工程训练大赛无碳小车说明及其计算
无碳小车设计说明书

沈阳航空航天大学无碳小车设计说明书参赛者:2010040601213杨艳超2010040601208肖庆敏2012-9-1摘要第二届全国大学生工程训练综合能力竞赛命题主题为“无碳小车”。
在设计小车过程中特别注重设计的方法,力求通过对命题的分析得到清晰开阔的设计思路;作品的设计做到有系统性规范性和创新性;设计过程中综合考虑材料、加工、制造成本等给方面因素。
我们借鉴了参数化设计、优化设计、系统设计等现代设计发发明理论方法;采用了MATLAB、PROE等软件辅助设计。
我们把小车的设计分为三个阶段:方案设计、技术设计、制作调试。
通过每一阶段的深入分析、层层把关,是我们的设计尽可能向最优设计靠拢。
方案设计阶段根据小车功能要求我们根据机器的构成(原动机构、传动机构、执行机构、控制部分、辅助部分)把小车分为车架、原动机构、传动机构、转向机构、行走机构、微调机构六个模块,进行模块化设计。
分别针对每一个模块进行多方案设计,通过综合对比选择出最优的方案组合技术设计阶段我们先对方案建立数学模型进行理论分析,借助MATLAB 分别进行了能耗规律分析、运动学分析、动力学分析、灵敏度分析。
进而得出了小车的具体参数,和运动规律。
接着应用PROE软件进行了小车的实体建模和部分运动仿真。
小车大多是零件都可以通过手工加工出来。
对于塑料会采用自制的‘电锯’切割。
因为小车受力都不大,因此大量采用胶接,简化零件及零件装配。
调试过程会通过微调等方式改变小车的参数进行试验,在试验的基础上验证小车的运动规律同时确定小车最优的参数。
关键字:无碳小车参数化设计软件辅助设计微调机构灵敏度分析一、竞赛基本内容1.本届竞赛命题主题本届竞赛命题主题为“无碳小车”。
命题与高校工程训练教学内容相衔接,体现综合性工程能力。
命题内容体现“创新设计能力、制造工艺能力、实际操作能力和工程管理能力”四个方面的要求。
2.小车功能设计要求给定一重力势能,根据能量转换原理,设计一种可将该重力势能转换为机械能并可用来驱动小车行走的装置。
无碳小车设计说明书

《理论力学》实践课设计说明书题 目: 无 碳 小 车年 月系 部 机械与汽车工程系 班 级 1213班组长沈琛 联系电话姓名学号承担工作沈琛 12316周翔何振涛钟彪 12316351董传能一、设计概述1. 作品取名:清新之翼2. 徽标设计:巨大的圆环象征着完美无缺,羽翼象征着执着的追求,飞翔的箭则象征着永不停留一往直前的决心,绿色则寓意无限的活力与生命力,还有与环保同行。
3. 作品创意:所有的动力动力来自荷载重物,纯机械结构,无碳排放;在重物下落阶段,增加了一动滑轮,使得做功行程加长,并合理利用了扭矩。
并且设计该小车的前进过程是静止—加速—匀速—减速的过程。
启动时转矩稍大于阻力使小车启动,启动后转矩与阻力平衡小车匀速前进。
当重物下落完毕时小车靠惯性减速行驶。
二、设计思路和方案1. 设计思路根据能量守恒定律,物块下落的重力势能直接转化为小车前进的动能时,能量损失最少,所以小车前进能量来源直接由重物下落过程中减少的重力势能提供为宜。
2、设计方案(1)、基本结构1.车架车架不用承受很大的力,精度要求低。
考虑到重量加工成本等,车架采用木材加工制成的三角底板式。
2.原动机构原动机构的作用是将重块的重力势能转化为小车的驱动力。
能实现这一功能的方案有多种,就效率和简洁性来看绳轮最优。
小车对原动机构还有其它的具体要求。
1.驱动力适中,不至于小车拐弯时速度过大倾翻,或重块晃动厉害影响行走。
2.到达终点前重块竖直方向的速度要尽可能小,避免对小车过大的冲击。
同时使重块的动能尽可能的转化到驱动小车前进上,如果重块竖直方向的速度较大,重块本身还有较多动能未释放,能量利用率不高。
3.由于不同的场地对轮子的摩擦摩擦可能不一样,在不同的场地小车是需要的动力也不一样。
在调试时也不知道多大的驱动力恰到好处。
因此原动机构还需要能根据不同的需要调整其驱动力。
4.机构简单,效率高。
基于以上分析我们提出了输出驱动力可调的绳轮式原动机构。
工程训练大赛无碳小车说明及其计算

谢谢大家!
•
安全在于心细,事故出在麻痹。20.10. 2420.1 0.2419:04:1519 :04:15 October 24, 2020
•பைடு நூலகம்
踏实肯干,努力奋斗。2020年10月24 日下午7 时4分2 0.10.24 20.10.2 4
•
追求至善凭技术开拓市场,凭管理增 创效益 ,凭服 务树立 形象。2 020年1 0月24 日星期 六下午7 时4分1 5秒19:04:1520 .10.24
凸轮机构、连杆机构、气动装置、液动装置、电动装置
等等
但是注意:为减少效率损失,传动步骤越少越好
六、结构分析
主要考虑:能量转化机构、传动机构、转向机构、车体结构;
非常多,而且繁杂。 注意:命题中是单轮导向,不要拘泥于资料文献的各种框框,要讲究突破思维定势、 小巧灵活。能够完成单轴摆动即可。
六、结构分析
主要考虑:能量转化机构、传动机构、转向机构、车体结构;
八仙过海各显神通 注意: 1.体积不要过大,.重量要轻; 2.重心要低; 3.轮距适中,注意保持稳定性; 4.根据“神牛”结构,可不必使用差速器;
ω P
r v1 v1
vv33
2L
5
4
2
1
3
H2 差速器
•
树立质量法制观念、提高全员质量意 识。20. 10.2420 .10.24Saturday , October 24, 2020
Φ
G
G=1kg
五、计算分析
力约束—— (克服运行阻力的最小值和不打滑的最大值)
克服运行阻力: 车体运行阻力包括惯性阻力和静阻力 惯性阻力(N)=P0 ×a (小车启动加速度) 静阻力一般包括基本阻力、弯道阻力、坡道阻力、气流阻力等
无碳小车设计说明书

北华航天工业学院第四届全国大学生工程训练综合能力竞赛无碳小车设计说明书参赛者:夏洪伟孙传远肖洋指导老师:韩伟娜第四届全国大学生工程训练综合能力竞赛无碳小车设计说明书参赛者:夏洪伟、孙传远、肖洋指导老师:韩伟娜目录第1章方案设计..................................................................................................... - 1 -1.1 车架................................................................................................................ - 3 -1.2 原动机构...................................................................................................... - 3 -1.3 传动机构...................................................................................................... - 4 -1.4 转向机构........................................................................................................ - 7 -1.5 行走机构........................................................................................................ - 9 -1.6 微调机构........................................................................................................ - 9 -第2章技术设计................................................................................................... - 11 -2.1运动学分析模型........................................................................................... - 11 -2.2参数确定....................................................................................................... - 13 -2.3零部件设计................................................................................................... - 13 -附录................................................................................................................... - 15 -第1章方案设计通过对小车的功能分析,“无碳小车越障竞赛”通常主要由车体、能量转换、传动和转向等部分组成。
(无碳小车)工程训练综和能力竞赛方案书

“无碳小车”方案书2010/10/10方案目录一:任务和要求 (2)1.1命题要求部分 (2)1.2自我发挥部分 (3)二:方案设计及论证 (4)2.1转向轮及轨道设计 (4)2.2动力系统设计 (7)2.3小车整体及外观设计 (8)2.4最终方案 (8)三:材料及成本分析 (9)3.1小车整体材料种类 (9)3.2小车各部位材料选择 (9)3.3小车整体成本分析 (9)四:方案总结 (10)一:任务和要求1.1命题要求部分命题主题:“无碳小车”竞赛命题要求:①小车要求采用三轮结构(1个转向轮,2个驱动轮),具体结构造型以及材料选用均由参赛者自主设计完成。
要求满足:①小车上面要装载一件外形尺寸为¢60×20 mm的实心圆柱型钢制质量块作为载荷,其质量应不小于750克;在小车行走过程中,载荷不允许掉落。
②转向轮最大外径应不小于¢30mm。
②给定重力势能为5焦耳(取g=10m/s2),竞赛时统一用质量为1Kg的重块(¢50×65 mm,普通碳钢)铅垂下降来获得,落差500±2mm,重块落下后,须被小车承载并同小车一起运动,不允许掉落。
小车前行过程中完成的所有动作所需的能量均由此能量转换获得,不可使用任何其他的能量形式。
③障碍物放置要求:每间隔1米,放置一个直径20mm、高200mm的弹性障碍圆棒。
小车结构示意图:小车运动轨迹示意图:第二阶段附加要求:参赛队,需取下小车原有的转向轮,重新制作小车的转向轮。
转向轮的制作采用根据原设计图纸和竞赛组委会的指定要求,经计算机三维造型后,使用快速成型机制作、车床加工及钳工方法完成,最终完成小车转向轮的组装和调试,总加工时间为4小时左右。
成绩评定:根据综合工程管理方案、设计方案、加工工艺方案、成本分析方案、小车徽标设计、转向轮加工成本及质量(是否符合图纸要求)、现场加工质量、小车前行距离及答辩成绩等得分,经加权公式计算最终得分1.2自我发挥部分1)小车的前轮(即转向轮)设计。
无碳小车设计说明

作品设计说明书摘要我们把小车的设计分为三个阶段:方案设计、技术设计、制作调试;通过每一阶段的深入分析、层层把关,是我们的设计尽可能向最优设计靠拢;方案设计阶段根据小车功能要求我们根据机器的构成原动机构、传动机构、执行机构、控制部分、辅助部分把小车分为车架、原动机构、传动机构、转向机构、行走机构五个模块,进行模块化设计;分别针对每一个模块进行多方案设计,通过综合对比选择出最优的方案组合;我们的方案为:车架采用三角底板式、原动机构采用了带轮轴、传动机构采用带轮、转向机构采用凸轮机构、行走机构采用双轮驱动;技术设计阶段我们先对方案建立数学模型进行理论分析,借助MATLAB分别进行了能运动学分析和动力学分析,进而得出了小车的具体参数,和运动规律y 以及确定凸轮的轮廓曲线;接着应用Solidworks软件进行了小车的实体建模和部分运动仿真;在实体建模的基础上对每一个零件进行了详细的设计,综合考虑零件材料性能、加工工艺、成本等;小车大多零件是标准件,可以购买,同时除部分要求加工精度高的部分需要特殊加工外,大多数都可以通过手工加工出来;调试过程会通过微调等方式改变小车的参数进行试验,在试验的基础上验证小车的运动规律同时确定小车最优的参数;关键字:无碳小车参数化设计软件辅助设计目录小车改进方向 (21)一绪论命题主题根据第四届全国大学生工程训练综合能力竞赛主题为“无碳小车越障竞赛”;命题与高校工程训练教学内容相衔接,体现综合性工程能力;命题内容体现“创新设计能力、制造工艺能力、实际操作能力和工程管理能力”四个方面的要求;小车功能设计要求给定一重力势能,根据能量转换原理,设计一种可将该重力势能转换为机械能并可用来驱动小车行走的装置;该自行小车在前行时能够自动避开赛道上设置的障碍物间隔范围在700-1300mm,放置一个直径20mm、长200mm的弹性障碍圆棒;以小车前行距离的远近、以及避开障碍的多少来综合评定成绩;给定重力势能为4焦耳取g=10m/s2,竞赛时统一用质量为1Kg的重块 50×65 mm,普通碳钢制作铅垂下降来获得,落差400±2mm,重块落下后,须被小车承载并同小车一起运动,不允许掉落;要求小车前行过程中完成的所有动作所需的能量均由此能量转换获得,不可使用任何其他的能量形式;小车要求采用三轮结构1个转向轮,2个驱动轮,具体结构造型以及材料选用均由参赛者自主设计完成;小车整体设计要求小车设计过程中需要完成:结构方案设计、工艺方案设计、经济成本分析和工程管理方案设计;命题中的工程管理能力项要求综合考虑材料、加工、制造成本等各方面因素,提出合理的工程规划;设计能力项要求对参赛作品的设计具有创新性和规范性;命题中的制造工艺能力项以要求综合运用加工制造工艺知识的能力为主;小车的设计方法小车的设计一定要做到目标明确,通过对命题的分析我们得到了比较清晰开阔的设计思路;作品的设计需要有系统性规范性和创新性;设计过程中需要综合考虑材料、加工、制造成本等给方面因素;块化尽量车架车架不用承受很大的力,精度要求低;考虑到重量加工成本等,车架采用塑料加工制作成三角式底板;原动机构原动机构的作用是将重物的重力势能转化为小车的驱动动能;能实现这一功能的方案有多种,就效率和简洁性来看绳轮最优;小车对原动机构还有其它的具体要求;1.驱动力适中,不至于小车拐弯时速度过大倾翻,或重物晃动厉害影响行走;2.到达终点前重物竖直方向的速度要尽可能小,避免对小车过大的冲击;同时使重物的势能尽可能的转化到驱动小车前进的动能,如果重物竖直方向的速度较大,重物本身还有较多势能未释放,能量利用率不高;3.机构简单,效率高,便于加工制作;传动机构传动机构的功能是把动力和运动传递到转向机构和驱动轮上;要使小车行驶的更远及按设计的轨道精确地行驶,传动机构必需传递效率高、传动稳定、结构简单重量轻等;1.带轮具有结构简单、传动平稳、价格低廉、缓冲吸震等特点但其效率不是很高;2.齿轮具有效率高、结构紧凑、工作可靠、传动比稳定但价格较高,不易加工制作;因此在第一种方式不能够满足要求的情况下可优先考虑使用齿轮传动;转向机构转向机构是本小车设计的关键部分,直接决定着小车的功能;转向机构也同样需要尽可能的减少摩擦耗能,结构简单,零部件已获得等基本条件,同时还需要有特殊的运动特性;能够将旋转运动转化为满足要求的来回摆动,带动转向轮左右转动从而实现拐弯避障的功能;能实现该功能的机构有:凸轮摇杆、曲柄连杆等等;凸轮摇杆:优点:只需设计适当的凸轮轮廓,便可使从动件得到任意的预期运动,而且结构简单、紧凑、设计方便;缺点:凸轮轮廓加工比较困难;曲柄连杆:优点:运动副单位面积所受压力较小,且面接触便于润滑,故磨损减小;两构件之间的接触是靠本身的几何封闭来保持接触;缺点:一般情况下只能近似实现给定的运动规律或运动轨迹,且设计较为复杂;当给定的运动要求较多或较复杂时,需要的构件数和运动副数往往比较多,这样就使机构结构复杂,工作效率降低,发生自锁的可能性增加;综合上面分析我们选择凸轮摇杆作为小车转向机构的方案;行走机构行走机构即为三个轮子,轮子又厚薄之分,大小之别,材料之不同需要综合考虑;由摩擦理论知道摩擦力矩与正压力的关系为:对于相同的材料δ为一定值;而滚动摩擦阻力 : R N R Mf δ⋅==所以轮子越大小车受到的阻力越小,因此能够走的更远;由于小车是沿着曲线前进的,后轮必定会产生差速;对于后轮可以采用双轮同步驱动,双轮差速驱动;双轮同步驱动必定有轮子会与地面打滑,使小车运动产生偏差,但由于小车速度较小时,可以大大减小差速带来的影响;双轮差速驱动可以避免双轮同步驱动出现的问题,可以通过差速器或单向轴承来实现差速;但差速器的构造较为复杂,且由于单向轴承存在侧隙,在主动轮从动轮切换过程中出现误差导致运动不准确;综上所述行走机构的轮子应有恰当可调的尺寸,经过加工和成本的综合考虑我们选用双轮同步驱动;三 技术设计技术设计阶段的目标是完成详细设计确定个零部件的的尺寸;设计的同时综合考虑材料加工成本等各因素;建立数学模型通过对小车建立数学模型,可以实现小车的参数化设计和优化设计,提高设计的效率和得到较优的设计方案,充分发挥计算机在辅助设计中的作用;因此,我们采用了Matlab软件辅助设计;小车后轮直径计算:function D2 =fD2LC,n%D2 小车后轮直径%LC 小车行驶一个周期的路程%n 小车行驶一个周期,后轮转的圈数.%确定n之后,也就确定了后轮轴与凸轮轴的转速比为n:1 D2=LC/pi/n;End推杆伸长量计算:function Delta = fDeltatheta,yT%yT 导向杆长%Delta 凸轮的推杆伸长量假定伸长为正,缩短为负%theta 小车前轮转角假定左转为正Delta=yTsintheta;end小车路径上某点的曲率半径计算:function r = frx0,r0,l%fr 求小车路径上某点的曲率半径%r0 零点处曲线的纵坐标,r0-y/2>10,y为两后轮间距%l 两个障碍物间距,700~1300% fx01,fx02 分别为fx0的一阶导,二阶导fx01=r0pisinpix0/l/l;fx02=r0pi^2cospix0/l/l^2;r=1+fx01^2^3/2/fx02;end小车前轮转角计算:function theta = fthetar,x%theta 小车前轮转角假定左转为正%r 小车路径上某点的曲率半径%x 前轮轴与后轮轴间距theta=atanx/r;end小车行驶一个周期的路程计算:function LC = fLCr0,l%运用第一类曲线积分,当被积函数为1时,即求曲线长度%r0 零点处曲线的纵坐标,r0-y/2>10,y为两后轮间距%l 两个障碍物间距,700~1300%LC小车行驶一个周期的路程x0=sym'x0';%r0=sym'r0'; l=sym'l'; %使结果带有r0和l这两符号f=sqrt1+r0^2pi^2sinpi/lx0^2/l^2;LC=intf,0,2l;LC=doubleLC; %将结果转化为数值;结果带有符号时不能使用end凸轮轮廓曲线绘图:l=800; %两个障碍物间距,700~1300r0=150; %零点处曲线的纵坐标,r0-y/2>10,y为两后轮间距x=200; %前轮轴与后轮轴间距yT=30; %yT 导向杆长rj=10; %凸轮基圆半径x1=72; %凸轮轴轴1与前轮轴水平间距x2=72; %轴1与轴2间距x3=48; %轴2与轴3间距x0=0;r=frx0,r0,l;theta=fthetar,x;maxDelta=fDeltatheta,yT; %maxDelta 推杆最大伸长或缩短的量maxDeltaxT=x1-rj-maxDelta; %xT凸轮的推杆长度xT i=1;for alpha=0::2pix0=alphal/pi;r=frx0,r0,l;theta=fthetar,x;Delta=fDeltatheta,yT;TL=rj+maxDelta+Delta;ni=alpha;mi=TL;i=i+1;%hold on;%polaralpha,TL; %描点法画出凸轮轮廓%plotx0,Delta; %查看Delta推杆伸长缩短量随x0变化而变化的情况%plotx0,theta; %查看theta前轮转角随x0变化而变化的情况%hold off;endpolarn,m;%axis equal; %描点时,使横纵坐标单位间距相等参数确定单位:mm 前轮轴与后轮轴间距x=200导向杆长x=30凸轮基圆半径R=10凸轮轴轴1与前轮轴水平间距x=80轴1与轴2间距x=72轴2与轴3间距x=48零部件设计1.需加工的零件:a.驱动轴、传动轴b.车轮c.轴承座d.底板e.凸轮2.可购买的标准件:内圈Φ10的深沟球轴承、7个不同弹性模量弹簧、M8方形内六角螺栓3.部分加工零件二维图小车运动仿真分析为了进一步分析本方案的可行性,我们利用了Solidworks进行了动态仿真;四小车制作调试及改进小车制作流程小车调试方法小车的调试是个很重要的过程,有了大量的理论依据支撑,还必须用大量的实践去验证;小车的调试涉及到很多的内容,如车速的快慢,绕过障碍物,小车整体的协调性等;1小车的速度的调试:通过小车在指定的赛道上行走,测量通过指定点的时间,得到多组数据,从而得出小车行驶的速度,通过试验,发现小车后半程速度较快,整体协调性能不是太好,于是车小了绕绳驱动轴,减小过大的驱动力同时也增大了小车前进的距离;2小车避障的调试:虽然本组小车各个机构相对来说较简单,但损耗能量稍多,同时避障也不是很好,可以通过改变摇杆与凸轮的接触实现微量调节;小车改进方法1.结构优化:为了提高能量的利用效率,在不影响使用条件的情况下,可以削减不必要的部分;2.机构优化:为了提高能量的转换效率,在稍微增加成本的情况下,可以考虑使用齿轮传动;五评价分析小车优缺点优点:1小车机构简单,加工制作方便;2采用塑料材质,质量较轻,有利于行驶较远的距离;缺点:小车精度要求高,使得加工零件成本高,由于差速的存在影响小车的绕弯以及能量的有效利用率;改进方向小车主要的缺点是精度要求非常高和存在差速问题,相信改进小车的精度和差速问题,,小车便能达到很好的行走效果;。
无碳小车说明书

目录1.摘要 (1)2.引言 (1)3目的 (1)4工作原理和设计理论推导 (1)4.1总体结构 (1)4.2设计方案介绍与计算分析 (2)4.2.1无碳小车模块机构介绍 (3)5. 设计总结 (8)6.附件1.摘要本作品是依据工程训练综合能力竞赛命题主题“无碳小车”,提出一种“无碳”方法,带动小车运行,即给定一定重力势能,根据能量转换原理,设计一种可将该重力势能转化为机械能并用来驱动小车行走的装置。
该小车通过微调装置,能够实现自动走“S"字直线绕障。
此模型最大的特点是通过两个不完全齿轮驱动前轮摆动,进行可调整的周期性摆动,使前轮的摆动节拍具有可调性。
本文将对无碳小车的设计过程,功能结构特点等进行详细介绍,并介绍创新点。
2.引言随着社会科技的发展,人们的生活水平的提高,无碳对于人们来说,显得越来越重要,建设无碳社会,使得生活更加的环保,没有任何的污染。
节能、环保、方便、经济,是现代社会所提倡的。
现在许多发达国家都把无碳技术运用到各个领域,像交通,家具等,这也是我国当今所要求以及努力的方向。
针对目前这一现状,我们设计了无碳小车模型,用重力势能转化为机械能提供了一种全新的思路,以便更好的解决以上问题。
3目的本作品设计的目的是围绕命题主题“无碳小车”,即不利用有碳资源,根据能量转化原理,利用重力势能驱动带动具有方向控制功能的小车模型。
这种模型比较轻巧,结构相对的简单,能够成功的将重力势能转化为小车的动能,从而完成小车前行过程中的所有动作。
4工作原理和设计理论推导4.1总体结构图 1 无碳小车总体结构无碳小车模型的主要机构有驱动机构、转向机构、行走机构及微调机构。
主要部件如下图2所示为小车整体模型。
图 2 无碳小车模型4.2设计方案介绍与计算分析4.2.1无碳小车模块机构介绍1.驱动机构本方案采用绳轮作为驱动力转换机构。
我们采用了梯形轮使能量转化过程中有更合适的转矩使驱动力适中,不至于小车拐弯时速度过大倾翻,或重块晃动厉害影响行走。
机械设计大赛-无碳小车-设计说明书

目录前言第1章、绪论 (4)1.1 参赛主题 (4)1.2 功能分析 (4)1.3 设计方法 (4)第2章、轨迹和行走机构选型与计算 (6)2.1 轨迹和行走机构选型 (6)2.2 轨迹参数计算 (7)第3章、控制机构选型与计算 (10)3.1 控制机构选型 (10)3.2 放大机构的设计 (12)3.3 凸轮的设计 (13)第4章、传动机构选型与计算 (16)4.1 传动机构选型 (16)4.2 齿轮系的设计 (16)4.2 尺寸参数校核 (17)第5章、动力机构选型与计算 (19)5.1 绕绳轮安装位置分析 (19)5.2 力分析 (20)5.3 前轮转向阻力矩的计算 (23)5.4 弹簧劲度系数的计算 (23)5.5 尺寸参数的获取 (23)5.6 质量属性参数的确定 (26)5.7 参数的计算 (27)5.8 绕绳轮最大半径的确定 (29)第6章、微调机构简介 (30)第7章、误差分析及效率计算 (31)7.1 误差分析 (31)7.1.1 设计误差 (31)7.1.2 参数误差 (31)7.1.3 加工与装配误差 (31)7.2 传动效率的计算 (32)7.2.1 动力机构效率的计算 (32)7.2.2 传动机构效率的计算 (33)7.2.3 控制机构效率的计算 (34)第8章、仿真分析 (35)第9章、综合评价及改进方案 (37)9.1 综合评价 (37)9.2 改进方案 (39)第10章、参考文献 (40)第11章、附录 (40)11.1 机构运动简图及装配图 (40)11.2 小车三维装配图及爆炸图 (42)第1章、绪论1.1 参赛主题第三届全国大学生工程训练大赛的竞赛主题为“无碳小车越障竞赛”。
这次竞赛包含两个竞赛项目。
第一个项目与往届竞赛相同,为小车走“S”形线路绕杆。
竞赛项目二为小车走“8”字形线路绕杆。
通过商量,我们选择的竞赛项目为项目二。
1.2功能分析根据本次竞赛规定,竞赛项目二是小车在半张标准乒乓球台(长1525mm、宽1370mm)上,绕相距一定距离的两个障碍沿8字形轨迹绕行,绕行时不可以撞倒障碍物,不可以掉下球台。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Φ
F0= G×Φ /D
G
G=1kg
五、计算分析
效率分析—— 小车总效率η ,包括 机械传动效率; 能量转换效率 等
部分机械传动效率见右表
解决方案 一、小车的匀速运动过程
• 传输功率=转矩X角速度 ,通过一系列的齿 轮,带轮,转轴产生转速比,使作用在后 轮的转矩和阻尼转矩平衡,物块低速匀速 下落。
• 在后轮转轴上安放多个不同半径的带轮, 微调转矩,适应不同的环境下阻力的不同。
• 制作多套后轮,微调转矩。改变后轮时, 也要相应的改变转向传动轮的大小,同时 保持车身水平,适当调整前轮转轴的长度。 (现场可实现)
•
二、小车的起始和结束过程
• 梯形原动轮的设计实现小车的起动 和物块的从低速到减速下落。减小 因碰撞而损失的能量。
梯形原动轮
阻力 速度
• 1.在起始时原动轮的转动半径较大,起动转 矩大,有利起动。
• 2.起动后,原动轮半径变小,转速提高,转 矩变小,和阻力平衡后小车匀速运动。
• 3.当物块距小车很近时,原动轮的半径再次 变小,绳子的拉力不足以使原动轮匀速转动, 但是由于物块的惯性,仍会减速下降,
能量转换过程中的效率损失 练习查找资料
六、结构分析
主要考虑:能量转化机构、传动机构、转向机构、车体结构;不主张遥控。
重力势能转换为动能 动能和势能总称为机械能,包括: (1)动能:物体由于运动而具有的能,叫做动能,动能的标志是运动。 (2)重力势能:物体由于被举高而具有的能量叫做重力势能,重力势能的标志是举高。 (3)弹性势能:物体由于发生了弹性形变而具有的能量叫做弹性势能,弹性势能的标 志是弹性形变。
凸轮机构、连杆机构、气动装置、液动装置、电动装置
等等
但是注意:为减少效率损失,传动步骤越少越好
六、结构分析
主要考虑:能量转化机构、传动机构、转向机构、车体结构;
非常多,而且繁杂。 注意:命题中是单轮导向,不要拘泥于资料文献的各种框框,要讲究突破思维定势、 小巧灵活。能够完成单轴摆动即可。
原动轮的半径变小,总转速 小车。
• 在整个过程中,重力势能完 全转换为小车运动过程的损 耗。使小车行进的更远.
4.细节设计
• 车身 • 车轮 • 轴承 以减小小车重力和阻力为目的
一. 命题 二. 设计要求 三. 制作要求 四. 比赛要求 五. 计算分析
Φ
G
G=1kg
五、计算分析
力约束—— (克服运行阻力的最小值和不打滑的最大值)
克服运行阻力: 车体运行阻力包括惯性阻力和静阻力 惯性阻力(N)=P0 ×a (小车启动加速度) 静阻力一般包括基本阻力、弯道阻力、坡道阻力、气流阻力等
G=1kg
基本阻力(N)=P0 g w 式中:g 重力加速度;w 运行阻力系数,实验得出经验数据,约0.01。
四、比赛要求
集中参赛:(与预赛的时间、地点关系?)
四、比赛要求
总成绩:
五、计算分析
力分析—— 小车质量P0 ,重力P0 g=地面支反力N0
小车驱动力矩M=等效力偶F0×D/ 2 (小车驱动力)F0=2M/D M由G获取
例如:M= G×Φ / 2= F0×D/ 2(暂不计效率) 此时 F0= G×Φ /D
3.驱动
• 原理:绳拉力为动力。将物块下落的势能 尽可能多的转换为小车的动能,进而克服 阻力做功。物块在下落的过程中不可避免 的要与小车发生碰撞,碰撞过程必然要有 能量损失,所以要解决的问题:1下降过程 中,尽可能的降低下落的速度;2在将要下 降到小车时,改变转速比,使物块减速下 落,进一步减少碰撞损耗。
转化方法很多,如:直接转化——重力势能 带动轮轴转动; 间接转化——重力势能 其它能量 带动轮轴转动 蓄能——重力势能 各种蓄能装置 带动轮轴转动;
但是注意:为减少能量损失,转化步骤越少越好
六、结构分析
主要考虑:能量转化机构、传动机构、转向机构、车体结构;
包括:
齿轮传动机构、蜗轮蜗杆传动机构、带传动机构、链传动机构、绳传动机构、
二、设计要求
1.驱动力:重力势能,1kg(Q235, Φ50mm*65mm ),落差高500mm; 不准使用任何其它的能量形式
2.车结构:三轮,1轮导向,2轮驱动; 3.转向轮:最大外径≥Φ30mm; 4.配载荷:不小于400g、外型Φ60mm*20mm;
小车其它具体结构和材料选用不作要求。
三、制作要求
F0 > P0 (a+ g w )
(注意,命题中没有运行时间要求)
地面对小车摩擦阻力Ff , Ff = P0 g ×f(摩擦系数) 不打滑条件 F0 < Ff = P0 g ×f
五、计算分析
做功分析—— 设:S为小车行走距离,mm,η为小车总效率,
F0 ×S =G×500mm×η 则: S =G×500mm×η / F0
六. 结构分析
一、命题
主 题:无碳小车(三轮) 考核内容:设计、工艺、成本分析、工程管理。 作品内容:1.“无碳小车”实物作品;
2.加工制作及组装过程的视频录像(10分钟); 3.带有徽标的载荷质量块(徽标说明); 4.作品的设计说明书(word、.ppt 文稿);
5.工程管理方案、加工工艺方案、成本分析方案。等
无碳小车设计说明
• 构架部分 • 转向部分 • 驱动部分 • 细节说明
1.构架部分
• 小车采用三轮结构(1个转向,2个驱动) • 重物落差0.5米物重1kg.
2.转向
• 转向机构与驱动轴相连
• 小车的转向轮周期性的摆动
• 计算传动机构,使小车行使200厘米时,转 向轮摆动一个周期。
• 确定连杆在转盘有位置,尽量减小转向轮 的摆动角度,从而使小车先驱的实际距离 变大。确定初始位置与摆轮角度的关系。
1.校内制作:自主制作全部零件。 2.比赛现场制作:(进入第二竞赛环节后)
小车转向轮 (1)计算机三维造型; (2)加工制作,方法可包括:
快速成型机制作、 机床加工、 钳工方法 等; (3)组装调试。
四、比赛要求
预赛: 在指定赛道,比赛绕过障碍多少和行走距离。文件原文——
四、比赛要求
集中参赛:(与预赛的时间、地点关系?)