | y1, y2 0, y1 y2 1}
局中人 I 的赢得期望值
E(x,
y)

3x1 y1
6x1y2
5x2 y1

4x2 y2

4(x1

1 4
)(
y1
4、混合策略对策模型
一个新的对策 G*

{S1*
,
S
* 2
;
E}
,则称
G
*

G
的混合扩充。
矩阵对策的混合策略
5、最优混合策略

G*

{S1*
,
S
* 2
;
E}
,是矩阵对策
G

{S1,
S2;
A}
的混合扩充。
x {x1, x2 ,, xm} S1* 是局中人Ⅰ的一个混合策略;
y

{ y1 ,
y2
9 2 6 -3
理智行为:从各自最不利情形中选择最有利 I:最大最小原则 II:最小最大原则
平衡局势:双方均可接受,且对双方都是最稳妥的结果。 (α2 ,β2),局中人I和II的最优纯策略。
矩阵对策的纯策略
3、矩阵对策的最优纯策略
定义 1:设 G {S1, S2; A}为矩阵对策,其中
S1 {1,2 ,,m} , S2 {1, 2 ,, n}, A {aij }mn ,
a22既是其所在行的最小元素,也是其所在列的最大元素,
即有 ai2≤a22 ≤ a2j i=1,2,3,4 j=1,2,3
矩阵对策的纯策略
3、矩阵对策的最优纯策略
定理 1: 矩阵对策 G {S1, S2; A}在纯策略意义下有解的充要条
件是:存在纯局势
( i
*
,

j*
)
使得对一切
i

1,2,, m;
Ⅱ的策略集为: S2 {1, 2 , j , , n} 。
当Ⅰ、Ⅱ分别选择纯策略i , j 时,形成了一个纯局势
(i , j ) S S1 S2 ,则对任一 (i , j ) S ,记Ⅰ的赢得 值为 ai j ,即Ⅱ赢得值为 ai j (i 1,2,, m; j 1,2,, n) .
j

1,2,, n
均有
a ij
*
ai* j*
ai* j
2 7 2 1 1
例: G {S1, S2; A},其中 A 2
3
2 5
3 4
4 2 4 3
2 2 1 6 1
3746

max i
min j
aij

min j
max i
aij
a31
3 则VG

3 ,G 的解
为3, 1分别是局中人Ⅰ、Ⅱ的最优纯策略。
事实:对策 G 的值VG ai* j* 是 A a 中 i* j* 所在的行的最小
元素,又是所在列的最大元素,即
a ij
*
ai* j*
ai* j 。
矩阵对策的纯策略
4、矩阵对策的鞍点与解
对于一个对策G={S1, S2, A}, 若

max i
矩阵对策的策略
纯策略:确定的选择某策略 混合策略:以某一概率分布选择各策略。
矩阵对策的纯策略
1、矩阵对策的一般表达
设用Ⅰ、Ⅱ分别表示两局中人,Ⅰ有 m 个纯策略
1,2 ,,m ,Ⅱ有 n 个纯策略 1, 2 ,, n ,则
Ⅰ的策略集为: S1 {1,2 , i , ,m},


max i
min j
aij

min j
max i
aij

ai* j*
成立,记 VG
ai* j*
,则
称VG ai* j* 为矩阵对策 G 的值.
相应的纯局势 (i* , j* ) 为 G 在纯策略下的解,i* 与 j*
分别称为局中人Ⅰ与Ⅱ的最优纯策略。
从上例看出,矩阵A中平衡局势(α2 ,β2)对应的元素
注:当Ⅰ取纯策略 k 时,等价于混合策略 x {x1, x2 ,, xm} S1*
其中 xi

1,i k 0,i k

矩阵对策的混合策略
2、最优混合策略 定理2:矩阵对策G在混合策略意义下有解的充要条件是:
存在 x* S1*, y* S2* ,使得对于任意 x S1*, y S2* ,有
第六章 对策论
基本概念
对策论又称博弈论,研究冲突对抗条件下最优决策问题
的理论。
策略形势:不完全竞争条件下的对抗行为,各方收益由
自身行为和其他方行为共同决定。
基本要素
局中人(I ):有权决定自己行动方案的对策参加者,理性人 策略集(S ):供局中人选择的实际可行完整行动方案的集合,
一局对策中,各局中人选定策略的集合,称局势
据定义 1,不存在纯策略意义下的解。 无鞍点
例:
G

{S1,
S2;
A} ,其中AFra bibliotek3 5
63 44
56
局中人Ⅰ和Ⅱ在策略集 S1 和 S 2 中采取每一策略都有一
定的可能性,即有一定的概率,则构成了混合策略。
矩阵对策的混合策略
1、混合策略
定义 2:设矩阵对策 G {S1, S2; A},其中 S1 {1,2,,m} ,
,,
yn}
S
* 2
是局中人Ⅱ的一个混合策略;
局中人Ⅰ选取
x S1* 使得保证赢得不少于 v1

max min
xS1* yS2*
E(x,
y) ,
局中人Ⅱ力争保证自己的所失至多 v2

min max E(x, y) 。
yS2* xS1*
矩阵对策的混合策略
5、最优混合策略
定义 4:设 G*
a11 a12 a1n

A


a21
a22

a2n


am1
am2

amn

Ⅰ的赢得矩阵 或Ⅱ的支付矩阵
Ⅱ的赢得矩阵为-A 。
矩阵对策的纯策略
1、矩阵对策的一般表达
如果局中人Ⅰ、Ⅱ的策略集为 S1, S2 ,局中人Ⅰ的赢得矩阵
为 A,则矩阵对策的模型为
G {, ; S1, S2; A} 或 G {S1, S2; A}

1)+ 2
9 2
取 x* {1 ,3}, y* {1 ,1}
44
22
则 E(x*, y*) 9 ,E(x*, y) E(x, y*) 9 ,即 E(x, y*) E(x*, y*) E(x*, y)
2
2
故 x* {1 ,3}, y* {1 ,1} 分别为局中人 I 和局中人 II 的最优混合策略,

{S1*
,
S
* 2
;
E}
是矩阵对策
G
{S1, S2; A}的混合扩充。
如果
max min
xS1* yS2*
E(x,
y)

min
yS2*
max
xS1*
E(x,
y)
,其值为 VG
,则称
VG 为
对策 G* 的值,相应的混合局势 (x*, y*) 称为在混合策略意义下的
解, x* , y* 分别称为局中人Ⅰ和Ⅱ的最优混合策略(最优策略)。
44
22
对策的值(局中人
I
的赢得期望值)VG

9 2

矩阵对策的解法
图解法
仅适用于赢得矩阵为2×n或m×2阶的矩阵对策问题。
例:求解矩阵对策G={S1 , S2 ; A} ,其中
A
相关文档
最新文档