锐角三角函数

合集下载

锐角三角函数(正弦、余弦和正切)

锐角三角函数(正弦、余弦和正切)

2.同一锐角三角函数的关系:
如图, 在 Rt△ ABC中,∠ C=90°, sin A
a ,cos A
b

c
c
则 sin2 A cos2 A
2
a
c
2
b
c
a2 b2 c2
c2 c2
1,即同一锐角的
正弦、余弦的平方和等于
1,或者说若
α
为锐角, 则
sinห้องสมุดไป่ตู้
2
2
α+cos α =1.
规律 学习锐角三角函数时,应明确三角函数值的两个变化规律: 1.特殊角的三角函数值的记忆规律:
Rt△ ABC中,∠ A+∠ B=90°,由
三角函数定义得
sin A
a ,cos(90
a
b
A) cosB ,cos A
sin B sin(90
A) ,
c
c
c
所以 sin A=cos(90° - A),cos A= sin (90° - A).即任意锐角的余弦值等于它的余角的正
弦值,任意锐角的正弦值等于它的余角的余弦值.
锐角三角函数教案
概念
1.在直角三角形中,斜边大于直角边且各边均为正数,正弦、余弦都是直角边与斜边
的比值,正切是两直角边的比值,因此正弦值、余弦值都是小于
1 的正数,正切值是大于零
的数,并且都没有单位,即 0<sin A<1,0<cos A<1, tan A>0(∠ A为锐角).
2.每一个三角函数都是一个完整的符号, 如 sin A不能理解为 sin · A,sin A 中的“ A”
2.锐角三角函数值的增减性:锐角 α 的正弦 sin α 值随着∠ α 的增大而增大;锐角

锐角三角函数关系公式

锐角三角函数关系公式

锐角三角函数关系公式
锐角三角函数关系公式是指正弦、余弦、正切等三角函数在锐角
三角形中的关系式。

其中最为著名的公式是“正弦定理”和“余弦定理”。

正弦定理指的是,在任意锐角三角形ABC中,有a/sin A=b/sin
B=c/sin C,其中a、b、c分别表示三角形的三边长,A、B、C分别表
示三角形的三个内角。

余弦定理则是指,在任意锐角三角形ABC中,有a²=b²+c²-2bc
cos A,b²=a²+c²-2ac cos B,c²=a²+b²-2ab cos C,其中a、b、c分
别表示三角形的三边长,A、B、C分别表示三角形的三个内角,cos A、cos B、cos C分别表示对应的余弦值。

锐角三角函数关系公式在数学和物理等领域均有广泛应用,能够
帮助人们计算三角函数值,解决各种相关问题。

锐角三角函数

锐角三角函数

初中数学锐角三角函数初中知识点一、锐角三角函数的定义1.勾股定理:直角三角形两直角边a .b 的平方和等于斜边c 的平方。

222c b a =+ 在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B ):定 义表达式 取值范围 关 系正弦 斜边的对边A A ∠=sin c aA =sin1sin 0<<A(∠A 为锐角)B A cos sin = B A sin cos =1cos sin 22=+A A余弦 斜边的邻边A A ∠=coscbA =cos1cos 0<<A(∠A 为锐角)正切的邻边的对边A tan ∠∠=A Aba A =tan 0tan >A(∠A 为锐角)B A cot tan = B A tan cot =AA cot 1tan =(倒数) 1cot tan =⋅A Atan α=sin cos αα,cot α=cos sin αα余切的对边的邻边A A A ∠∠=cotab A =cot 0cot >A(∠A 为锐角)注意:(1)正弦.余弦.正切.余切都是在直角三角形中给出的,要避免应用时对任意的三角形随便套用定义;(2)sinA 不是sin 与A 的乘积,是三角形函数记号,是一个整体。

“sinA ”表示一个比值,其他三个三角函数记号也是一样的;(3)锐角三角函数值与三角形三边长短无关,只与锐角的大小有关。

例题:1.在Rt △ABC 中,∠C 为直角,a =1,b =2,则cosA =________ ,tanA =_________.2. 在Rt △ABC 中,∠C 为直角,AB =5,BC =3,则sinA =________ ,tanA =_________.3.在Rt △ABC 中,∠C 为直角, ∠A =300,b =4,则a =__________,c =__________4.(2008·威海中考)在△ABC 中,∠C =90°,tanA =31,则sinB =( ) A .1010B .23 C .34D .310105.在△ABC 中,∠C =90°,a, b, c 分别为∠A ,∠B ,∠C 的对边,下列各式错误的是( )A .a =c ·sinAB .b =c ·cosBC .b =a ·tanBD .a =b ·tanA6.在△ABC 中,∠C =90°,(1)已知:c = 83,∠A =60°,求∠B .a .b . (2) 已知:a =36, ∠A =30°,求∠B .b .c .7.(2009·漳州中考)三角形在方格纸中的位置如图所示,则tan 的值是( )A .35B .43 C .34D .45练习:1.在Rt △ABC 中,∠C 为直角,若sinA =53,则cosB =_________. 2.已知cosA =23,且∠B =900-∠A ,则sinB =__________. 3.∠A 为锐角,已知sinA =135,那么cos (900-A)=___________ . 4.在Rt △ABC 中,∠C 为直角,AC =4,BC =3,则sinA =( ) A .43 B .34 C . 53 D .54 5.在Rt △ABC 中,∠C 为直角,sinA =22,则cosB 的值是( ) A .21 B .23 C .1D .22知识点二、特殊角所对的三角函数值1. 0°.30°.45°.60°.90°特殊角的三角函数值(重要)三角函数0° 30°45°60°90° αsin0 2122 231 αcos1 23 22210 αtan 0 331 3- αcot-3133注意:记忆特殊角的三角函数值,可用下述方法:0°.30°.45°.60°.90°的正弦值分别是02.12.22.32.42,而它们的余弦值分别是42.32.22.12.02;30°.45°.60°的正切值分别是13.22.31,而它们的余切值分别是31.22.13。

锐角三角函数知识点

锐角三角函数知识点

锐角三角函数知识点锐角三角函数:一、基本概念:1、什么是锐角三角函数:锐角三角函数是一类特殊的函数,涉及到角度和角度对应的三角函数值,用于计算平面向量在多边形中和求解三角形的面积。

2、锐角三角函数的定义:锐角三角函数是基于角度θ,从而定义的三角函数值。

一般情况下,它用半圆线直叙指函数如下所示:sinθ,cosθ,tanθ,cotθ,secθ,cscθ。

3、锐角三角函数的基本关系:cosθ= sin (π/2-θ);sinθ= cos (π/2-θ);tanθ=cot (π/2-θ);cotθ=tan (π/2-θ);secθ=csc(π/2-θ);cscθ=sec (π/2-θ)。

二、圆周角:1、什么是圆周角:圆周角是指以圆等分线在a轴上的量度,即由圆心和两个点确定的弧的长度。

圆周角定义在一个圆的周围,与半径的长度有关,可以用角度μ来表示。

2、单位:圆周角的单位是弧度rad,又称为radian,表示当一个圆的半径为1时,圆周角的长度。

三、锐角的余弦定理:1、锐角余弦定理是用弦和角定义的三角形问题,可以求解共有三角形A、B、C三个锐角所对应边长a、b、c满足关系:a²=b²+c²-2bc cosA;b²=a²+c²-2ac cosB;c²=a²+b²-2ab cosC。

2、此外,锐角余弦定理也可以利用三角形所有边长求解A、B、C三个锐角所对应的角度值,记为A=cos-1[(b²+c²-a²)/2bc];B=cos-1[(a²+c²-b²)/2ac];C=cos-1[(a²+b²-c²)/2ab]。

四、锐角的正弦定理:1、锐角正弦定理是求解三角形的已知一边和两个对边角的问题,满足条件如下:a=b sinA/sinB;b=a sinB/sinA;c=a sinC/sinA,c=bsinC/sinB。

锐角三角函数

锐角三角函数

锐角三角函数锐角三角函数指的是在单位圆上,与单位圆心的射线所夹角度小于90°的三角函数。

常见的锐角三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)以及它们的倒数函数(csc、sec、cot)。

锐角三角函数在数学、物理、工程等领域具有重要的应用。

正弦函数 (sin)正弦函数是指在单位圆上,与x轴正方向的夹角所对应的纵坐标。

可以用以下公式表示:sin(θ) = 对边 / 斜边正弦函数图示正弦函数图示在三角函数中,正弦函数具有以下特点: - 值域在[-1,1]之间; - 奇函数,即sin(-θ) = -sin(θ); - 周期为2π,即sin(θ + 2π) = sin(θ)。

余弦函数 (cos)余弦函数是指在单位圆上,与x轴正方向的夹角所对应的横坐标。

可以用以下公式表示:cos(θ) = 邻边 / 斜边余弦函数图示余弦函数图示在三角函数中,余弦函数具有以下特点: - 值域在[-1,1]之间; - 偶函数,即cos(-θ) = cos(θ); - 周期为2π,即cos(θ + 2π) = cos(θ)。

正切函数 (tan)正切函数是指在单位圆上,与x轴正方向的夹角所对应的纵坐标与横坐标的比值。

可以用以下公式表示:tan(θ) = 对边 / 邻边正切函数图示正切函数图示在三角函数中,正切函数具有以下特点: - 值域为全体实数; - 周期为π,即tan(θ + π) = tan(θ)。

倒数函数 (csc、sec、cot)在锐角三角函数中,除了正弦函数、余弦函数和正切函数,倒数函数也是常见的。

倒数函数分别为余弦函数的倒数 (csc)、正弦函数的倒数 (sec) 以及正切函数的倒数 (cot)。

倒数函数的定义如下:csc(θ) = 1 / sin(θ)sec(θ) = 1 / cos(θ)cot(θ) = 1 / tan(θ)这些倒数函数在数学中常用于简化关系式、求解方程等。

应用领域锐角三角函数在数学、物理、工程等领域有广泛的应用。

锐角三角函数

锐角三角函数

关系式
李善兰三角函数展开式 tanα·cotα=1 希腊三角函数公式 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 1+(tanα)^2=(secα)^2 1+(cotα)^2=(cscα)^2 锐角三角函数诱导公式 直角三角形中的锐角三角形函数sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα
三角函数值
取值范围
特殊角
变化情况
特殊角的三角函数值如下 : 注:非特殊角的三角函数值,请查三角函数表
θ是锐角: 0 0 tanθ>0 cotθ>0
1.锐角三角函数值都是正值。 2.当角度在0°~90°间变化时, 正弦值随着角度的增大(或减小)而增大(或减小),余弦值随着角度的增大(或减小)而减小(或增大) ; 正切值随着角度的增大(或减小)而增大(或减小),余切值随着角度的增大(或减小)而减小(或增大); 正割值随着角度的增大(或减小)而增大(或减小),余割值随着角度的增大(或减小)而减小(或增大)。 3.当角度在0°≤A≤90°间变化时,0≤sinA≤1, 0≤cosA≤1;当角度在0°0。
锐角三角函数
数学函数
01 相关概念
03 关系式
目录
02 三角函数值
锐角三角函数是以锐角为自变量,以比值为函数值的函数。我们把锐角∠A的正弦、余弦、正切和余切都叫做 ∠A的锐角函数。
相关概念
图1直角三角形锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割 (csc)都叫做角A的锐角三角函数。初中学习的锐角三角函数值的定义方法是在直角三角形中定义的,所以在初 中阶段求锐角的三角函数值,都是通过构造直角三角形来完成的,即把这个角放到如图1所示的直角三角形中,则 锐角三角函数可表示如下:

锐角三角函数

锐角三角函数

锐角三角函数介绍在三角函数中,我们经常会遇到锐角三角函数。

所谓锐角,是指小于90度的角度。

锐角三角函数包括正弦函数、余弦函数和正切函数。

正弦函数在数学中表示为sinθ,余弦函数表示为cosθ,正切函数表示为tanθ。

在本文中,我们将重点介绍锐角三角函数的定义、性质和常用公式。

正弦函数(sinθ)正弦函数是一个周期性函数,其定义域为实数集,值域为闭区间[-1, 1]。

数学上可以通过单位圆来理解正弦函数。

单位圆可以被看作是一个半径为1的圆,可以让我们更直观地理解正弦函数。

对于给定的角度θ,正弦函数的值等于单位圆上对应角度处点的y坐标。

正弦函数具有以下性质:1.正弦函数是一个奇函数,即sinθ = -sin(-θ)。

2.正弦函数在0度到90度之间是递增的,即sinθ在(0,90)区间内是单调递增的。

3.正弦函数在90度到180度之间是递减的,即sinθ在(90,180)区间内是单调递减的。

常用公式锐角三角函数有许多与角度相关的常用公式,下面是一些与正弦函数相关的常用公式:1.正弦函数的平方加上余弦函数的平方等于1,即sin^2(θ) + cos^2(θ) = 1。

2.正弦函数的和差公式:sin(α + β) = sinα·cosβ + cosα·sinβ。

3.正弦函数的二倍角公式:sin(2θ) = 2sinθ·cosθ。

4.正弦函数的半角公式:sin(θ/2) = ±√((1 - cosθ) / 2), 其中±表示与θ的象限有关的正负号。

余弦函数(cosθ)余弦函数也是一个周期性函数,其定义域为实数集,值域为闭区间[-1, 1]。

与正弦函数类似,我们可以通过单位圆来理解余弦函数。

对于给定的角度θ,余弦函数的值等于单位圆上对应角度处点的x坐标。

余弦函数具有以下性质:1.余弦函数是一个偶函数,即cosθ = cos(-θ)。

2.余弦函数在0度到90度之间是递减的,即cosθ在(0,90)区间内是单调递减的。

锐角三角函数(余弦、正切)

锐角三角函数(余弦、正切)

振动与波动
余弦函数在振动和波动的研究中有广泛 应用。例如,简谐振动的位移、速度和 加速度都可以表示为余弦函数的形式。
03
正切函数
正切函数的定义与性质
正切函数的定义
正切函数是锐角三角函数的一种,定义为直角三角形中锐角的对边与邻边的比 值,记作tan(α),其中α为锐角。
正切函数的性质
正切函数具有连续性、周期性、奇偶性等性质。在区间(0,π/2)和(π/2,π)内,正 切函数是单调递增的,而在区间(-π/2,0)和(π/2,3π/2)内,正切函数是单调递减 的。
01
余弦函数和正切函数的定义
余弦函数和正切函数是锐角三角函数的重要组成部分,它们分别描述了
直角三角形中锐角对应的邻边和斜边的比值,以及锐角对应的对边和邻
边的比值。
02
基本性质和应用
余弦函数和正切函数具有周期性、奇偶性等基本性质,这些性质在解决
几何、物理和工程问题中有着广泛的应用。例如,在计算角度、长度、
工程学中的应用
结构设计
在建筑和机械工程中,锐 角三角函数用于设计各种 结构,如桥梁、建筑和机 器部件。
控制系统
在控制工程中,锐角三角 函数用于设计和分析控制 系统,以确保系统的稳定 性和性能。
信号处理
在电子和通信工程中,锐 角三角函数用于信号处理, 如滤波、调制和解调等。
06
总结与展望
锐角三角函数的总结
正切函数的图像与周期性
正切函数的图像
正切函数的图像是一条周期函数,其周期为π,且在每一个周期 内,图像呈现出先增后减的趋势。
正切函数的周期性
由于正切函数的周期为π,因此对于任意整数k,tan(x+kπ) = tan(x),即正切函数在每个周期内具有相同的形状,但位置会随 着k的变化而变化。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 掌握锐角三角函数的概念,会熟练运用特殊三角函数值; 2. 知道锐角三角函数的取值范围以及变化规律; 3. 同角三角函数、互余角三角函数之间的关系; 4. 将实际问题转化为数学问题,建立数学模型.
模块一 三角函数基础
一、
锐角三角函数的定义
如图所示,在Rt ABC △中,a 、b 、c 分别为A ∠、B ∠、C ∠的对边.
(1)正弦:Rt ABC ∆中,锐角A 的对边与斜边的比叫做A ∠的正弦,记作sin A ,即sin a
A c
=
. (2)余弦:Rt ABC ∆中,锐角A 的邻边与斜边的比叫做A ∠的余弦,记作cos A ,即cos b
A c
=.
(3)正切:Rt ABC ∆中,锐角A 的对边与邻边的比叫做A ∠的正切,记作tan A ,即tan a A b
=. 注意:
① 正弦、余弦、正切都是在直角三角形中给出的,要避免应用时对任意三角形随便套用定义. ② sin A 、cos A 、tan A 分别是正弦、余弦、正切的数学表达符号,是一个整体,不能理解为sin 与A 、
cos 与A 、tan 与A 的乘积.
③ 在直角三角形中,正弦、余弦、正切分别是某个锐角的对边与斜边、邻边与斜边、对边与邻边的比值,当这个锐角确定后,这些比值都是固定值. 二、
特殊角三角函数
这些特殊角的三角函
数值一定要牢牢记住!
三、锐角三角函数的取值范围
在Rt ABC ∆中,90C ∠=︒,000a b c a c b c >>><<,,,,,又sin a A c =,cos b A c =,tan a
A b
=,所以 0sin 10cos 1tan 0A A A <<<<>,,.
锐角三角函数
a
四、三角函数关系 1.同角三角函数关系: 22sin cos 1A A +=,sin tan cos A
A A
= 2.互余角三角函数关系:
(1) 任意锐角的正弦值等于它的余角的余弦值:()sin cos 90A A =︒-;
(2) 任意锐角的余弦值等于它的余角的正弦值:()cos sin 90A A =︒-; (3) 任意锐角的正切值等于它的余角的余切值:()tan cot 90A A =︒-. 3.锐角三角函数值的变化规律:
(1)A 、B 是锐角,若A >B ,则sin A >sin B ;若A <B ,则sin A <sin B
(2) A 、B 是锐角,若A >B ,则cos A <cos B ;若A <B ,则cos A >cos B (3) A 、B 是锐角,若A >B ,则tan tan A B >;若A <B ,则tan tan A B <
模块一 三角函数基础
【例1】 如图:在Rt ABC ∆中,810BC AC ==,
.求sin A 和sin B 的值.
【巩固】在ABC △中,1
90tan 3
C A ∠=︒=,,则sin B 的值为( ). A
B .23
C .3
4
D
【巩固】在ABC △中,90C ∠=︒
,cos B a =
则b = . 【例2】 已知:如图,Rt ABC △中,90C ∠=︒.D 是AC 边上一点,DE AB ⊥于E 点,:1:2DE AE =.
求:sin B 、cos B 、tan B
【巩固】如图,A 、B 、C 三点在正方形网格线的交点处,若将ACB △绕着点A 逆时针旋转得到''AC B △,
则'tan B 的值为( ) A .
12 B .13
C .14
D
C
B
A
E
A
B
D
C
【巩固】已知:如图,在直角坐标系xOy 中,射线OM 为第一象限中的一条射线,A 点的坐标为(1,0),
以原点O 为圆心,OA 长为半径画弧,交y 轴于B 点,交OM 于P 点,作CA x ⊥轴交OM 于C 点.设AOM α∠=.
求:P 点和C 点的坐标.(用α的三角函数表示)
αy P
O
C
B
A
【例3】 已知cos1930'︒=09426.
,则sin7030'︒= . 【巩固】在ABC △中90C ∠=︒,若sin A +cos B 2A ∠等于( )
A .30︒
B .45︒
C .60︒
D .75︒
【例4】
如图,两条宽都为1的平直纸条,交叉叠放在一起,他们的交角为α,求他们的重叠部分的面积(即图像的阴影部分的面积)
D
α
C
B
A
【巩固】如图所示,将宽为2cm 的长方形纸条折叠成如图所示的形状,那么折痕PQ 的长是( )cm .
A 23
B 43
C 5
D .2
2cm
60°
模块二 比较大小
【例5】 已知:如图,90AOB AO OB C D ∠=︒=,,
、是AB 上的两点,AOD AOC ∠>∠. 求证:(1)0sin sin 1AOC AOD <∠<∠<;
(2)0cos cos 1AOD AOC <∠<∠<;
(3)锐角的正弦函数值随角度的增大而______; (4)锐角的余弦函数值随角度的增大而______.
【巩固】已知:如图,CA AO ⊥,E F 、是AC 上的两点,AOF AOE ∠>∠.
(1)求证:tan tan AOF AOE ∠>∠;
(2)锐角的正切函数值随角度的增大而______.
【例6】
已知:4590A ︒<<︒,则下列各式成立的是( )
A .sin cos A A =
B .sin cos A A >
C .sin tan A A >
D .sin cos A A <
【巩固】已知α为锐角,且2
cos 3
α=
,则α的取值范围是 ( ). A .030α︒<<︒ B .3045α︒<<︒ C .4560α︒<<︒ D .6090α︒<<︒
模块三 化简求值
【例7】
(1)计算:2(2)tan 452cos60-+︒-︒
(2
)计算:101
()2010tan603
--+--︒
【巩固】(1
)计算:11
()12sin 60tan 602
--︒⋅︒
O
D
C
B
A
C E F
A
O
(204sin 45(3)4π︒+-+-
【例8】
化简计算
(1)22(2sin cos )(2cos sin )αααα++-;
(2)2222sin 1sin 2....sin 88sin 89︒+︒++︒+︒;
(其中090α︒<<︒)
【巩固】已知α为锐角,sin cos αα-=sin cos αα+=____________;
【例9】 先化简再求值:22121
(1)24
x x x x ++-÷
+-,其中tan601x =︒-.
模块四 三角函数与代数综合
【例10】 求适合下列条件的锐角α:sin 22
α=;
【巩固】求适合下列条件的锐角α
:2cos(10)α+︒=
【例11】 已知α为锐角,且22sin 5cos 10αα-+=,求α的度数.
【巩固】若α为锐角,且22cos 7sin 50αα+-=,求α的度数.
模块五 三角函数与几何综合
【例12】 如图,点E 是矩形ABCD 中CD 边上一点,BCE △沿BE 折叠为BFE △,点F 落在AD 上.
(1)求证:ABE DFE △∽△
(2)若1
sin 3
DFE ∠=,求tan EBC ∠的值.
【例13】 如图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点,若2EF =,5BC =,3CD =,则tan C
等于( ).
A .34
B .4
3 C .35 D . 45
【例14】 如图,在等边ABC △中,D 为BC 边上一点,E 为AC 边上一点,
且60ADE ∠=︒, 4
4,3
BD CE ==,则ABC △的面积为 ( ). A
. B .15 C
. D

E
F
D C
B
A
F
E
D
C
B
A
A
B
C
D
E
【巩固】如图,ABC △
中,3
cos 5
B C =,5AC =,则ABC △的面积是( )
A .
21
2
B .12
C .14
D .21
【例15】 已知:如图,O 的半径16,OA cm OC AB =⊥于C
点,tan AOC ∠=
. 求:AB 及OC 的长.
【例16】 用几何方法求sin15︒、cos15︒、tan15︒的值.
A
B
C。

相关文档
最新文档