求函数极限的方法与技巧

合集下载

求函数极限的方法与技巧

求函数极限的方法与技巧

求函数极限的方法与技巧求函数极限是微积分的重要内容之一,也是数学分析中的基本问题。

求函数极限需要掌握一定的方法与技巧,下面将从常用的方法、典型的技巧和注意事项等方面进行详细介绍。

1. 代入法代入法是求函数极限最简单的方法之一。

当函数在极限点附近没有特殊的性质时,可以通过直接代入极限值来求解极限。

求函数f(x)=2x-1在点x=3处的极限,直接代入x=3,即可得到f(3)=2*3-1=5,所以极限值为5。

2. 分式化简法对于复杂的函数极限,通常可以利用分式化简法来解决。

将函数化为分式形式,通过合并同类项或者提取公因式等方法,将分式化简至最简形式,然后再进行极限运算。

这样可以简化计算,并且更容易得到极限值。

3. 夹逼准则夹逼准则也是求解极限常用的方法之一。

夹逼准则是一种利用不等式来求解极限的方法,通常用于求解无穷小的极限。

利用夹逼准则可以将复杂的极限问题转化为相对简单的不等式推导问题,从而更容易求得极限值。

4. 极限换元法极限换元法是求解函数极限的一种有效方法,也是求极限的一个经典技巧。

通过将变量进行适当的换元,可以将原来复杂的极限问题转化为相对简单的形式,从而更容易求解极限值。

常见的换元方式包括三角换元、指数换元、对数换元等。

二、典型的技巧1. 分步求解有些复杂的函数极限问题可以通过分步求解来进行,先将函数进行分解或者阶段性的处理,然后逐步求解各个部分的极限值,最后将结果进行合并得到整体的极限值。

这样可以降低计算的复杂度,更容易求得极限值。

2. 极限的运算法则在进行极限运算时,可以利用极限的运算法则来简化计算。

其中包括加减法法则、乘法法则、除法法则、幂函数法则、复合函数法则等,这些运算法则可以在极限计算中起到一定的简化作用,并帮助求得极限值。

3. 利用对称性对称性在求解函数极限中也是一种常用的技巧。

对于对称性的函数或者函数的特殊性质,可以利用对称性来简化极限计算,例如利用奇偶性、周期性等性质,从而简化计算过程,更容易求得极限值。

求函数极限的方法与技巧

求函数极限的方法与技巧

求函数极限的方法与技巧函数极限是微积分中的重要概念之一,它的求解方法与技巧有很多。

在本文中,将介绍一些常用的方法和技巧,帮助读者更好地理解和掌握函数极限的求解过程。

一、常用的极限求解方法1. 代数化简法将复杂的极限式子进行代数化简,化为比较简单的极限式子,从而进行计算。

例如:$$\lim_{x\to0}\frac{(1+x)^n-1}{x}=\lim_{x\to0}\frac{(1+x)^n-1}{x}\cdot{\frac{(1-x)^n+(1-x)^n}{(1-x)^n+(1-x)^n}}$$2. 夹逼定理当需要证明某一极限存在时,可以使用夹逼定理。

夹逼定理是指:若$\lim_{x\toc}f(x)=\lim_{x\to c}h(x)=A$,且存在另一个函数$g(x)$,满足$f(x)\leq g(x) \leqh(x)$,则$\lim_{x\to c}g(x)=A$。

例如:$$\lim_{x\to 0}\frac{\sin x}{x}=1$$证明:$$\because \cos x\leq\frac{\sin x}{x}\leq1, (\forall x \in (0,\frac{\pi}{2}])$$3. 最高阶同类项法二、常用的技巧1. 分子有理化当极限式子中含有分数时,可以使用分子有理化技巧,将分数化为更容易计算的形式。

例如:使用分子有理化技巧:2. 三角函数性质当极限式子中含有三角函数时,可以利用三角函数性质进行化简。

例如:3. 比较大小法$$x>0, e^x>1+x+\frac{x^2}{2}$$4. 提取公因数法总之,我们在计算函数极限的时候,需要耐心分析和具体问题具体分析,从而选择合适的方法和技巧进行计算。

函数极限的求法及技巧总结

函数极限的求法及技巧总结

函数极限的求法及技巧总结函数极限是高等数学的一个重要概念,它在微积分、实分析等许多领域都有着广泛的应用。

在计算函数极限时,需要掌握一些求法和技巧。

本篇文章将对此进行总结。

1. 直接代入法直接代入法是最基本也是最简单的一种方法,它适用于可以直接将自变量代入函数中计算得到结果的情况。

例如,当求函数f(x) = x² + 3x + 2在x = 1处的极限时,我们可以直接将x = 1代入函数中,得到f(1) = 1² + 3×1 + 2 = 6。

因此,f(x)在x = 1处的极限为6。

2. 分式化简法分式化简法是一种常用的求极限的方法,它适用于形如“分式”的函数。

3. 夹逼定理夹逼定理是一种常用的求极限的方法,它适用于当我们无法通过代入或化简等方法直接求出函数极限时。

夹逼定理的思想是:若存在函数g(x)和h(x),满足 g(x) ≤ f(x) ≤ h(x)且limx→a g(x) = limx→a h(x) = L,那么limx→a f(x) = L。

4. 洛必达法则其中,f'(x)和g'(x)分别表示f(x)和g(x)的导数。

例如,当求函数f(x) = (e^x - 1) / x在x = 0处的极限时,我们可以将f(x)表达为g(x) / h(x)的形式,即g(x) = e^x - 1,h(x) = x,然后计算g'(x)和h'(x),得到 g'(x) = e^x,h'(x) = 1。

因此,根据洛必达法则,我们得到limx→0 f(x) = limx→0 [e^x / 1] = 1。

5. 泰勒展开法泰勒展开法是一种常用的求函数极限的方法,它适用于当函数在极限点左右存在二阶及以上的导数时。

泰勒展开法的思想是:当limx→a f(x)存在时,可以将函数f(x)在a附近进行泰勒展开,得到f(x) = f(a) + f'(a)×(x - a) + f''(a)×(x - a)² / 2 + …… + Rn(x),其中Rn(x)为余项。

求函数极限的方法与技巧

求函数极限的方法与技巧

求函数极限的方法与技巧函数极限是微积分中的重要概念,在解决实际问题和进行理论推导时经常需要用到。

在计算函数极限时,常常使用一些方法和技巧可以简化计算过程。

下面将介绍一些常用的函数极限计算方法和技巧。

一、代数运算法则1. 乘积运算法则:如果lim(x->a)f(x)=A,lim(x->a)g(x)=B,则lim(x->a)[f(x)g(x)]=AB。

2. 商运算法则:如果lim(x->a)f(x)=A,lim(x->a)g(x)=B且B≠0,则lim(x->a)[f(x)/g(x)]=A/B。

3. 加法运算法则:如果lim(x->a)f(x)=A,lim(x->a)g(x)=B,则lim(x->a)[f(x)+g(x)]=A+B。

4. 减法运算法则:如果lim(x->a)f(x)=A,lim(x->a)g(x)=B,则lim(x->a)[f(x)-g(x)]=A-B。

以上的代数运算法则可以简化函数极限的计算过程,通过运用这些法则可以将一个复杂的函数极限问题转化为多个简单的函数极限问题。

二、夹逼准则夹逼准则也是常用的一种函数极限计算方法。

如果存在函数g(x)和h(x),使得对于x 在a的某个去心邻域内,有g(x)≤f(x)≤h(x),并且lim(x->a)g(x)=lim(x->a)h(x)=L,则lim(x->a)f(x)=L。

夹逼准则利用了三个函数之间的大小关系,将复杂的函数极限问题转化为两个较为简单的函数极限问题。

三、分子有理化和分母有理化在计算函数极限时,有时候分子或分母不是有理式,而是含有根号、分数等形式。

这时可以利用分子有理化和分母有理化的方法将其化简为有理式,再进行运算。

当计算lim(x->0)(sinx/x)时,可以将其改写为lim(x->0)(sinx)/(x/x)的形式,然后再利用等式lim(x->0)(sinx)/x=1来计算极限。

求函数极限的方法与技巧

求函数极限的方法与技巧

求函数极限的方法与技巧函数极限的计算是数学中常见且重要的问题,对于深入理解函数行为和解决实际问题具有重要意义。

以下是一些计算函数极限的常见方法和技巧:1. 代入法:当函数只有一个变量的时候,可以通过将变量代入函数中来计算极限。

这种方法适用于简单的函数和简单的极限问题。

2. 四则运算法则:对于复杂的函数,可以利用四则运算法则简化极限计算。

四则运算法则包括加法、减法、乘法和除法,通过对函数表达式进行合理的变形和简化,可以得到更简单的极限计算形式。

3. 夹逼定理:夹逼定理也称为挤压定理,是一种计算极限的重要方法。

当一个函数在某个点附近夹在两个已知函数之间时,可以利用这个夹逼关系来求函数的极限。

4. 分数分解法:对于含有分数的函数,可以利用分数分解法将其分解为分子和分母的极限,然后分别计算两个极限。

5. 洛必达法则:洛必达法则是计算极限的一种重要方法。

当求函数的极限遇到不确定型的形式(如0/0或∞/∞)时,可以利用洛必达法则,将函数转化为两个函数的极限比值,然后再进行计算。

6. 泰勒展开法:泰勒展开是一种将函数在某一点附近用多项式逼近的方法。

当函数在某一点处极限求解困难时,可以用泰勒级数展开来近似计算极限。

7. 对数换底法:对数换底法是计算一些特殊形式的极限的一种有效方法。

当函数中含有对数函数,并且指数不同底时,可以通过换底公式将其转化为更简单的形式。

8. 常用极限:熟记一些常用的函数极限是计算极限的一个重要技巧。

常用的函数极限包括指数函数、对数函数、三角函数等的极限,可以通过记忆和推导得到。

计算函数极限的方法和技巧很多,选择合适的方法和技巧对于解决极限问题非常重要。

需要根据具体的函数形式和问题特点选取合适的方法,并在计算中灵活应用各种技巧,从而有效地计算函数的极限。

16种求极限方法及一般题型解题思路分享

16种求极限方法及一般题型解题思路分享

16种求极限方法及一般题型解题思路分享求极限是微积分中的重要内容之一,常见于各种数学和工程科学中。

为了求出一个函数在某一点的极限,需要使用合适的方法。

下面介绍16种常用的求极限方法,以及一般题型解题思路。

一、直接代入法对于多项式函数和分式函数,可以直接将自变量代入函数表达式中计算极限。

例如,求函数 f(x) = 2x + 3 在 x = 1 处的极限,直接代入即可得到结果。

二、分解因式法对于分式函数,可以通过分解因式来简化计算,特别适用于分子和分母都是多项式的情况。

例如,求函数 f(x) = (x^2 - 1)/(x - 1) 在 x = 1 处的极限,可以将分子进行因式分解,得到 f(x) = (x - 1)(x + 1)/(x - 1),然后约去公因式,即可得到结果。

三、夹逼定理夹逼定理用于解决复杂函数在某一点处的极限问题。

如果一个函数在某一点附近被两个其他函数夹住,并且这两个函数的极限都存在且相等,那么原函数的极限也存在且等于这个相等的极限。

例如,对于函数 f(x) = x*sin(1/x),当 x 趋近于 0 时,f(x) 被两个函数 g(x) = x 和 h(x) = -x 夹住,且 g(x) 和 h(x) 的极限都是 0,所以 f(x) 的极限也是 0。

四、变量代换法第1页/共5页对于一些特殊的函数,可以通过变量代换来简化计算。

例如,对于函数f(x) = sin(1/√x),当 x 趋近于 0 时,可以将√x = t,那么 x = t^2,且当 x 趋近于 0 时,t 也趋近于 0,所以求 f(x) 在 x = 0 处的极限可以转化为求 g(t) = sin(1/t) 在 t = 0 处的极限。

五、洛必达法则洛必达法则是一种常用的求函数极限的方法,特别适用于形如 0/0 或∞/∞的不定式。

根据洛必达法则,如果一个不定式的分子和分母的极限都存在且为 0 或∞,那么可以分别对分子和分母求导后再次求极限,直到找到一个不是 0/0 或∞/∞的形式。

求函数极限的方法和技巧

求函数极限的方法和技巧

求函数极限的方法和技巧函数极限是微积分中的重要概念,它是描述函数在其中一点或在无穷远处的趋势的一种方法。

通过研究函数极限,我们可以了解函数的性质,进而解决各类数学问题。

在求解函数极限时,以下是一些常用的方法和技巧:1.代入法:对于简单的函数,我们可以尝试直接代入特定的值来求解极限。

这种方法常用于多项式函数、指数函数、对数函数和三角函数等。

2. 夹逼定理:夹逼定理是使用一个比较函数来夹住(或夹逼)所要求极限的方法。

例如,当我们需要求解 sin(x)/x 的极限x→0 时,可以使用夹逼定理将其夹住为 1/x,再求解这个极限。

3.分数化简:对于含有复杂分数形式的极限,可以尝试将其化简为更简单的形式。

常见的技巧有:分子有理化、通分、差化积等。

4.极限的性质:极限满足一些基本运算性质,如加法、减法、乘法和除法。

通过运用这些性质,我们可以将一个复杂的极限问题化简为多个简单的极限求解。

5.无穷小量与无穷大量:无穷小量和无穷大量是极限中常见的概念。

无穷小量是指在一些点附近很小的变化量,无穷大量是指在一些点附近趋向无穷大的变化量。

运用无穷小量和无穷大量的概念可以帮助我们求解一些复杂的极限。

6.洛必达法则:洛必达法则是一种求解极限的常用方法。

对于一些特定类型的不定型极限问题,可以使用洛必达法则将其化简为一个更简单的形式。

洛必达法则主要适用于求解0/0或∞/∞形式的极限值。

7.泰勒展开:泰勒展开是一种求函数极限的有力工具。

它可以将一个复杂的函数展开成无穷级数,通过截取有限项,可以近似计算函数的极限。

泰勒展开常用于求解幂函数、指数函数和三角函数等的极限。

8. 重要极限:在求解函数极限时,有一些重要的极限我们需要记住,如lim(x→∞) (1+1/x)^x = e,lim(x→0) (sin(x)/x) = 1,lim(x→0) (1-cos(x))/x = 0等。

熟记这些重要极限可以提高求解极限问题的效率。

总之,求解函数极限需要根据具体情况选择合适的方法和技巧。

求函数极限的方法与技巧6篇

求函数极限的方法与技巧6篇

求函数极限的方法与技巧6篇第1篇示例:求函数极限的方法与技巧在学习数学的过程中,函数极限是一个非常重要的概念。

通过求函数的极限,我们可以了解函数在某一点的变化趋势,从而掌握函数的性质和特征。

在实际应用中,求函数极限也是解决数学问题和物理问题的基础。

那么,如何求函数的极限呢?下面我们就来讨论一下求函数极限的方法与技巧。

我们来说一说函数极限的定义。

对于函数f(x),当自变量x趋于某一值a时,如果函数值f(x)无限接近于某一确定的常数L,那么常数L 就是函数f(x)在点a处的极限,记作lim(x→a) f(x) = L。

换句话说,就是当x无限接近a时,f(x)的取值无限接近L。

要求函数的极限,就是要找到这个L。

1. 代入法:对于一些简单的函数,我们可以直接代入a的数值,求出f(a)的值。

如果f(a)存在且有限,那么这个值就是函数在点a处的极限。

2. 因子分解法:对于一些复杂的函数,我们可以通过因子分解来求得函数的极限。

根据函数的性质,我们可以将函数分解为一些简单的分式或者根式,从而求得极限的值。

3. 夹逼定理:对于一些特殊的函数,我们可以利用夹逼定理来求得函数的极限。

夹逼定理是一种通过两个较为简单的函数来夹逼待求函数的极限的方法,通过和两个函数比较来逼近待求函数的极限值。

4. 利用导数:对于一些连续的函数,我们可以利用导数来求得函数的极限。

通过求导数,我们可以得到函数的切线斜率,从而得到函数在某一点的变化趋势。

除了以上的方法与技巧,还有一些注意事项需要我们在求函数极限时要注意:1. 涉及无穷大的极限时,要格外注意函数的性质,以及无穷大的表示方式。

2. 找出函数的不确定形式,通过化简或者变形来求得函数的极限。

3. 对于有理函数的极限,要特别注意分母为0的情况,以及分子、分母次数的关系。

4. 要熟练掌握常用函数的极限形式,比如指数函数、对数函数、三角函数等。

5. 在求导数时,要注意一阶导数、高阶导数等,以及导数的性质和规律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求函数极限的方法与技巧《数学分析》是以函数为研究对象,以极限理论和极限方法为基本方法,以微积分学为主要内容的一门学科.极限理论和极限方法在这门课程中占有极其重要的地位.灵活、快捷、准确地求出所给函数的极限,除了对于函数极限的本质有较清楚地认识外,还要注意归纳总结求函数极限的方法,本文对技巧性强、方法灵活的例题进行研究,进一步完善求函数极限的方法与技巧,有利于微积分以及后继课程的学习.1基本方法1.1利用定义法求极限从定义出发验证极限,是极限问题的一个难点.做这类题目的关键是对任意给定的正数ε,如何找出定义中所说的δ.一般地,证明0lim ()x x f x A →=的方法为:0ε∀>,放大不等式0()f x A x x αε-<<-<(α为某一个常数)解出,0αε<-x x 取αεδ=. 例[1](45)1P 证明32121lim 221=---→x x x x .证 0ε∀>,若221112122132133213x x x x x x x x ε---+-=-=<<--++. (限制x :011x <-<,则211)x +>,取=min{3,1}δε,则当01x δ<-<时,便有221123321x x x x ε---<<--. 定义中的正数δ依赖于ε,但不是由ε所唯一确定.一般来说,ε愈小,δ也愈小.用定义证明极限存在,有一先决条件,即事先要猜测极限值A ,然后再证明,这一般不太容易,所以对于其它方法的研究是十分必要的.1.2 利用左、右极限求极限lim ()lim ()lim ()x x x x x x f x A f x f x A +-→→→=⇔==. 例2 设tan 3,0()3cos ,0xx f x x x x ⎧<⎪=⎨⎪>⎩ 求0lim ()x f x →.解 因为00tan 3tan 3lim ()lim lim 333x x x x xf x x x---→→→==⋅=,00lim ()lim 3cos 3x x f x x ++→→==. 得到0lim ()lim ()3x x f x f x -+→→==,所以0lim ()3x f x →=. 例3 求函数1()11x f x x +=++在1x =-处的左右极限,并说明在1x =-处是否有极限.解 111lim ()lim (1)21x x x f x x ++→-→-+=+=+,11(1)lim ()lim (1)01x x x f x x --→-→--+=+=+.因为11lim ()lim ()x x f x f x +-→-→-≠,所以)(x f 在1x =处的极限不存在.例4 若,0(),0xax b x f x e x +>⎧=⎨<⎩,求分段点0处的极限. 解 因为0lim ()lim()x x f x ax b b ++→→=+=,00lim ()lim 1xx x f x e --→→==.所以当1b =时,0lim ()1x f x →=;当1b ≠时,0lim ()x f x →不存在.可见,利用左右极限是证明分段函数在其分段点处是否有极限的主要方法.1.3 利用函数的连续性求极限 初等函数在其定义的区间I 内都连续.若I x ∈0,初等函数()f x 当0x x →时的极限就等于其在0x x =时的函数值,即0lim ()()x x f x f x →=.特别地,若[()]f x ϕ是复合函数,又0lim ()x x x a ϕ→=,且()f u 在u a =处连续,则lim [()][lim ()]()x x x x f x f x f a ϕϕ→→==.例5 求21cos 2arcsin 0lim xx x e -→.解 由于201cos 1lim2arcsin 4x x x →-=及函数ue uf =)(在14u =处连续, 所以2201cos 1cos 1lim2arcsin 2arcsin 4lim x xxx x x e e e →--→==.例[]()21196P 求4x →解4443lim4x x x x →→→==-413x →=== 在4x =连续).例[1](84)7P 求0ln(1)limx x x→+.分析 由1ln(1)ln(1)xx x x+=+,设ln y u =,1(1)x u x =+.因为10lim(1)x x x e →+=,且ln y u =在e u =点连续,故可利用函数的连续性求此极限.解 11000ln(1)limlimln(1)ln[lim(1)]ln 1xx x x x x x x e x→→→+=+=+==. 1.4 利用函数极限的四则运算法则求极限 若lim ()f x ,lim ()g x 存在,则有:(1)lim[()()]lim ()lim ()cf x bg x c f x b g x ±=±(,c b 为任意常数); (2)lim[()()]lim ()lim ()f x g x f x g x ⋅=⋅;(3)()lim ()lim[]()lim ()f x f xg x g x =(其中lim ()0)g x ≠; (4)lim[()][lim ()]nnf x f x =;(5)若lim ()f x A =,对正整数n ==.注 以上每个等式中的“lim ”均指x 的同一趋向.例8 1225lim(2)1x x x x→∞+-. 分析 该函数可以看作是两个函数的和.而对于函数2251x x -是分式函数,分子、分母都是多项式函数,并且当自变量x →∞时,归于前面介绍的第四种类型.对于函数12x,当x →∞时,01→x,故121x→.因此,只须再利用和的运算法则即可求得此极限.解 11222255lim(2)lim lim 251411x x x x x x xx x →∞→∞→∞+=+=-+=---. 1.5 利用重要极限求极限 1.5.1 0sin lim1x x x→=可推出0lim 1sin x x x →=,2000tan arctan 1cos 1lim 1,lim 1,lim 2x x x x x x x x x →→→-===.推广:0sin ()lim1()x x x φφ→=或0()lim 1sin ()x x x φφ→= 0(lim ()0)x x φ→=利用此重要极限公式求函数的极限,通常需要利用恒等变换将函数的某一组成部分变成形如sin ()()x x φφ或()sin ()x x φφ的形式.特别注意的是sin ()x φ这个复合函数的内函数()x φ要和分母或分子的函数相同,并且保证()0x φ→ (0)x →,则此部分的极限就为1.例9 求0sin 3limsin 2x xx→.分析 设sin 3()sin 2xf x x=,当0x →时,30x →,20x →故可利用恒等变换将()f x 化为sin 3()sin 2x f x x =sin 3233sin 22x x x x =⋅⋅,利用此重要极限公式即可求得.解 0000sin 3sin 323sin 3233lim lim lim lim sin 23sin 223sin 222x x x x x x x x x x x x x x →→→→=⋅⋅=⋅⋅=.1.5.2 1lim(1)xx e x→∞+=或10lim(1)x x x e →+=推广:1lim(1)x x e x φφ→∞+=()() (lim ())x x φ→∞=∞或0lim 1x e φφ→+=1(x)((x)) 0(lim ()0)x x φ→= 对于函数1()(1)x f x x φφ=+()()或()1f x φφ=+1(x)((x)),由于函数的底数和指数位置均含有变量,因此称为幂指函数.此重要极限公式解决的是1∞型幂指函数的极限问题,对于给定的函数,一般情况下也需要利用恒等变形后方可利用此公式.例10 求3lim(1)xx x→∞+.分析 设函数3()(1)xf x x=+是幂指函数,当x 趋于无穷大时,底3(1)1x+→,指数x →∞,是1∞型幂指函数,需利用此重要极限公式推广形式,将函数变形为3331()(1)((1))3xx f x x x=+=+,其中()3x x φ=,且当x →∞时,3x→∞,故有31lim(1)3x x e x →∞+=.解 3333311lim(1)lim(1)lim((1))33x xx x x x e x x x→∞→∞→∞+=+=+=.1.6 利用洛必达法则求极限在解决未定式的极限时,最简单的方法是约去分子、分母中趋于零的公因子.洛必达法则正是以求导的方法解决了这个问题.洛必达法则: 设)(),(x g x f 满足①在点0x 的领域内(点0x 可以除外)有定义,且0lim ()0x x f x →=,lim ()0x x g x →=.②在该领域内可导,且0)(≠'x g .③A x g x f x x =''→)()(lim 0. (A 可为实数,也可为∞±或∞)则A x g x f x g x f x x x x =''=→→)()(lim )()(lim00.如果()()f x g x ''在0x x →时,仍为00或∞∞型,且这时()f x '与()g x '仍满足定理中的条件,则可继续使用洛必达法则.例11 求22230sin cos lim sin x x x x x x→-.解 2223400sin cos (sin cos )(sin cos )lim lim sin x x x x x x x x x x x x x x→→-+-= 320000sin cos sin cos cos cos sin 2sin 2limlim 2lim lim 333x x x x x x x x x x x x x x x x x x x →→→→+--+=⋅===. 1.7 利用无穷小求极限1.7.1 利用无穷小量的性质求函数的极限 性质1 有限个无穷小量的代数和是无穷小量. 性质2 有限个无穷小量之积是无穷小量. 性质3 任一常数与无穷小量之积是无穷小量. 性质4 无穷小量与有界变量之积是无穷小量. 例12 求1lim()cosx x x πππ→--. 解 0)(lim =-→ππx x ,而1cos1x π≤-,所以1lim()cos 0x x x πππ→-=-.1.7.2 利用等价无穷小量替换求函数的极限 若11()~(),()~()x x x x ααββ且11()lim()x x αβ存在,则()lim ()x x αβ也存在,并且11()()limlim ()()x x x x ααββ= 注 1. 常用的几对等价无穷小量.(当0x →时)2sin ~,tan ~,ln(1)~,1~,1cos ~2xx x x x x x x e x x +--.2. 等价无穷小量替换,来源于分数的约分,只能对乘除式里的因子进行代换,在分子(分母)多项式里的单项式通常不可作等价代换.例13求0lim x +→.分析函数经过变形可化为00lim lim x x ++→→0x +→时,利用21cos ~,1~22x xx --等价无穷小来计算极限.解原式00lim lim x x ++→→==2000112lim lim lim222x x x x x x +++→→→==⋅=⋅. 例14 求0ln(1sin )lim x x x α+→-(α是实数).解 当0x →时,ln(1sin )~sin ~x x x --- 1000,1ln(1sin )lim lim()1,1,1x x x x x ααααα++-→→<⎧-⎪=-=-=⎨⎪-∞>⎩. 1.8 利用降幂法求极限 1.8.1 分子分母为有理式()lim()x P x Q x →∞,其中()P x ,()Q x 均为多项式函数方法:将分子、分母同除以x 的最高次幂.例15 求2256lim 2x x x x x →∞+++-.分析 该函数是分式函数,分子2()56P x x x =++,分母2()2Q x x x =+-均为二次多项式函数,且自变量x 趋近于∞时均趋近于∞,故采取将分子、分母同除以最高次幂2x ,即消去2x ,有22562x x x x +++-22561121x x x x++=+-而1lim 0x x →∞=,21lim 0x x →∞=,再利用极限的运算法则,即可求出函数的极限. 解 222256156100lim lim 11221001x x x x x x x x x x→∞→∞++++++===+-+-+-. 一般地,对于()lim()x P x Q x →∞(其中()P x ,()Q x 均为多项式函数),当分子的次数高于分母次数,该函数极限不存在; 当分子的次数等于分母次数,该函数极限等于分子、分母的最高次项的系数之比;当分子的次数低于分母次数,该函数极限为0.即11101110lim 0nmn n n n m m x m m a n m b a x a x a x a n m b x b xb x b n m---→∞-⎧=⎪⎪++++⎪=∞>⎨++++⎪<⎪⎪⎩ .1.8.2 分子分母为无理式(1)当x →∞时,将分子、分母同除以x 的最高方次. 例16求limlimx x →+∞.解lim lim lim 1x x x ===. limlim 021x x x x→+∞→+∞==++. (2)当0x x →时,若 1) 0()0Q x ≠,则000()()lim()()x x P x P x Q x Q x →=;2) 00()0,()0Q x P x =≠,则0()lim()x x P x Q x →=∞;3) 00()()0Q x P x ==可利用有理化分子(或分母)的方法求极限. 例17求2x → 分析 该函数是分式函数,并且含有根式,当0x →时,分子、分母均趋近于0,故将分子、22221)x x ==1而当0x →12→,故可求得此极限.解220x x →→=22001)lim 12x x x x→→+==+=. 1.9 利用中值定理求极限例18 求xx e e x x x sin lim sin 0--→.解 设xe xf =)(,对它的应用微分中值定理得:[]sin ()(sin )(sin )sin (sin )(01)x x e e f x f x x x f x x x θθ'-=-=-+-<< ,即sin [sin (sin )](01).sin x xe ef x x x x xθθ-'=+-<<- 因为 ()x f x e '=连续,所以0lim [sin (sin )](0) 1.x f x x x f e θ→''+-===从而有 sin 0lim1sin x xx e e x x→-=-. 例19 设函数()f x 在0x =处连续,又设函数102()11sin 02x x x x x xϕ⎧+≤⎪⎪=⎨⎪>⎪⎩ , 求220()()cos lim()xx xf x x t dtx x ϕϕ→+⎰.解 利用积分中值定理有,2220cos 2cos 02xt dt x x ξξ=<<⎰,因为001lim 0lim ()2x x x ξϕ→→==,,,所以2220()()cos ()()2cos limlim ()()xx x xf x x t dtxf x x x x x x x ϕϕξϕϕ→→++⋅=⎰ 200()()2cos lim lim 2(0)2()()x x xf x x x f x x x x ϕξϕϕ→→⋅=+=+. 1.10 利用泰勒公式求极限若一个函数的表达式比较复杂时,我们可以将它展成泰勒公式,使其化成一个多项式和一个无穷小量的和,而多项式的计算是比较简单的,从而此方法能简化求极限的运算.例20 计算0()sin(sin )limsin x tg tgx x tgx x→--.分析 此题虽是型,但使用洛必达法则求极限太复杂.而分母无穷小的最低阶数为3,故写出诸函数三阶泰勒公式,便可求得结果.解 33sin ()3!x x x x ο=-+ 331()()3tgx x x x ο=++. 3333111sin ()()()33!2tgx x x x x x οο-=++=+.又33333331sin(sin )sin(())(()())3!3!3!3!x x x x x x x x x x οοο=-+=---++ 333331()()3!3!3x x x x x x x οο=--+=-+. 333331111()(())(())3333tg tgx tg x x x x x x x x οο=++=++++ 3333312()()33x x x x x x x οο=+++=++.所以33()sin(sin )()tg tgx x x x ο-=+.330033()sin(sin )()lim lim 21sin ()2x x tg tgx x x x tgx x x x οο→→-+==-+. 例21 求21lim(cos sin )x x x x x →+.解 应用cos ,sin ,ln(1)x x x +的泰勒展式有2232311cos sin 1()1()22x x x x x x x x οο+=-++=++23331ln(cos sin )ln(1())()22x x x x x x x οο+=++=+因此,232200111lim ln(cos sin )lim [()]22x x x x x x x x x ο→→+=+=于是,原式211ln(cos sin )20lim x x x xx e e +→==. 例22 设()f x 在点0x =处二阶可导,且320sin 3()lim[]0x x f x x x→+=,求(0),(0),(0)f f f '''并计算极限2203()lim()x f x x x→+. 解 由已知条件,并利用麦克劳林公式,有320sin 3()0lim[]x x f x x x →=+33223201(0)3(3)()(0)(0)()3!2lim[]x f x x x f f x x x x x οο→'''-++++=+ 233301(0)9lim [(3(0))(0)()()]22x f f x f x x x x ο→'''=+++-+. 得(0)3,(0)0,(0)9f f f '''=-==. 于是2203()lim[]x f x x x →+222011lim [3(0)(0)(0)()]2x f f x f x x x ο→'''=++++ 2220199lim [33()]22x x x x ο→=-++=. 2 典型方法2.1 重要极限的再推广定理 设lim ()1,lim ()f x g x ==∞,则()lim[(()1)()]lim[()]g x f x g x f x e -=证明 1(()1)()()()1lim[()]lim[1(()1)]f xg x g x f x f x f x --=+-1lim(()1)()lim[(()1)()]()1{lim[1(()1)]}f xg x f x g x f x f x e ---=+-=例1 求211lim(1)xx x x→∞++解 这是1∞型极限,2211111()1,(),(()1)()()1f x g x x f x g x x x x x x x=++=-=+=+, 所以2111lim [(11)]lim (1)211lim(1)x x x x x x xx ee e x x→∞→∞++-⋅+→∞++==. 另解 对211lim(1)x x x x →∞++令211(1)x y x x =++取对数得211ln ln(1)y x x x=++于是有211ln(1)lim ln lim1x x x x y x→∞→∞++= (00型,可洛必达法则)232221212211lim lim 11121x x x x x x x x x x →∞→∞--+++===-++ 所以1212lim lim(1)x x x y e e x x→∞→∞=++==显然这样解要复杂的多.例2 求21lim(cos 2)x x x →.解 21()cos 2,()f x x g x x ==因为2001limcos 21,lim x x x x →→==∞所以是1∞型极限, 有2222112sin limlim (cos21)20lim(cos 2)x x x x x x x x x e e e →→---→===.例3 求1222234lim()238x x x x x x -→+--+. 解 1222234lim()238x x x x x x -→+--+222341exp{lim(1)}2382x x x x x x →+-=-⋅-+- 425222241216exp(lim )exp(lim )2382238x x x x x e x x x x x →→+-+=⋅==-+--+.2.2 洛必达法则的应用例4 计算极限2[(1)]lim(1cos )xx x arctg t dt dx x x →+-⎰⎰.分析 对0,0∞∞等未定式的极限,常可用洛必达法则来计算. 解 原式22000(1)(1)2lim lim(1cos )sin 2sin cos x x x arctg t dtarctg x xx x x x x x→→++⋅==-+⋅+⋅⎰222042(1)1lim 3cos sin 6x x arctg x x x x x π→+++==-⋅. 3 一题多解举例每一个题目并非只能用一种方法进行求解,通常可采用多种途经去解决它. 例1 求1lim(12)xx x →-.[解法一] 利用重要极限10lim(1)xx x e →+=112220lim(12)lim[(12)]xx x x x x e ---→→-=-=.[解法二] 用取对数法 令1(12)xy x =-,两边取对数,得1ln ln(12)y x x=- 由0002112limln lim[ln(12)]lim 21x x x x y x x →→→--=-==-,所以1200lim lim(12)x x x y x e -→→=-=.[解法三] 用换元法 令2x t -=,则12x t-=所以112200lim(12)lim[(1)]xt x x x t e --→→-=+=.[解法四] 利用对数式的性质001112ln(12)lim ln(12)lim2120lim(12)lim x x x x x xxx x x x eeee →→-----→→-====.例2 求22201cos lim sin x x x x →-.[解法一] 用洛必达法则和重要极限0sin lim1x xx→=原式2222222222200022sin 2sin sin 1lim lim lim sin 2sin 2cos sin cos 2cos x x x x x x x x x x x x x x x x x x x →→→====+⋅++.[解法二] 三角函数公式及洛必达法则原式2222222220002232(sin )sin cos222lim lim lim 2sin cos cos 2cos sin22222x x x x x x x x x x x xx x x x →→→===- 22202cos12lim 22cos sin22x x x x x →==-. [解法三] 三角函数恒等变换和重要极限0sin lim1x xx→= 原式2222222220022(sin )sin sin11222lim lim sin sin 2222x x x x x x x x x x x →→==⋅⋅=⋅. [解法四] 分子分母同除以4x 用重要极限和洛必达法则原式222440224002201cos 1cos lim 1cos lim lim sin sin lim x x x x x x x x x x x x x x →→→→---===2232002sin 1sin 1lim lim 224x x x x x x x →→==⋅=. [解法五] 分子分母同乘21cos x +原式2222222222222000(1cos )(1cos )sin sin lim lim lim sin (1cos )sin (1cos )(1cos )x x x x x x x x x x x x x x x →→→-+===+++22200sin 11lim lim 1cos 2x x x x x →→==+. [解法六] 变换替换后用洛必达法则令2u x = 原式0001cos sin cos 1limlim lim sin sin cos 2cos sin 2u u u u u u u u u u u u u u →→→-====+-又00sin 11lim sin cos 2lim(1cos )sin u u u uu u u u u→→==++⋅. [解法七] 用等价无穷小来代替原式222242222400012sin 2()1222lim lim lim 2sin x x x x x xx x x x x →→→⋅====⋅. 原式22430001cos 2sin 21lim lim lim 424x x x x x x x x x x→→→-====. [解法八] 级数解法因为462cos 12!4!x x x =-+- 622sin 3!x x x =-+所以4682822048()1cos 12!4!lim sin 2()3!x x x x x x x x x x οο→-+-==-+. [解法九] 连续使用两次洛必达法则原式22222222002sin sin lim lim 2cos 2sin cos sin x x x x x x x x x x x x x →→==⋅++222222222002cos cos 1lim lim 2cos 2sin 2cos 2cos sin 2x x x x x x x x x x x x x x x →→===-⋅+-. 例3[]()728P 设()x ϕ连续,0()lim2sin t t t t t ϕ→=-,求0()lim sin t t xt t tϕ→-.[解法一] 从0()lim2sin t t t t t ϕ→=- 可得0()lim 2sin 1t t ttϕ→=-所以0lim ()0t t ϕ→=.又()x ϕ连续,因此(0)0ϕ=这样可以得到:当0x =时,00()(0)lim lim 0sin sin t t t xt t t t t tϕϕ→→==--;当0x ≠时,作变量代换xt u =,有000()()()lim lim lim sin sin sin t u u uu t xt u u x u u ut t u x x x xϕϕϕ→→→==--- 00()sin lim limsin sinu u u u u u uu u u x xϕ→→-=⋅--以下利用已知极限,以及两次洛必达法则,即可求出极限为22x , 所以,原式22,00,0x x x ⎧≠=⎨=⎩.[解法二] 利用等价无穷小求解,注意到31sin ~(0)6t t t t -→这样,从0()limsin t t t t t ϕ→- 03()lim 216t t t tϕ→==可知21()~(0)3t t t ϕ→于是220031()()3lim lim 2(0)1sin 6t t t xt t xt x x t t t ϕ→→⋅==≠-;当0x =时,根据法一可得结果.综上所述,原式22,00,0x x x ⎧≠=⎨=⎩.例4 求2lim lnx x ax x a→∞++. [解法一] 原式221()(2)12ln2()lim lim 11x x x a x a x a x a x a x a x a x x→∞→∞+⋅+-+⋅+⋅+++==-222limlim 12()(2)(1)(1)x x ax ax x a a a ax a x a x x→∞→∞===⋅=++++. [解法二] 因为(2)lnln(1)()x a a x a x a +=+++ 又所以x →∞时,0ax a→+,所以ln(1)~a a x a x a +++则2lim ln lim lim 1x x x x a a a x x a a x a x a x→∞→∞→∞+⋅=⋅==+++.总之,极限的解题方法很多,这就要求我们多做练习,学会总结归纳,学会举一反三.这对拓展我们的思维,进一步学好数学是有帮助的。

相关文档
最新文档