锐角三角函数的图文解析
合集下载
锐角三角函数课件

$sin 30^circ = frac{1}{2}$
45度角的余弦值
$cos 45^circ = frac{sqrt{2}}{2}$
30度角的余弦值
$cos 30^circ = frac{sqrt{3}}{2}$
60度角的正弦值
$sin 60^circ = frac{sqrt{3}}{2}$
45度角的正弦值
在工程学中的应用
结构设计
在建筑和机械设计中,锐角三角 函数用于计算结构件的角度和长
度。
控制系统
在控制系统的设计中,锐角三角函 数用于描述系统的传递函数和稳定 性。
信号处理
在信号处理中,锐角三角函数用于 频谱分析和滤波器的设计。
05
特殊角度的三角函数值
30度、45度、60度的三角函数值
30度角的正弦值
正切函数的图像在每 一个开区间(π/2+kπ, π/2+kπ), k∈Z内都是递增的。
04
锐角三角函数的应用
在几何学中的应用
01
02
03
计算角度
锐角三角函数可以帮助我 们计算出特定角度的三角 形的角度,例如直角三角 形中的锐角。
计算边长
通过已知的角度和边长, 我们可以使用锐角三角函 数来计算其他边的长度。
04
90度角的余弦值
$cos 90^circ = 0$
06
习题与解答
习题
题目1
已知直角三角形中,一个锐角为 30°,邻边长为3,求对边长。
题目2
在直角三角形中,已知一个锐角 为45°,斜边长为5,求邻边长。
题目3
已知直角三角形中,一个锐角为 60°,对边长为6,求斜边长。
答案与解析
01
45度角的余弦值
$cos 45^circ = frac{sqrt{2}}{2}$
30度角的余弦值
$cos 30^circ = frac{sqrt{3}}{2}$
60度角的正弦值
$sin 60^circ = frac{sqrt{3}}{2}$
45度角的正弦值
在工程学中的应用
结构设计
在建筑和机械设计中,锐角三角 函数用于计算结构件的角度和长
度。
控制系统
在控制系统的设计中,锐角三角函 数用于描述系统的传递函数和稳定 性。
信号处理
在信号处理中,锐角三角函数用于 频谱分析和滤波器的设计。
05
特殊角度的三角函数值
30度、45度、60度的三角函数值
30度角的正弦值
正切函数的图像在每 一个开区间(π/2+kπ, π/2+kπ), k∈Z内都是递增的。
04
锐角三角函数的应用
在几何学中的应用
01
02
03
计算角度
锐角三角函数可以帮助我 们计算出特定角度的三角 形的角度,例如直角三角 形中的锐角。
计算边长
通过已知的角度和边长, 我们可以使用锐角三角函 数来计算其他边的长度。
04
90度角的余弦值
$cos 90^circ = 0$
06
习题与解答
习题
题目1
已知直角三角形中,一个锐角为 30°,邻边长为3,求对边长。
题目2
在直角三角形中,已知一个锐角 为45°,斜边长为5,求邻边长。
题目3
已知直角三角形中,一个锐角为 60°,对边长为6,求斜边长。
答案与解析
01
第24讲 锐角三角函数

考点三
三角函数之间的关系
1.同角三角函数之间的关系
sin2α+cos2α=
1
;tan
α=csions
α α.
2.互余两角的三角函数之间的关系
若∠A+∠B=90°,则 sin A=cos B,
sin B=cos A,
tan A·tan B=1.
3.锐角三角函数的增减性 当 α 为锐角时,0<sin α<1,0<cos α<1,且 sin α,tan α 的值都随 α 的增大而 增大 ;cos α 的值随 α 的增大而 减小 . 温馨提示: 这些关系式都是恒等式,正反均可运用,同时还 要注意它们的变形公式.
Rt△ABD 中,cos A=AD=2 2=2 5.故选 D.
【答案】D
AB 10 5
3.把△ABC 三边的长度都扩大到原来的 3 倍,则
锐角 A 的正弦值( A )
A.不变
B.缩小为原来的13
C.扩大到原来的 3 倍 D.不能确定
4.在锐角三角形 ABC 中,若sin A- 23+(1-
tan B)2=0,则∠C 的度数是( C )
= 5
5+1.故选 C. 4
【答案】C
5.(2016·福州)如图,以 O 为圆心,半径为 1 的弧 交坐标轴于 A,B 两点,P 是 AB 上一点(不与 A,B 重合),连接 OP,设∠POB=α,则点 P 的坐标是( )
A.(sin α,sin α) B.(cos α,cos α) C.(cos α,sin α) D.(sin α,cos α)
考点三
三 角函数的增减性
例 3 如图,若锐角
△ABC 内接于⊙O,点 D 在
⊙O 外(与点 C 在 AB 同侧),
《锐角三角函数小结》课件

电磁学
在电磁学中,三角函数用于描述电磁 波的传播、辐射和吸收等过程。通过 三角函数,可以计算电磁波的强度、 频率和方向等参数。
三角函数在日常生活中的应用
01
航海与航空
在航海和航空领域,三角函数用于计算航行路线、高度和速度等信息。
例如,通过三角函数可以计算出两点之间的最短航线或最节省时间的航
线。
02
建筑与工程
在建筑和工程领域,三角函数用于计算结构稳定性、支撑力、梁的弯曲
程度等参数。通过三角函数,可以优化设计方案并确保建筑和工程的安
全性。
03
音乐与声学
在音乐和声学领域,三角函数用于描述音高、音强和音色的变化。通过
三角函数,可以分析和合成音乐声音,以及调整音频效果和混响等参数
。
04
锐角三角函数的图像与性质
特殊角的三角函数值的实际应用
物理问题
在物理问题中,经常需要用到特殊角的 三角函数值来计算角度、位移、速度等 物理量。例如,在简谐振动中,振幅、 周期与角频率之间的关系就需要用到特 殊角的三角函数值。
VS
工程问题
在工程设计中,经常需要用到特殊角的三 角函数值来计算角度、长度等参数。例如 ,在桥梁设计中,需要计算不同角度下梁 的受力分布情况,这时就需要用到特殊角 的三角函数值。
三角函数的奇偶性
总结词
三角函数具有奇偶性,即函数图像关于原点对称或关于y轴对称。
详细描述
三角函数的奇偶性是指函数图像是否关于原点对称或关于y轴对称。例如,正弦 函数和余弦函数都是偶函数,因为它们的图像都关于y轴对称;而正切函数是奇 函数,因为它的图像关于原点对称。
03
锐角三角函数的应用
三角函数在几何学中的应用
中考数学锐角三角函数(共56张PPT)

二、填空题
(1)求旋转木马E处到出口B处的距离; (2)求海洋球D处到出口B处的距离.(结果保留整数)
解:(1) ∵AE=80,∠BAE=30°,∠ABE =90°, ∴BE=AEsin30°=80× =40(m). 答:旋转木马E处到出口B处的距离为40 m.
(2) ∵∠CED=∠AEB,∠DCE=∠ABE =90°,
∴∠D=∠BAE=30°.
∵CD=34 m,
∴DE=
=
=
(m).
∴DB=BE+DE=
≈40+
≈79(m).
答:海洋球D处到出口B处的距离为79 m.
二、填空题
11. 小明在某次作业中得到如下结果: sin27°+ sin283°≈0.122+0.992=0.9945; sin222°+ sin268°≈0.372+0932=1.0018; sin229°+ sin261°≈0.482+0.872=0.9873; sin237°+ sin253°≈0.602+0.802=1.0000;
二、填空题
9. (2017北京)计算:4cos30°+
原式=4× +1-
+2
=
+1- +2=3.
-
+
.
10.(2017湘潭)某游乐场部分平面图如图Z2816所示,点C,E,A在同一直线上,点D,E,B在 同一直线上,测得A处与E处的距离为80 m, C处与D处的距离为34 m,∠C=90°,∠ABE =90°,∠BAE=30°. (2≈1.4,3≈1.7)
图Z28-7
A.
m
B.
m
《锐角三角函数》课件

锐角三角函数图像与性质
正弦函数图像及性质
周期性
振幅
相位
图像特点
正弦函数具有周期性,周期为2π。
正弦函数的相位表示函数在水平方向上的移动,通过调整相位可以得到不同位置的正弦波。
正弦函数的振幅为1,表示函数在垂直方向上的波动范围。
正弦函数的图像是一条连续的、平滑的曲线,呈现周期性的波动。
余弦函数图像及性质
202X
单击此处添加副标题内容
《锐角三角函数》ppt课件
汇报日期
汇报人姓名
目录
锐角三角函数基本概念
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数图像与性质
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数运算规则
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数在实际问题中应用
乘法运算规则
两个锐角三角函数的除法运算,通常转化为同角三角函数的除法运算,再利用同角三角函数的基本关系式进行化简。
除法运算规则
按照先乘除后加减的运算顺序进行乘除混合运算,注意运算过程中的化简和约分。
乘除混合运算规则
复合运算规则
复合函数的定义域
复合函数的值域
复合函数的单调性
复合函数的周期性
01
02
03
钝角三角函数定义
探讨了钝角三角函数的性质,如取值范围、增减性等,以及与锐角三角函数的异同点。
钝角三角函数的性质
介绍了在直角情况下,一些特殊角的三角函数值,如0°、30°、45°、60°、90°等,以及如何利用这些特殊值进行计算和证明。
直角情况下的特殊值
感谢观看
THANKS
渐近线与间断点
02
正弦函数图像及性质
周期性
振幅
相位
图像特点
正弦函数具有周期性,周期为2π。
正弦函数的相位表示函数在水平方向上的移动,通过调整相位可以得到不同位置的正弦波。
正弦函数的振幅为1,表示函数在垂直方向上的波动范围。
正弦函数的图像是一条连续的、平滑的曲线,呈现周期性的波动。
余弦函数图像及性质
202X
单击此处添加副标题内容
《锐角三角函数》ppt课件
汇报日期
汇报人姓名
目录
锐角三角函数基本概念
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数图像与性质
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数运算规则
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数在实际问题中应用
乘法运算规则
两个锐角三角函数的除法运算,通常转化为同角三角函数的除法运算,再利用同角三角函数的基本关系式进行化简。
除法运算规则
按照先乘除后加减的运算顺序进行乘除混合运算,注意运算过程中的化简和约分。
乘除混合运算规则
复合运算规则
复合函数的定义域
复合函数的值域
复合函数的单调性
复合函数的周期性
01
02
03
钝角三角函数定义
探讨了钝角三角函数的性质,如取值范围、增减性等,以及与锐角三角函数的异同点。
钝角三角函数的性质
介绍了在直角情况下,一些特殊角的三角函数值,如0°、30°、45°、60°、90°等,以及如何利用这些特殊值进行计算和证明。
直角情况下的特殊值
感谢观看
THANKS
渐近线与间断点
02
锐角三角函数复习课课件

90度角
总结词
正弦值和余弦值不存在,正切值为无穷大
详细描述
在90度角时,正弦函数值和余弦函数值都不存在,因为无法定义与x轴的角度;正切函数值为无穷大 ,因为在直角三角形中,对边长度可以无限小而保持与斜边的比值不变。
03
锐角三角函数的图像与性质
正弦函数图像
总结词
正弦函数图像是一个周期函数,其图像在直角坐标系中呈波 浪形。
用三角函数来处理角度和旋转。
05
常见题型解析与解题技巧
选择题
• 题型特点:选择题通常考察学生对锐角三角函数基础知识的理 解和应用,题目会给出一些具体的数值或图形,要求选择正确 的答案。
选择题
排除法
根据题目给出的选项,逐一排除明显 错误的答案,缩小选择范围。
代入法
对于涉及数值计算的题目,可以将选 项中的数值代入题目中,通过计算验 证答案的正确性。
在研究磁场和电场时,我们经常需要使用锐 角三角函数来描述场的方向和强度。
日常生活中的问题
建筑和设计
在建筑设计、工程规划和土木工程中,锐角 三角函数用于计算角度、高度和距离等参数 ,以确保结构的稳定性和安全性。
游戏和娱乐
在许多游戏和娱乐活动中,锐角三角函数也 起着重要作用。例如,在制作动画、设计游 戏关卡或创建虚拟现实环境时,我们需要使
总结词
正弦值为0,余弦值和正切值不存在
详细描述
在0度角时,正弦函数值为0,表示射线与x轴重合;余弦函数值不存在,因为无 法定义与x轴的角度;正切函数值也不存在,因为没有对边形成直角三角形。
30度角
总结词
正弦值为0.5,余弦值为0.866,正切值为1/3
详细描述
在30度角时,正弦函数值为0.5,表示对边长度为斜边长度的一半;余弦函数值 为0.866,表示邻边长度为斜边长度的一半的平方根;正切函数值为1/3,表示对 边长度与邻边长度的比值。
锐角三角函数

关系式
李善兰三角函数展开式 tanα·cotα=1 希腊三角函数公式 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 1+(tanα)^2=(secα)^2 1+(cotα)^2=(cscα)^2 锐角三角函数诱导公式 直角三角形中的锐角三角形函数sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα
三角函数值
取值范围
特殊角
变化情况
特殊角的三角函数值如下 : 注:非特殊角的三角函数值,请查三角函数表
θ是锐角: 0 0 tanθ>0 cotθ>0
1.锐角三角函数值都是正值。 2.当角度在0°~90°间变化时, 正弦值随着角度的增大(或减小)而增大(或减小),余弦值随着角度的增大(或减小)而减小(或增大) ; 正切值随着角度的增大(或减小)而增大(或减小),余切值随着角度的增大(或减小)而减小(或增大); 正割值随着角度的增大(或减小)而增大(或减小),余割值随着角度的增大(或减小)而减小(或增大)。 3.当角度在0°≤A≤90°间变化时,0≤sinA≤1, 0≤cosA≤1;当角度在0°0。
锐角三角函数
数学函数
01 相关概念
03 关系式
目录
02 三角函数值
锐角三角函数是以锐角为自变量,以比值为函数值的函数。我们把锐角∠A的正弦、余弦、正切和余切都叫做 ∠A的锐角函数。
相关概念
图1直角三角形锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割 (csc)都叫做角A的锐角三角函数。初中学习的锐角三角函数值的定义方法是在直角三角形中定义的,所以在初 中阶段求锐角的三角函数值,都是通过构造直角三角形来完成的,即把这个角放到如图1所示的直角三角形中,则 锐角三角函数可表示如下:
锐角三角函数课件

余弦函数
1
定义和公式
余弦函数描述直角三角形中的比例关系,其定义和公式为cos(x) = 邻边/斜边。
2
图像和性质
余弦函数的图像呈现波浪形状,具有周期性、振幅和相位差等性质。
3
应用举例
余弦函数在几何、物理、工程等领域有广泛的应用,如研究周期性现象和计算机 图形学。
正切函数
定义和公式 图像和性质 应用举例
和差化积公式
三角函数的和差化积公式可 以将两个三角函数的和、差 表达为一个三角函数的乘积。
倍角公式
三角函数的倍角公式用于计 算两倍角的三角函数值。
总结
特点和应用
锐角三角函数具有周期性、对称性和广泛的 应用,为解决实际问题提供了重要的数学工 具。
实际生活中的应用举例
锐角三角函数在摄影、测量、物理仿真等实 际生活中有广泛的应用。
ห้องสมุดไป่ตู้
扩展和推广
锐角三角函数的研究和应用正在不断扩展和 推广,涉及到更多领域和复杂情况。
未来发展和研究方向
锐角三角函数的未来发展将涉及到更多领域 的交叉研究和深入探索。
正切函数用来描述直角三角形中的比例关系, 其定义和公式为tan(x) = 对边/邻边。
正切函数的图像呈现周期性、无界和渐近线等 特点,其图像在某些范围内会无限逼近无穷。
正切函数在物理、工程、电子等领域中常用于 信号处理和电路分析等方面。
三角函数的关系式
基本关系式
正弦、余弦和正切函数之间 有一系列关系式,如sin²θ + cos²θ = 1等。
特点
锐角三角函数的值域在特 定区间内,具有周期性和 对称性等特点。
正弦函数
定义和公式
正弦函数用来描述直角三角形 中的比例关系,其定义和公式 为sin(x) = 对边/斜边。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. 6 2 3
B. 6 3
C.10 3
D.8 3
【答案】A
【解析】
【分析】
延长 PQ 交直线 AB 于点 E,设 PE=x 米,在直角△APE 和直角△BPE 中,根据三角函数利用 x
表示出 AE 和 BE,列出方程求得 x 的值,再在直角△BQE 中利用三角函数求得 QE 的长,则
问题求解.
6.如图,在矩形 ABCD 中,BC=2,AE⊥BD,垂足为 E,∠BAE=30°,则 tan∠DEC 的值是 ()
A.1
B. 1
C. 3
D. 3
2
2
3
【答案】C
【解析】
【分析】
先根据题意过点 C 作 CF⊥BD 与点 F 可求得△AEB≌△CFD(AAS),得到 AE=CF=1,EF=
3- 3 = 2 3 ,即可求出答案 33
12. cos60 tan45 的值等于 ( )
A. 3 2
【答案】A 【解析】
B. 2 2
C. 3 2
D.1
【分析】 根据特殊角的三角函数值计算即可.
【详解】
解:原式 1 1 3 . 22
故选 A. 【点睛】 本题考查了特殊角的三角函数值,解题的关键是熟练掌握特殊角的三角函数值.
∵四边形 ABCD 是菱形,∴OD=OB,CD=BC.
∵DE⊥BC,∴∠DEB=90°,∴OE=OD=OB.
∵∠DOE=120°,∴∠BOE=60°,∴△OBE 是等边三角形,∴∠DBC=60°.
∵∠DEB=90°,∴BD= DE 2 3 . sin60 3
故选 B. 【点睛】 本题考查了解直角三角形,菱形的性质,等边三角形的判定和性质,直角三角形斜边的中 线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
BQ=2× 3 v=2 3 v,
y= 1 AB×BQ= 1 6v×2 3 v=6 3 ,解得:v=1,
2
2
故点 P、Q 的速度分别为:3, 3 ,AB=6v=6=a,
则 AC=12,BC=6 3 ,
如图当点 P 在 AC 的中点时,PC=6, 此时点 P 运动的距离为 AB+AP=12,需要的时间为 12÷3=4,
2
2
在 Rt△ADC 中,DC2=AC2﹣AD2,
∴
a
1 2
c
2
b2
3 4
c2,
即 a2+c2=b2+ac,
∴
a
c b
c
a b
c2 cb a2 ab
a bc b
a2 ac
c2 ab bc ab bc b2
b2 ac ab bc ac ab bc b2
1.
故选 C.
在 Rt△ABC 中,sin∠D= AB = 1 , AD 2
∴∠D=30°,∠A=60°,
∴sinA= 3 ,故 C 正确;cosD= 3 ,故 D 错误,
2
2
故选:D.
【点睛】
本题考查了解直角三角形,三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边
垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理和解直角三角形.
【点睛】 本题考查了特殊角的三角函数值、勾股定理的内容.在直角三角形中,两直角边的平方和 等于斜边的平方.注意作辅助线构造直角三角形是解题的好方法.
10.如图,已知 AB 是⊙O 的直径,点 C 在⊙O 上,过点 C 的切线与 AB 的延长线交于点 P,连接 AC,若∠A=30°,PC=3,则⊙O 的半径为( )
2
2
可求 DB 1 c, AD 3 c, 把这两个表达式代入到另一个 Rt△ADC 的勾股定理表达式中,
2
2
化简可得即 a2+c2=b2+ac,再把此式代入通分后所求的分式中,可求其值等于 1.
【详解】
解:过 A 点作 AD⊥BC 于 D,在 Rt△BDA 中,由于∠B=60°,
∴ DB 1 c, AD 3 c,
C. 500tan55 m
D. 500 m cos55
在 Rt△BDE 中,cosD= DE , BD
∴DE=BD•cosD=500cos55°. 故选 B. 【点睛】 本题主要考查了解直角三角形的应用,正确记忆三角函数的定义是解决本题的关键.
3.菱形 ABCD 的周长为 20cm,DE⊥AB,垂足为 E,sinA= 3 ,则下列结论正确的个数有( ) 5
A.100sin35°米 【答案】C
B.100sin55°米
C.100tan35°米
D.100tan55°米
【解析】 【分析】 根据正切函数可求小河宽 PA 的长度. 【详解】 ∵PA⊥PB,PC=100 米,∠PCA=35°, ∴小河宽 PA=PCtan∠PCA=100tan35°米. 故选:C. 【点睛】 此题考查解直角三角形的应用,解题关键在于掌握解直角三角形的一般过程是:①将实际 问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).② 根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答 案,再转化得到实际问题的答案.
则 BQ= 3 x=4 3 ,CQ=BC﹣BQ=6 3 ﹣4 3 =2 3 ,
过点 P 作 PH⊥BC 于点 H,
PC=6,则 PH=PCsinC=6× 1 =3,同理 CH=3 3 ,则 HQ=CH﹣CQ=3 3 ﹣2 3 = 2
3,
PQ= PH2 HQ2 = 3 9 =2 3 ,
故选:C. 【点睛】 本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关 系,进而求解.
A.
【答案】C 【解析】 【分析】
B. 2
C. 3
D. ( 3 1)
由三视图可知:该几何体是一个圆锥,其轴截面是一个高为 3 的正三角形.可计算边长
为 2,据此即可得出表面积. 【详解】
解:由三视图可知:该几何体是一个圆锥,其轴截面是一个高为 3 的正三角形.
∴正三角形的边长 3 2 . sin 60
【详解】
解:设 AB=a,∠C=30°,则 AC=2a,BC= 3 a,
设 P、Q 同时到达的时间为 T,
则点 P 的速度为 3a ,点 Q 的速度为 3a ,故点 P、Q 的速度比为 3: 3 ,
T
T
故设点 P、Q 的速度分别为:3v、 3 v,
由图 2 知,当 x=2 时,y=6 3 ,此时点 P 到达点 A 的位置,即 AB=2×3v=6v,
在直角△BEQ 中,QE= 3 BE= 3 (3 3 +3)=3+ 3 .
3
3
∴PQ=PE-QE=9+3 3 -(3+ 3 )=6+2 3 .
答:电线杆 PQ 的高度是(6+2 3 )米.
故选:A. 【点睛】
本题考查解直角三角形的实际应用,解答关键是根据题意构造直角三角形解决问题.
8.如图,要测量小河两岸相对的两点 P,A 的距离,可以在小河边取 PA 的垂线 PB 上的一 点 C,测得 PC=100 米,∠PCA=35°,则小河宽 PA 等于( )
①DE=3cm; ②BE=1cm; ③菱形的面积为 15cm2; ④BD=2 10 cm.
A.1 个
B.2 个
C.3 个
根据菱形的性质及已知对各个选项进行分析,从而得到答案
【详解】
∵菱形 ABCD 的周长为 20cm
∴AD=5cm
∵sinA= 3 5
∴DE=3cm(①正确)
【详解】 过点 C 作 CF⊥BD 与点 F. ∵∠BAE=30°, ∴∠DBC=30°,
∵BC=2,
∴CF=1,BF= 3 ,
易证△AEB≌△CFD(AAS) ∴AE=CF=1, ∵∠BAE=∠DBC=30°,
∴BE= 3 AE= 3 ,
3
3
∴EF=BF﹣BE= 3 ﹣ 3 = 2 3 , 33
在 Rt△CFE 中,
1 tan∠DEC= CF 2 3 3 ,
EF 3 2 故选 C.
【点睛】 此题考查了含 30°的直角三角形,三角形全等的性质,解题关键是证明所进行的全等
7.如图,从点 A 看一山坡上的电线杆 PQ ,观测点 P 的仰角是 45,向前走 6m 到达 B 点, 测得顶端点 P 和杆底端点 Q 的仰角分别是 60 和 30 ,则该电线杆 PQ 的高度( )
2.如图,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在 AC 上找一点 B ,取 ABD 145 , BD 500m , D 55 ,要使 A , C , E 成一直线,那么开挖 点 E 离点 D 的距离是( )
A. 500sin55 m B. 500cos55 m
【答案】B 【解析】 【分析】 根据已知利用∠D 的余弦函数表示即可. 【详解】
A. 3
【答案】A 【解析】 连接 OC,
B.2 3
C. 3 2
D. 2 3 3
∵OA=OC,∠A=30°, ∴∠OCA=∠A=30°, ∴∠COB=∠A+∠ACO=60°, ∵PC 是⊙O 切线, ∴∠PCO=90°,∠P=30°, ∵PC=3,
∴OC=PC•tan30°= 3 ,
故选 A
11.如图 1,在△ABC 中,∠B=90°,∠C=30°,动点 P 从点 B 开始沿边 BA、AC 向点 C 以 恒定的速度移动,动点 Q 从点 B 开始沿边 BC 向点 C 以恒定的速度移动,两点同时到达点
∴AE=4cm
∵AB=5cm
∴BE=5﹣4=1cm(②正确)
∴菱形的面积=AB×DE=5×3=15cm2(③正确)
∵DE=3cm,BE=1cm
∴BD= 10 cm(④不正确)