结构化学复习提纲 ()

合集下载

结构化学复习提纲(精心整理)

结构化学复习提纲(精心整理)

结构化学复习提纲第一章量子力学基础了解量子力学的产生背景−黑体辐射、光电效应、玻尔氢原子理论与德布罗意物质波假设以及海森堡测不准原理,掌握微观粒子的运动规律、量子力学的基本假设与一维势阱中粒子的Schrödinger方程及其解。

重点:微观粒子的运动特征和量子力学的基本假设。

一维势阱中粒子的Schrödinger方程及其解。

1. 微观粒子的运动特征a. 波粒二象性:能量动量与物质波波长频率的关系ε = hνp = h/λb. 物质波的几率解释:空间任何一点物质波的强度(即振幅绝对值的平方)正比于粒子在该点出现的几率.c. 量子化(quantization):微观粒子的某些物理量不能任意连续取值, 只能取分离值。

如能量,角动量等。

d. 定态:微观粒子有确定能量的状态玻尔频率规则:微观粒子在两个定态之间跃迁时,吸收或发射光子的频率正比于两个定态之间的能量差。

即e. 测不准原理: 不可能同时精确地测定一个粒子的坐标和动量(速度).坐标测定越精确(∆x =0),动量测定就越不精确(∆px = ∞),反之动量测定越精确(∆px =0),坐标测定就越不精确 (∆x = ∞)f. 微观粒子与宏观物体的区别: (1). 宏观物体的物理量连续取值;微观粒子的物理可观测量如能量等取分离值,是量子化的。

(2). 微观粒子具有波粒二象性,宏观物体的波性可忽略。

(3). 微观粒子适用测不准原理,宏观物体不必。

(4). 宏观物体的坐标和动量可以同时精确测量,因此有确定的运动轨迹,其运动状态用坐标与动量描述;微观粒子的坐标和动量不能同时精确地测量,其运动没有确定的轨迹,运动状态用波函数描述。

(5). 宏观物体遵循经典力学;微观粒子遵循量子力学。

(6). 宏观物体可以区分;等同的微观粒子不可区分。

2. 微观粒子运动状态的描述a. 品优波函数的三个要求: 单值连续平方可积波函数exp(i mθ) m的取值?b. 将波函数归一化θ = 0~2πc. 波函数的物理意义ψ|(x, y, z, t)|2d x d y d z表示在t时刻在空间小体积元(x~x+d x, y~y+d y, z~z+d z)中找到粒子的几率d. 波函数的单位*3. 物理量与厄米算符每个物理可观测量都可以用一个厄米算符表示a. 线性算符与厄米算符b. 证明id/dx是厄米算符*c. 写出坐标,动量,能量,动能,势能与角动量的算符d. 写出一个N电子原子,或N电子M核的分子的哈密顿算符电子体系的哈密顿算符(在国际单位或原子单位下)。

结构化学复习资料 第一部分 知识点(1)

结构化学复习资料 第一部分 知识点(1)

结构化学复习资料该复习资料大概分为2个部分吧,第一部分着重于每一章比较重要的知识点(第四章开始),并稍加补充和拓展;第二部分主要是一些习题。

刚开始学结构化学的时候感觉学起来云里雾里的,不过后来多做题目,找到了一些规律,这对理解结构化学的内容有一定的好处,也比较好上手吧。

还有一个重要的点就是同学们可以多参考下课外书,毕竟个人感觉光靠结构化学基础这本书可能会遇到许多问题,或者说许多时候看不懂的东西没有加以解释,结果很容易就会一个不懂接着下一个不懂的点这样子。

所以课外书显得挺重要的。

推荐一下一些参考资料吧☺1.徐光宪先生写的《物质结构》和麦松威先生写的《高等无机结构化学》,这两本书可以说是结构化学的进阶版,讲的很详细,许多课本上的问题都可以在这些书上找到答案。

2.陈慧兰编写的《高等无机化学》,这本书里对于配合物结构和性质部分讲的挺详细的,比如姜泰勒效应,晶体场是怎么裂分的等等,有兴趣的同学可以看一下。

3.结构化学基础第四版的习题答案。

这个大家都懂得☺。

里面提供了几乎所有课后习题的答案,这个对大家都很有帮助。

另外,每一章前面都附带了该章的内容提要,这在复习的时候可以当作大纲来使用,效果也是挺好的。

4.课件。

老师给的课件可以帮助大家从书里大段大段的文字里找出重点的内容。

另外提供了南开大学孙宏伟教授的结构化学课件以及一些习题和考试题,孙教授主页上还有视频课程可以看,大家有空的时候也可以看看视频复习一下。

5.数据库。

很多时候不是光看书就能解决的问题可以通过查找数据库得到答案,特别是知网上有很多关于结构化学的内容,有很多老师在上面发表了对于一些习题的简单解决方法,这对于解题来讲很有帮助。

数据库在这里也包括了百度文库,豆丁网等。

这些共享性的资料库可以说是一个习题库,找找题目练练手也是挺好的,虽然题目答案可能有误需要小心辨别。

大概就说这么多,下面进入正题。

可能在输入过程中会有错误,大家复习的时候如果发现有冲突还是按照老师的课件和课本为主。

高中化学复习提纲(全套)

高中化学复习提纲(全套)

高中化学复习提纲(全套)
第一章:化学基础知识复
1.1 基本概念
- 原子结构
- 元素周期表
- 分子结构
1.2 化学方程式
- 离子方程式
- 平衡方程式
- 氧化还原方程式
1.3 化学反应
- 酸碱反应
- 氧化还原反应
- 气体的化学反应
第二章:常见化学物质复
2.1 酸碱盐
- 酸的性质和分类
- 碱的性质和分类
- 盐的性质和分类
2.2 金属与非金属
- 金属元素和化合物的性质
- 非金属元素和化合物的性质
2.3 有机化合物
- 烃类
- 醇类
- 羧酸类
第三章:化学实验与实践3.1 基本实验操作
- 配制溶液
- 提取纯净物质
- 分离混合物
3.2 化学实验常用仪器
- 显色反应管
- 酸碱滴定仪
- 蒸馏器
3.3 常见化学实验
- 酸碱滴定实验
- 气体检验实验
- 溶液浓度实验
第四章:化学应用与相关知识4.1 化学工业
- 常见化学工业原料与产品
- 化学工业生产过程
4.2 环境与化学
- 大气污染与控制
- 水污染与控制
- 土壤污染与控制
4.3 化学与生活
- 食品添加剂
- 药物与药理学
- 日常用品的化学原理
以上是高中化学复习的全套提纲,涵盖了基础知识、常见化学物质、化学实验与实践以及化学应用与相关知识。

希望对你的复习有所帮助!。

基础结构化学--2015复习提纲汇总

基础结构化学--2015复习提纲汇总

《基础结构化学》(*要求了解的内容,一般不出现在考试中)第一章 量子力学基础 10%~12%一.微观粒子的基本特征1.量子,量子化,量子论(1). Planck 的能量子假设能量子: ε0=hνE=n* ε0h 为普朗克常数量子化:对于微观粒子,某些物理量如能量,动量的变化不再是连续的,这些物理量有最小单位,称为量子。

这些物理量则是量子的整数倍。

这就是量子论。

量子假设看起来简单,它的提出具有划时代的意义。

在量子论中,能量的表达是和经典的电磁理论是完全不同的。

,E n ν∝与频率和量子数相关。

在经典的电磁理论下,2E A ∝与振幅相关。

光电效应最终合理的解释就直接地说明在微观世界中,,E n ν∝与频率和量子数相关,而与振幅无关。

Einstein 光子假设的提出正好解释光电效应实验现象。

(2). Einstein 的光子假设a)光子,λh mc p ==,光的强度正比于单位内光子数(光子密度ρ)。

b)光电效应:20k 01h W E h mv 2νν=+=+ (光子碰撞电子) 功函数:0h W ν=电子的动能与光强度无关,与光子的频率成正比。

光电子动能的计算(包括光电离) 。

c)光子的波粒二象性,0220h m ,m =0c c εν==λh mc p ==。

(光子的粒子性)(3). Bohr 的原子结构理论定态假设:原子中的电子在某些特定的轨道上运动,电子有固定的能量,不辐射能量,处于稳定状态,也就是定态。

Bohr 的原子结构理论不仅提到能量量子化,还进一步提出角动量也是量子化。

拉曼谱系(n 1→的电子跃迁导致的发射光谱)2. 物质波由Einstein 光子学说,我们可得出光既具有波动性也具有粒子性,这两种特性并不矛盾。

在Einstein 光子假设中,λh mc p ==,就显示光具有波动性也具有粒子性。

德布罗意由类比法,提出物质也具有波动性。

实物粒子的波长 h pλ= 实物粒子具有波粒二象性,有时表现出粒子性,有时变为波动性。

结构化学教学资料结构化学复习提纲以及作业

结构化学教学资料结构化学复习提纲以及作业

结构化学复习提纲第一章:量子力学基础一、微观粒子的运动特征1、光与微观粒子都具有波粒二象性。

联系波动性和粒子性的两个公式及其应用。

2、物质波的统计解释。

3、不确定原理。

坐标和动量的不确定关系、物理意义及其应用。

4、宏观物体和微观粒子运动特征的区别。

二、量子力学基本假设1、波函数合格波函数的条件波函数的物理意义2、物理量和线性自厄算符如何判断线性算符、厄米算符?坐标、动量、能量算符的形式。

3、本征方程、本征函数、本征值确定本征函数和本征值;书写不同体系的薛定谔方程(单电子、多电子、双原子分子、多原子分子体系)4、态叠加原理及物理量的平均值计算物理量平均值5 pauli原理三、势箱中的粒子1、一维势箱中粒子的波函数、能级及其性质2、丁二烯和染料的π共轭体系3、三维势箱中粒子的能级及简并度第二章:原子结构与性质一、氢原子1、氢原子的波函数ψnlm2、氢原子的量子数及其物理意义n,l,m,s,m s,j,m j3、氢原子波函数的径向分布图和角度分布图特征及节面个数二、多电子原子1、自洽场方法和中心力场法处理多电子原子的基本思想以及异同2、电离能、电子结合能、原子轨道能的物理意义及相互关系;3、Slater屏蔽常数法计算原子轨道能4、多电子原子的基态电子排布三、原子光谱1、原子的量子数L m L S m S J m J 的物理意义2、光谱项和光谱支项的推求要求:单电子原子非等价多电子原子3、组态的能级分裂电子相互作用——光谱项——自旋-轨道相互作用——光谱支项——磁场中——分裂为微观能态4、谱项能级高低的判断,以及基谱项的推求要求:单电子原子非等价多电子原子、等价多电子原子第三章:分子对称性1、分子的对称操作与对称元素2、群的定义3、分子点群4、分子对称性与偶极矩、旋光性的关系给定分子判断分子点群以及是否具有偶极矩和旋光性第四章:双原子分子结构与性质1、H2+的分子轨道:成键与反键轨道特征,共价键的本质2、分子轨道理论分子轨道理论要点;成键、反键、非键分子轨道的概念及性质;σ,π,δ成键与反键轨道的特点和形状;3、简单双原子分子轨道、能级顺序以及基态电子组态(同核、同核s-p混杂、异核)第五章:多原子分子结构与性质1、价层电子对互斥理论2、杂化轨道理论:常见的杂化轨道将杂化轨道理论与价层电子对互斥理论结合判断分子的几何构型与中心原子的杂化3、HMO理论HMO理论要点;分子轨道、能级、离域能、电荷密度、键级、自由价、分子图、反应活性;4、离域 键和共轭效应表示方法;酸碱性、化学反应的判断5、前线轨道理论判断反应条件和过程6、分子轨道对称守恒(了解)第六章:结构分析基础1、分子光谱分子内部运动方式与分子光谱之间的关系2、光电子能谱紫外光电子能谱、X射线光电子能谱与分子轨道性质间的关系3、磁共振1H-NMR给出的信息:峰的组数、化学位移、峰分裂数、峰面积作业11、 用透射电子显微镜摄取某化合物的选区电子衍射图,加速电压为200kV ,计算电子加速后运动时的波长。

结构化学讲义

结构化学讲义

第一章 量子力学基础和原子结构第1节 量子力学建立的实验和理论背景㈠ 黑体辐射问题和普朗克的量子假说 1. 黑体辐射问题黑体可以吸收全部的外来辐射,同时黑体在所有温度下不断地向外辐射电磁波。

在试图对黑体辐射的能量分布曲线进行理论解释时,人们发现,在经典物理的范畴内无法解决这个问题。

2. 普朗克的量子假说为解释黑体辐射问题,普朗克假设:能量在发射和吸收的时候,不是连续不断,而是分成一份一份的。

而经典物理则认为:一切自然的过程都是连续不断的。

①把黑体看作是由不同频率的谐振子组成。

(谐振子是进行简谐运动的振子,其运动可用正弦或余弦函数描述)②谐振子的能量具有最小单位ε0,称为能量子(后称为量子),00νεh =其中,h =6.626×10-34 J ⋅s 称为普朗克常数;ν0是谐振子的振动频率。

③谐振子的能量E 只能是最小单位ε 0的整数倍,而不能是其它值,...,,n n E 3210==ε④谐振子吸收或发射能量时,能量的变化为()()01201212νε∆h n n n n E E E --=-==即,能量的吸收和发射不是连续的,必须以量子的整数倍一份一份的进行。

所谓量子化是指物理量不连续变化。

㈡ 光电效应和爱因斯坦的光量子论 1. 光电效应光电效应是指,光照在金属表面上时,金属中的电子从光获得足够的能量而逸出金属表面的现象。

从金属表面逸出的电子称为光电子,由光电子形成的电流称为光电流。

2. 光电效应的实验事实①对于特定的金属,入射光的频率ν必须大于某个特定值ν0,电子才能逸出,ν0称为临阈频率。

即,电子是否逸出决定于光的频率,与强度无关。

②对于ν>ν0的入射光,一经照射,电子立即逸出,没有时间上的延迟。

即,没有能量的积累过程。

③逸出电子的动能随光的频率而增加,与光的强度无关。

④光的强度越大,逸出的电子越多。

即,逸出电子的数量,决定于光的强度,与频率无关。

3. 经典电磁理论的困难按照经典电磁理论:⑴光是电磁波,其能量由波的强度决定,光的强度越大,光电子的动能应该越大;⑵电子吸收光的能量是一个连续积累的过程,低强度的光长时间照射应该能使光电子逸出;⑶频率越高,振动就越频繁,应该使更多的电子逸出。

结构化学复习提纲

结构化学复习提纲

结构化学复习提纲一. 微观离子的运动特征1. 光与微观粒子都有波粒二象性。

联系波动性与粒子性的两个公式是什么?2. Born提出了物质波的统计解释或几率解释。

试叙述之。

3. 写出坐标和动量满足的测不准关系,并叙述其物理意义。

4. 试叙述宏观物体与微观粒子的区别。

答:(1). 微观粒子具有波粒二象性,经典客体的波性可忽略。

(2). 微观粒子适用测不准原理,经典客体不必。

(3). 宏观物体的坐标和动量可以同时精确测量,因此有确定的运动轨迹,其运动状态用坐标与动量描述;微观粒子的坐标和动量不能同时精确地测量,其运动没有确定的轨迹,运动状态用波函数描述。

(4). 宏观物体遵循经典力学;微观粒子遵循量子力学。

(5). 宏观物体可以区分;等同的微观粒子不可区分。

(6). 宏观物体的物理量连续取值;微观粒子的物理可观测量如能量等取分离值,是量子化的。

二. 量子力学基本假设1. 微观粒子运动状态用波函数描述。

品优波函数要满足什么条件?2. 叙述波函数的物理意义。

3. 在量子力学中,力学量用什么表示?什么是线性算符?什么是自轭算符?写出坐标, 动量和能量的算符。

4. 叙述自轭算符的性质。

即本征值与本征函数的性质5.物理量的平均值的计算公式。

6. Pauli原理三. 一维无限深势井中的粒子1. 能量本征值公式,定态波函数公式及其性质。

2. 用此模型研究丁二烯等π共轭体系。

四. 氢原子1. 氢原子的能级公式以及氢原子光谱的计算。

2. 氢原子的量子数n, l, m的物理意义。

3. 氢原子波函数ψnlm是那些物理量的本征函数?本征值分别是多少?4. 氢原子波函数的径向分布函数D nl,径向分布图及其意义。

5. 氢原子波函数的原子轨道等值线图,特别是s, 2p, 3d原子轨道轮廓图。

五. 多电子原子1. 多电子原子的基态电子排布,给定电子组态的全反对称波函数即Slater行列式。

2. 相对论效应对元素周期性质的影响:6s电子稳定效应3. 原子光谱(不作要求了)(1). 电子组态:给定电子组态所包含的量子态数(2). 光谱项:给定电子组态的光谱项的推求,如s1, p1, p2, s1p1等。

2025年高考化学复习提纲

2025年高考化学复习提纲

2025年高考化学复习提纲一、化学基本概念1、物质的组成、性质和分类了解分子、原子、离子等概念的含义,能识别常见的离子化合物和共价化合物。

理解混合物和纯净物、单质和化合物、金属和非金属的概念。

掌握酸、碱、盐、氧化物的分类及其相互转化关系。

2、化学用语熟练掌握常见元素的名称、符号、离子符号。

正确书写常见元素的化合价,能根据化合价正确书写化学式(分子式),并能根据化学式判断化合价。

掌握电子式、原子结构示意图、分子式、结构式和结构简式的表示方法。

3、化学计量理解物质的量的单位——摩尔(mol)、摩尔质量、气体摩尔体积、物质的量浓度、阿伏加德罗常数的含义。

能根据物质的量与微粒(原子、分子、离子等)数目、气体体积(标准状况下)之间的相互关系进行有关计算。

掌握配制一定物质的量浓度溶液的方法和误差分析。

二、化学反应与能量1、氧化还原反应了解氧化还原反应的本质是电子的转移,能判断氧化还原反应中电子转移的方向和数目。

掌握常见的氧化还原反应方程式的配平方法。

理解氧化性、还原性强弱的比较方法。

2、化学反应中的能量变化了解化学反应中能量转化的原因,能说出常见的能量转化形式。

了解吸热反应、放热反应、反应热等概念。

理解热化学方程式的含义,能正确书写热化学方程式。

能用盖斯定律进行有关反应热的简单计算。

三、物质结构元素周期律1、原子结构了解原子的构成,知道原子序数、核电荷数、质子数、中子数、核外电子数以及它们之间的相互关系。

了解原子核外电子排布规律,能画出 1~18 号元素的原子结构示意图。

2、元素周期律和元素周期表掌握元素周期律的实质,了解元素周期表(长式)的结构(周期、族)及其应用。

以第 3 周期为例,掌握同一周期内元素性质的递变规律与原子结构的关系。

以ⅠA 和ⅦA 族为例,掌握同一主族内元素性质递变规律与原子结构的关系。

3、化学键了解离子键、共价键的概念,能用电子式表示常见物质的离子键和共价键的形成过程。

了解共价键的极性和分子的极性,了解分子间作用力和氢键对物质性质的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结构化学复习提纲第一章量子力学基础了解量子力学的产生背景?黑体辐射、光电效应、玻尔氢原子理论与德布罗意物质波假设以及海森堡测不准原理,掌握微观粒子的运动规律、量子力学的基本假设与一维势阱中粒子的Schr?dinger方程及其解。

重点:微观粒子的运动特征和量子力学的基本假设。

一维势阱中粒子的Schr?dinger方程及其解。

1. 微观粒子的运动特征a. 波粒二象性:能量动量与物质波波长频率的关系? = h?p = h/?b. 物质波的几率解释:空间任何一点物质波的强度(即振幅绝对值的平方)正比于粒子在该点出现的几率.c. 量子化(quantization):微观粒子的某些物理量不能任意连续取值, 只能取分离值。

如能量,角动量等。

d. 定态:微观粒子有确定能量的状态玻尔频率规则:微观粒子在两个定态之间跃迁时,吸收或发射光子的频率正比于两个定态之间的能量差。

即e. 测不准原理: 不可能同时精确地测定一个粒子的坐标和动量(速度).坐标测定越精确(?x =0),动量测定就越不精确(?px = ?),反之动量测定越精确(?px =0),坐标测定就越不精确 (?x = ?)f. 微观粒子与宏观物体的区别: (1). 宏观物体的物理量连续取值;微观粒子的物理可观测量如能量等取分离值,是量子化的。

(2). 微观粒子具有波粒二象性,宏观物体的波性可忽略。

(3). 微观粒子适用测不准原理,宏观物体不必。

(4). 宏观物体的坐标和动量可以同时精确测量,因此有确定的运动轨迹,其运动状态用坐标与动量描述;微观粒子的坐标和动量不能同时精确地测量,其运动没有确定的轨迹,运动状态用波函数描述。

(5). 宏观物体遵循经典力学;微观粒子遵循量子力学。

(6). 宏观物体可以区分;等同的微观粒子不可区分。

2. 微观粒子运动状态的描述a. 品优波函数的三个要求: 单值连续平方可积波函数exp(i m?) m的取值?b. 将波函数归一化? = 0?2?c. 波函数的物理意义??(x, y, z, t)?2d x d y d z表示在t时刻在空间小体积元(x?x+d x, y?y+d y, z?z+d z)中找到粒子的几率d. 波函数的单位*3. 物理量与厄米算符每个物理可观测量都可以用一个厄米算符表示a. 线性算符与厄米算符b. 证明id/dx是厄米算符*c. 写出坐标,动量,能量,动能,势能与角动量的算符d. 写出一个N电子原子,或N电子M核的分子的哈密顿算符如写出H2电子体系的哈密顿算符(在国际单位或原子单位下)。

e. 什么是算符的本证函数与本征值f. 厄米算符的本征函数与本征值的特点, 能证明这些特点*g. 物理量的厄米算符的本征值与测量的关系*i. 一维或三维自由粒子的波函数,证明其是动量与能量的本证函数*4. 平均值a. 量子力学计算平均值的公式b. 处于本征态时,物理量的平均值:等于对应的本征值c. 处于非本征态时物理量的本征值的计算5. 薛定谔方程a. 写出含时薛定谔方程,对于单粒子或多粒子b. 对能量守恒体系,写出定态薛定谔方程,定态的意义6. 一维与三维无限深势井a. 写出能量本征值与定态波函数,注意量子数的范围b. 证明定态波函数是正交归一的c. 波函数的节点: 对一维势井中的粒子,第n个能级?有n?1个节点nd. 零点能:基态的能量e. 计算坐标,动量,能量在定态的平均值f. 在给定的非定态时,计算能量测量结果的几率与能量平均值*g. 二维与三维的能级简并情况h. 用一维势井处理一维?共轭体系: 例题1.3.1, 1.3.2第二章原子结构了解单电子原子的Schr?dinger方程及其求解过程,掌握量子数的物理意义、类氢原子的能级与定态波函数的特征,了解多电子原子Schr?dinger方程的近似求解方法?平均场近似与独立粒子模型和中心力场近似,了解角动量的偶合与原子光谱项的推引。

重点:单电子原子的Schr?dinger方程的求解,量子数的物理意义,类氢原子的能级与定态波函数1. 氢原子与类氢粒子a. 写出哈密顿与定态薛定谔方程b. 写出能级公式,能级简并情况c. 定态波函数的三个量子数及其物理意义,它们分别是哪些物理量的本征值相关的量子数,指出其取值范围。

对于给定的定态波函数即类氢原子轨道,能给出电子的这些物理量的值。

例子:习题2.9d. 类氢原子轨道:常见的1s, 2s, 2p, 3s, 3p,3d轨道的形状,各种节面的数目与位置,径向分布函数与径向分布图原子轨道?nlm的节面:n-l-1个球形节面;l个非球形节面(如平面或锥面等)。

共n-1节面。

2. 角动量与电子自旋a. 单粒子轨道角动量:本征函数,本征值b. 电子自旋角动量:电子自旋量子数,c. 电子自旋波函数,原子轨道与自旋轨道d. 两电子体系的自旋波函数会写出两个电子的反对称与对称自旋波函数e. 自旋统计定理:等同玻色子体系域等同费米子体系的波函数f. 单电子的总角动量:由l与s求出jg. 多电子体系的总轨道角动量,总自旋角动量与总角动量对两电子体系:由l1与l2求出L, 由s1与s2求出S, 由L与S求出J。

3. 光谱项的推求a. 什么是电子组态,光谱项与光谱支项,会计算它们中包含的简并量子态的数目b. 对于给定的电子组态,会推求其光谱项与光谱支项,并给出其能级顺序,重点是不等价电子组态如 2p13p1组态等c. 对于给定原子的电子组态,能直接用洪特规则求出其基态光谱项与光谱支项如 2p13p1, 2p2组态4. 多电子原子与元素周期性质a. 会写多电子体系的行列式波函数,如对He与Li基态,会写出其行列式波函数b. 多电子原子的原子轨道能与单电子原子的区别c. 电离能,与周期表中电离能的变化规律d. 了解电负性的定义及其特征e. 相对论效应及其对元素周期性的影响第三章共价键和双原子分子的结构化学了解玻恩-奥本海默近似、变分原理与线性变分法,了解价键理论和掌握分子轨道理论对H2+和H2的处理以及共价键的本质,掌握分子轨道理论方法、原子轨道线性组合分子轨道方法以及分子轨道理论对第一第二周期元素的同核与异核双原子分子电子结构的处理,了解分子光谱。

重点:分子轨道理论及其对双原子分子电子结构的处理, 分子光谱。

1. 氢分子离子与氢分子的分子轨道处理a. 会写电子的哈密顿算符与定态薛定谔方程b. 用两个H原子的原子轨道1s, 2s, 2p组合形成的分子轨道:能级顺序与轨道符号,以及轨道符号的含义c. H2+, H2, H2, He2+的基态电子组态,键级d. 共价键的本质2. 分子轨道理论a. 什么是分子轨道: 分子中单电子波函数b. 理解原子轨道线性组合分子轨道,掌握s, p轨道线性组合形成的分子轨道c. 什么是成键轨道,反键轨道,与非键轨道,掌握其特征与区别d. 能画出两个原子轨道线性组合分子轨道的图形e. 原子轨道线性组合形成分子轨道的三个条件:(1). 对称性匹配(2). 能量接近 (3). 最大重叠3. 双原子分子的分子轨道理论a. 第二周期元素的同核双原子分子的分子轨道能级顺序Li, Be,O,F:(?g 2s)(?u2s*)(?g2p z)(?u2p)(?g2p*)(?u2p z*)N,C,B:(1?g )(1?u)(1?u)(2?g)(1?g)(2?u)b. 第二周期元素的同核双原子分子的基态电子组态,键级,键长与键能顺序, 磁性例子:习题3.2, 3.4c. 第二周期元素的异核双原子分子的基态电子组态d. HF的分子轨道处理,分子轨道能级顺序与基态电子组态4. 双原子分子的光谱项*会推求双原子分子的光谱项,特别是书上表3.3.4中的分子的基态光谱项5. 分子光谱a. 振动-转动光谱的选律{同核双原子分子偶极矩为0,没有纯转动光谱;异核双原子分子偶极矩非0,有纯转动光谱。

同核双原子分子偶极矩保持为0,没有振动-转动光谱;异核双原子分子偶极矩非0且被振动改变,有振动-纯转动光谱。

双原子分子没有纯振动光谱,因为?J?0。

}b. 多原子(线性与非线性)分子的平动,转动与振动自由度c. 多原子分子的正则振动模式例子 H2O, CO2等,习题3.25, 3.26。

d. 异核双原子分子的纯转动光谱e. 异核双原子分子的振-转光谱第四章分子的对称性初步了解分子对称性知识和群的基本概念,掌握几种典型对称元素的组合,能准确判定一般分子所属的点群和全部对称元素,并籍此判断分子的性质。

重点: 对称操作与对称元素的组合,分子点群,偶极矩, 分子点群的判断。

1. 对称元素与对称操作a. 掌握分子的所有对称元素与对称操作b. 掌握对称元素的组合与对称操作的乘积2. 对称操作群,分子的点群a. 掌握群的定义b. 能写出一个分子的所有对称元素与对称操作c. 能证明一个分子的所有对称操作构成群,并能做出群的乘法表*d. 掌握所介绍的所有分子点群:包括点群符号,点群的对称元素,点群的对称操作e. 给定一个分子,能判断其所属的点群3. 对称性的应用a. 掌握用对称性判断分子偶极矩的判据,对给定的分子能判断其是否有偶极矩,能根据偶极矩获取分子结构的信息b. 理解键矩的意义及其与分子偶极矩的关系*c. 掌握用对称性判断分子的旋光性的判据及其应用第五章多原子分子的结构和性质掌握价电子对互斥理论和杂化轨道理论,了解多原子分子的分子轨道理论方法,掌握用?电子近似与休克尔近似处理?共轭体系的分子轨道方法,能应用HMO方法处理简单的?共轭分子, 了解前线轨道理论。

1. 价层电子互斥理论a. 掌握该理论的全部b. 能够用该理论预测分子的几何构型2. 杂化轨道理论a. 什么是杂化与杂化轨道b. 原子形成分子时原子轨道为什么要杂化?c. 杂化的规律d. 什么是等性杂化与不等性杂化e. 杂化轨道的正交归一g. sp, sp2, sp3等性杂化:杂化轨道的表达式h. 杂化轨道的方向:会计算杂化轨道最大值方向之间的夹角*f. 掌握常见的杂化类型:特别是杂化轨道的空间构型及其点群,见表5.2.1i. 对给定分子,能利用价层电子互斥理论判断其几何构型,并指出其中原子的杂化类型3. 休克尔分子轨道理论a. 掌握该理论的全部内容:包括理解什么是?电子近似,什么是休克尔近似,写出邻接矩阵,久期方程,齐次线性方程组,解之,获得?分子轨道能级与分子轨道表达式,计算各原子的?电子数,?键键级,自由价,做出分子图。

b. 能应用该理论计算2, 3, 4个原子形成的?共轭体系的?电子结构c. 会计算离域能,能利用该理论解释?共轭分子的一些物理化学性质d. 掌握单环共轭多烯烃的休克尔处理的结果:包括能级顺序,4n+2规则,并用此规则判断环共轭体系是否有芳香性核形成大?键4. 离域?键与超共轭效应a. 什么是离域?键b. 离域?键的形成条件c. 能指出分子中的离域?键,并利用此分析分子的一些物理化学性质,以及分析分子键长等结构特征d. 理解超共轭效应,并能利用此分析分子键长等结构特征第七章晶体的点阵结构和晶体的性质理解晶体结构的周期性特征,掌握点阵与晶体结构的关系以及点阵的平移对称性,掌握晶胞的概念与晶胞内原子的分数坐标,了解晶体结构的对称性,掌握根据晶体对称性划分的七大晶系、六种正当晶胞与十四种空间点阵型式,了解晶面指标与晶面间距。

相关文档
最新文档